Characterisation of New Bacillus Circulans Strain Isolated from Oil Shale

Total Page:16

File Type:pdf, Size:1020Kb

Characterisation of New Bacillus Circulans Strain Isolated from Oil Shale V. DRAGUTINOVI] et al.: New Bacillus circulans Strain from Oil Shale, Food Technol. Biotechnol. 50 (1) 123–127 (2012) 123 ISSN 1330-9862 scientific note (FTB-2480) Characterisation of New Bacillus circulans Strain Isolated from Oil Shale Vesna Dragutinovi}1*, Miroslav M. Vrvi}2,3, Izabela Swiecicka4, Olga Cvetkovi}3, Tanja Beri}5 and Slavi{a Stankovi}5 1Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, Vi{egradska 26, RS-1000 Belgrade, Serbia 2Faculty of Chemistry, University of Belgrade, Studentski trg 16, RS-11000 Belgrade, Serbia 3Institute of Chemistry, Technology and Metallurgy, Center of Chemistry, University of Belgrade, Njego{eva 12, RS-11000 Belgrade, Serbia 4Department of Microbiology, Institute of Biology, University of Bialystok, PL-15-950 Bialystok, Poland 5Faculty of Biology, University of Belgrade, Studentski trg 16, RS-11000 Belgrade, Serbia Received: March 18, 2010 Accepted: January 18, 2011 Summary A new strain of Bacillus sp. was obtained during experiments of oil shale deminerali- zation, which were carried out in order to get ’pure’ organic matter (kerogen). The demi- neralization efficiency of newly isolated strain was found to be substantially higher in comparison with that of Bacillus circulans Jordan 1890. On the basis of the biochemical characteristics, protein patterns and fatty acid composition, as well as the whole genome profile and 16S rDNA sequencing, the new strain was identified as Bacillus circulans VD01. Key words: Bacillus circulans, oil shale, kerogen, siliceous bacteria B. circulans is a typical chemoorganoheterotrophic bac- Introduction terium using mono-, di- and polysaccharides and poly- hydroxylic alcohols as sources of carbon, energy and elec- Kerogen is a mixture of organic compounds. It re- trons. The efficiency in disintegrating silicates and alumi- presents an insoluble component of oil shale, a compact nosilicates is not equal in all strains of siliceous bacteria, sedimentary rock of homogenous fine-grained compo- and it varies depending on the nature of silicates and the sition. The preparation of pure and unaltered kerogen metabolic products of bacteria, primarily organic acids and concentrate is of geochemical interest (1). Investigations the mucous polysaccharide capsules. The activity of B. cir- of the kerogen chemical composition and structures gener- culans is attributed to its metabolites and their specific re- ally require preliminary isolation of natural organic ma- actions such as acidolysis, alkalysis and complexolysis (4). terial. The isolation of native kerogen is a difficult task due to its complex nature and insolubility, and the fact The aim of this study is to identify newly isolated that in sediments kerogen is mixed with large amounts strain of bacteria from Aleksinac oil shale (Serbia) that of diverse minerals, such as carbonates, silicates and py- exhibited very high demineralization efficiency. rite. Microbial depyritization by the action of chemolitho- autotrophic bacterium Acidithiobacillus ferrooxidans was Materials and Methods found to be quite efficient (2). Siliceous bacterium Bacil- lus circulans was also proposed for bacterial desilicifica- An unidentified strain was obtained from Aleksinac tion of the oil shale (3). oil shale and adapted to grow on modified Ashby’s me- *Corresponding author; Phone: ++381 11 360 7140; Fax: ++381 11 360 7058; E-mail: [email protected] 124 V. DRAGUTINOVI] et al.: New Bacillus circulans Strain from Oil Shale, Food Technol. Biotechnol. 50 (1) 123–127 (2012) dium (3), incubated at 30 °C for 15 days. The strain was cultures according to Gaviria Rivera and Priest (10). The activated by successive seeding and appropriate tests for DNA was digested with 30 U of NotI (MBI Fermentas, identification of Bacillus genus were performed (5). Ac- Vilnius, Lithuania) or 25 U of AscI (New England Bio- tivated culture of B. circulans Jordan 1890, received from Labs GmbH, Frankfurt, Germany) for 4 h. Pulsed field the Center of Microbiology, Sofia, Bulgaria, and adapted gel electrophoresis (PFGE) was performed using the to modified Ashby’s medium, was used for desilicifica- CHEF-DR II System (Bio-Rad Laboratories, Hercules, tion. CA, USA) at 14 oC and 5.3 V/cm, using 1.0 % agarose gel (Sigma-Aldrich) in 0.5×TBE (100 mM Tris, 100 mM Phenotypic analysis borate, 200 mM EDTA). For either NotIorAscI digestion, The morphology of cells was examined by Gram the electrophoresis was carried out for 22 h with pulse from 10 to 130 s. After staining with ethidium bromide staining and the presence of spores was determined 3 using Ziehl-Neelsen stain as previously described (5). In solution (1 mg/cm ), the gels were photographed under brief, culture grown in modified Ashby’s medium was UV light using the Gel Doc 2000 System (Bio-Rad Labo- subjected to high temperature (80 °C) for 10 min and ratories) and analysed with the Quantity One v. 4.1.1 pro- plated on solid modified Ashby’s medium. After over- gram (Bio-Rad). The total molecular mass of the genome night incubation at 37 °C, staining procedure was per- was determined by adding the fragments produced by formed. restriction enzymes, the sizes of which were determined by comparison to yeast marker, as described by Carlson Biochemical characteristics of the new strain et al.(11). Bacilli, fulfilling the morphology and general bio- SDS-PAGE of whole cell proteins chemical characteristics of genus Bacillus, were assayed using commercial kits API 20E and 50CHB (API System, Sodium dodecyl sulphate polyacrylamide gel elec- bioMérieux, Marcy l’Etoile, France) as described by Berke- trophoresis (SDS-PAGE) was performed as described by ley et al. (6). The strain was identified by analysing the Costas (12). Electrophoresis was performed at the con- test results (obtained according to the manufacturer’s stant current of 20 mA, using a 10 % separating gel (pH= protocol) with API Lab Plus software and named B. 8.8) anda5%stacking gel (pH=6.8). The mini gel electro- circulans VD01. phoresis equipment SE260 was purchased from Hoefer Scientific Instruments (San Francisco, CA, USA). Mole- DNA analysis cular mass standard (Mr=15–250 kDa) was purchased from GE Healthcare (Little Chalfont, UK). For DNA extraction, cells were grown for 24 h in nutrient medium (7) on a rotary shaker at 200 rpm and 30 °C. DNA was extracted and purified by the conven- Determination of fatty acid composition tional method (8). The purity and quality of each DNA The lyophilized cell fatty acids (composition of 100 preparation were determined by monitoring the ratio of mg in 5 mL of NaOH-CH3OH) were heated for 15 min absorbance at 260 nm to that at 280 nm (1.8 to 2.1) and at 100 oC. The saponified material was cooled and acid- the ratio of absorbance at 260 nm to that at 230 nm (1.8 ified to pH=2. Boron trifluoride-methanol (BF3–CH3OH) to 2.1). The DNA samples were thermally denaturated reagent was added to 4 mL of saponified material, and by setting the temperature from 60 to 100 °C; at a rate of the mixture was reheated at 100 °C for 5 min. The con- 1 °C per minute. The standard sample contained calf thy- tent of the tube was added to 10 cm3 of saturated sodi- mus DNA (SERVA GmbH, Heidelberg, Germany). The um chloride solution and the methyl esters were extract- changes in absorbance were measured at 260 nm. All de- ed twice with an equal volume of 1:4 trichlormethane/ terminations were done by absorbance spectrophoto- hexane (13). ® meter Gilford G-250 (Gilford Instrument Laboratories Determination of fatty acid composition of bacterial Inc., Oberlin, OH, USA). The guanine-plus-cytosine (G+C) biomass was performed on Agilent 6890 chromatograph composition of the samples was calculated as previously with Agilent 5973 mass detector (Agilent Technologies, described (9). Santa Clara, CA, USA). Amplification of 16S rDNA by PCR and sequence Bacterial desilicification determination The newly isolated strain of B. circulans was activat- In order to obtain 16S rDNA sequences, polymerase ed by growing on a modified Ashby’s medium. The ex- 3 chain reaction (PCR) was carried out using primers P116S periments were carried out in the 500-cm Erlenmeyer (5’-GAATCTTCCACAATGGACG-3’) and P216S (5’-TGA- flask with a solid/liquid medium ratio of 1:50 (by mass CGGGCGGTGTGTACAAG-3’) according to the follow- per volume), on a rotary shaker at 200 rpm on 30 °C for ing protocol: 94 °C for 2 min, 30 cycles at 94 °C for 30 s, 30 days. Every third day fresh medium was added to 50°Cfor30s,68°Cfor30sand72°Cfor10min.The the substrate. Several parameters, such as pH, the num- purified PCR fragments were sequenced with both pri- ber of microorganisams as well as the amount of resi- mers and compared to 16S rRNA gene sequences in the dual silicon dioxide, aluminium oxide and ferric oxide public database using BLAST (NCBI, Bethesda, MD, USA). in the substrate ash were monitored throughout the ex- periment. The number of microorganisms was deter- PFGE of genomic DNA mined by the method of serial dilutions on a potato The low melting point agarose gel (Sigma-Aldrich, dextrose agar plate (pH=7). St. Louis, MO, USA) embedded chromosomal DNA of At the end of the leaching period the samples were the newly isolated strain was prepared from 6-hour-old treated with distilled water and hydrochloric acid (1:1, V. DRAGUTINOVI] et al.: New Bacillus circulans Strain from Oil Shale, Food Technol. Biotechnol. 50 (1) 123–127 (2012) 125 by mass per volume). The solid residue was used to pre- B. circulans VD01 strain exhibits a unique chromo- pare the ash (800 °C) by the analysis of Si, Al and Fe by somal profile as it was detected with PFGE analysis (Fig. spectrophotometry on a Varian 475 atomic apsorption 1).
Recommended publications
  • KUALITAS SILASE JERAMI PADI UNTUK PAKAN TERNAK RUMINANSIA DENGAN PENAMBAHAN Bacillus Circulans
    KUALITAS SILASE JERAMI PADI UNTUK PAKAN TERNAK RUMINANSIA DENGAN PENAMBAHAN Bacillus circulans SANTIKA INDRIYANI PROGRAM STUDI BIOLOGI FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA 2019 M/1441 H KUALITAS SILASE JERAMI PADI UNTUK PAKAN TERNAK RUMINANSIA DENGAN PENAMBAHAN Bacillus circulans SKRIPSI Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada Program Studi Biologi Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah Jakarta SANTIKA INDRIYANI 11150950000046 PROGRAM STUDI BIOLOGI FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA 2019 M / 1441 H ii ABSTRAK Santika Indriyani. Kualitas Silase Jerami Padi untuk Pakan Ternak Ruminansia dengan Penambahan Bacillus circulans. SKRIPSI. Program Studi Biologi. Fakultas Sains dan Teknologi. Universitas Islam Negeri Syarif Hidayatullah Jakarta. 2019. Dibimbing Oleh Wahidin Teguh Sasongko, M.Sc dan Etyn Yunita M.Si Ketersediaan pakan hijauan terbatas tergantung dengan musim. Jerami padi belum dimanfaatkan secara maksimal untuk pakan ternak ruminansia karena kandungan nutrisinya rendah. Teknologi pakan ternak dengan pembuatan silase dapat mengawetkan sekaligus mempertahankan bahkan dapat meningkatkan kualitas nutrisi bahan pakan. Bacillus circulans berpotensi untuk ditambahkan pada pembuatan silase. Penelitian ini bertujuan untuk mengetahui apakah penambahan B.circulans pada pembuatan silase mampu meningkatkan kualitas fermentatif dan kualitas nutrisi silase jerami padi dan untuk mengetahui pada konsentrasi berapa B.circulans mampu meningkatkan kualitas fermentatif dan kualitas nutrisi silase jerami padi. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) dengan empat perlakuan penambahan B.circulans (0%, 0,075%, 0,1%, dan 0,125%) dan empat pengulangan. Analisis kualitas fermentatif dan nutrisi dilakukan pada hari ke 21. Hasil silase jerami padi dengan penambahan B.circulans 0,125% memiliki pH lebih rendah dari 0%, namun masih pada kisaran pH basa.
    [Show full text]
  • Production of Antimicrobial Agents by Bacillus Spp. Isolated from Al-Khor Coast Soils, Qatar
    Vol. 11(41), pp. 1510-1519, 7 November, 2017 DOI: 10.5897/AJMR2017.8705 Article Number: EA9F76966550 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR Full Length Research Paper Production of antimicrobial agents by Bacillus spp. isolated from Al-Khor coast soils, Qatar Asmaa Missoum* and Roda Al-Thani Microbiology Laboratory, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha, Qatar. Received 12 September, 2017; Accepted 6 October, 2017 Bacilli are Gram-positive, sporulating bacteria that can be found in diverse habitats, but mostly in soil. Many recent studies showed the importance of their antimicrobial agents that mainly target other Gram- positive bacteria. This study was conducted to assess the antibacterial activity of Al-Khor coastal soil Bacillus strains against four bacterial strains (Staphylococcus aureus, Staphylococcus epidermis, Escherichia coli, and Pseudomonas aeruginosa) by agar diffusion method as well as investigating best strain antibiotic production in liquid medium. The 25 isolated strains were identified using physical and biochemical tests. Results show that most strains possess significant antibacterial potential against S. aureus and S. epidermis, but however less toward E. coli. Strain 2B-1B optimum activity was achieved using Luria Bertani broth and at 35°C, with pH 9. Therefore, antimicrobial compounds from these strains can be good candidates for future antibiotics production. Further screening for antimicrobial agents should be carried out in search of novel therapeutic compounds. Key words: Al-Khor, zone of inhibition, Bacillus, coastal soil, antimicrobial agent. INTRODUCTION Bacillus bacteria belong to the Firmicutes phylum, the facultative aerobes, some can be anaerobic (Prieto et al., Bacillaceae family, and are Gram-positive bacteria that 2014).
    [Show full text]
  • Bioprospecting of Antibacterial Metabolites in Seaweed Associated Bacterial Flora Along the Southeast Coast of India
    Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India Thesis submitted to COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in MARINE SCIENCES By BINI THILAKAN (Reg. No.3782) CENTRAL MARINE FISHERIES RESEARCH INSTITUTE (Indian council of Agricultural Research) Post Box No. 1603, Cochin-682018, INDIA October 2015 I do hereby declare that the thesis entitled “Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India” is the authentic and bonafide record of the research work carried out by me under the guidance of Dr. Kajal Chakraborty, Senior Scientist, Central Marine Fisheries Research Institute, Cochin, in partial fulfilment for the award of Ph.D. degree under the Faculty of Marine Sciences of Cochin University of Science and Technology, Cochin and no part thereof has been previously formed the basis for the award of any degree, diploma, associate ship, fellowship or other similar titles or recognition. Place: Cochin Date: 16/10/2015 BINI THILAKAN Dedicated to my family On this occasion of completing my doctoral degree dissertation, I realize that this work was not completed in a vacuum. I am thankful to many people who have helped me through the completion of this dissertation. Without thanking them my work will be incomplete. The first and foremost I wish to thank my supervisor, Dr.Kajal Chakraborty, Senior Scientist, Marine Biotechnology Division, CMFRI. who has been supportive since the days i joined CMFRI as a project assistant. He helped me come up with the thesis topic and guided me through the rough road to finish this thesis.
    [Show full text]
  • 41653410006.Pdf
    Acta Universitaria ISSN: 0188-6266 [email protected] Universidad de Guanajuato México Morales-Barrón, Bruce Manuel; Vázquez-González, Francisco J.; González-Fernández, Raquel; De La Mora-Covarrubias, Antonio; Quiñonez-Martínez, Miroslava; Díaz-Sánchez, Ángel Gabriel; Martínez-Martínez, Alejandro; Nevárez-Moorillón, Virginia; Valero-Galván, José Evaluación de la capacidad antagónica de cepas del orden bacillales aisladas de lixiviados de lombricomposta sobre hongos fitopatógenos Acta Universitaria, vol. 27, núm. 5, septiembre-octubre, 2017, pp. 44-54 Universidad de Guanajuato Guanajuato, México Disponible en: http://www.redalyc.org/articulo.oa?id=41653410006 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0188-6266 doi: 10.15174/au.2017.1313 Evaluación de la capacidad antagónica de cepas del orden bacillales aisladas de lixiviados de lombricomposta sobre hongos fitopatógenos Evaluation of antagonist capacity of bacillales strains isolated from vermicompost leachate on phytopatogenic fungi Bruce Manuel Morales-Barrón*, Francisco J. Vázquez-González*, Raquel González-Fernández*, Antonio De La Mora-Covarrubias*, Miroslava Quiñonez-Martínez*, Ángel Gabriel Díaz-Sánchez*, Alejandro Martínez-Martínez*, Virginia Nevárez-Moorillón**, José Valero-Galván*◊ RESUMEN El orden Bacillales se ha descrito como antagónico de fitopatógenos, además se ha mencionado en varios estudios algunas especies de este orden se encuentra en lixiviados de lombricomposta. En el presente estudio se evaluó el efecto antagónico de cinco cepas del orden Bacillales aisladas de lixiviados de lombricomposta sobre el crecimiento micelial de Phytophthora capsici, Fusarium oxysporum, Alternaria solani, y Rhizopus sp.
    [Show full text]
  • Blighia Sapida Bark and Its Inhibition of Cholinergic Enzymes Linked to Alzheimer’S Disease 257 – 264 Oluwafemi A
    ��ﺍﻟﻤﺠﻠﺔ ﺍﻷﺭﺩﻧﻴﺔ ﻟﻠﻌﻠﻮﻡ ﺍﻟﺤﻴﺎﺗﻴﺔ�� Jordan Journal of Biological Sciences (JJBS) http://jjbs.hu.edu.jo Jordan Journal of Biological Sciences (JJBS) (ISSN: 1995–6673 (Print); 2307-7166 (Online)): An International Peer- Reviewed Open Access Research Journal financed by the Scientific Research Support Fund, Ministry of Higher Education and Scientific Research, Jordan and published quarterly by the Deanship of Research and Graduate Studies, The Hashemite University, Jordan. Editor-in-Chief Professor Abu-Elteen, Khaled H. Medical Mycology ,The Hashemite University Editorial Board (Arranged alphabetically) Professor Abdalla, Shtaywy S Professor Lahham, Jamil N. Human Physiology, Plant Taxonomy, Tafila Technical University Yarmou k University Professor Al-Hadidi, Hakam F. Professor . Sallal, Abdul-Karim J. Toxicology and Clinical Pharmacology Applied Microbiology, Jordan University of Science and Technology Jordan University of Science and Technology Professor Bashir, Nabil A. Professor Tarawneh, Khaled A. Biochemistry and Molecular Genetics Molecular Microbiology, Mutah University Jordan University of Science and Technology Professor Khyami-Horani, Hala Microbial ,Biotechnology, The University of Jordan Submission Address Editorial Board Support Team Professor Abu-Elteen, Khaled H Language Editor Publishing Layout The Hashemite University Dr. Qusai Al-Debyan Eng.Mohannad Oqdeh P.O. Box 330127, Zarqa, 13115, Jordan Phone: +962-5-3903333 ext. 5157 E-Mail: [email protected] ��ﺍﻟﻤﺠﻠﺔ ﺍﻷﺭﺩﻧﻴﺔ ﻟﻠﻌﻠﻮﻡ ﺍﻟﺤﻴﺎﺗﻴﺔ�� Jordan Journal of Biological Sciences (JJBS) http://jjbs.hu.edu.jo International Advisory Board Prof. Abdel-Hafez, Sami K. Prof. Abdul-Haque, Allah Hafiz Yarmouk University, Jordan National Institute for Biotechnology and Genetic Engineering, Pakistan Prof. Abuharfeil, Nizar M Prof. Al-Najjar, Tariq Hasan Ahmad Jordan University of science and Technology, Jordan The University of Jordan, Jordan Prof.
    [Show full text]
  • Usefulness of Japanese-Radish Residue in Biological Soil
    Crop Protection 61 (2014) 64e73 Contents lists available at ScienceDirect Crop Protection journal homepage: www.elsevier.com/locate/cropro Usefulness of Japanese-radish residue in biological soil disinfestation to suppress spinach wilt disease accompanying with proliferation of soil bacteria in the Firmicutes Subrata Mowlick a, Takashi Inoue b, Toshiaki Takehara c, Akio Tonouchi d, Nobuo Kaku a, Katsuji Ueki a, Atsuko Ueki a,* a Faculty of Agriculture, Yamagata University, 1-23, Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan b Yamaguchi Prefectural Technology Center for Agriculture and Forestry, Yamaguchi 753-0214, Japan c NARO Western Region Agricultural Research Center, Hiroshima 721-8514, Japan d Faculty of Agriculture and Life Science, Hirosaki University, Aomori 036-8561, Japan article info abstract Article history: Biological soil disinfestation (BSD) is an effective method to suppress soilborne plant diseases by Received 12 November 2013 incorporation of plant biomass into soil under reduced, anoxic condition. Usefulness of Japanese-radish Received in revised form (daikon) residue as plant biomass for BSD was investigated by both model and field experiments in 5 March 2014 comparison with the effects of Brassica juncea plants or wheat bran. Considerable amounts of acetate Accepted 14 March 2014 together with minor amounts of propionate and butyrate were detected from the radish-treated soils at similar levels with those in soils treated with B. juncea plants or wheat bran. BSD treatments with radish Keywords: residue reduced spinach wilt disease incidence in both model and field experiments. When the BSD- Anaerobic bacteria Biological soil disinfestation (BSD) treated soil was treated again with irrigation and covering without biomass before next cropping, Japanese radish (daikon) however, wilt disease was hardly suppressed.
    [Show full text]
  • Aerobic Mesophilic Sporeforming Bacteria
    — 1 %—+ ™ AEROBIC MESOPHILIC SPOREFORMING BACTERIA \> ««• Miscellaneous Publication No. 559 \l U. S. DEPARTMENT OF AGRICULTURE . UNITED STATES DEPARTMENT OF AGRICULTURE MISCELLANEOUS PUBLICATION No. 559 Washington, D. C. May 1946 AEROBIC MESOPHILIC SPOREFORMING BACTERIA By Nathan R. Smith, senior bacteriologist, Ruth E. Gordon, formerly assistant soil bacteriologist, and Francis E. Clark, i bacteriologist, Division of Soils, Fertilizers, and Irrigation, Bureau of Plant Industry, Soils, and Agricultural Engineering, Agricultural Research Administration 2 CONTENTS Page Page Summary 2 Descriptions of species studied—Con. Need for classification 3 Group 1—Continued. Studies on dissociation 6 Bacillus megatherium-Bacillus Dissociation of Bacillus mycoides. 6 cere us intermediates Historical background 6 Bacillus cereus Dissociants obtained 7 Bacillus cereus var. mycoides. Vitamin requirements 7 Bacillus cereus var. anthracis Examination of dissociants . 8 Bacillus subtilis Lysis of dissociants by bac- Bacillus subtilis vox. aterrimus teriophage 9 Bacillus subtilis var. niger. Stability of the dissociants. 9 Bacillus subtilis-Bacillus pum- Dissociation of Bacillus praiissnitzii 9 ilus intermediates Dissociation of Bacillus aterrimus. 9 Bacillus pumilus 67 Dissociation of Bacillus nigcr 11 Bacillus coagulans 73 Factors affecting the production of Bacillus firm us 75 acetylmethylcarbinol 12 Bacillus lentus 77 Use of the Voges-Proskauer test. 12 Group 2. Sporangia definitely Steaming the medium 13 swollen by oval spores 78 Length and temperature of incu- Bacillus polymyxa 78 bation 15 Bacillus macerans 79 Kind of peptone 16 Bacillus circulans 81 Reaction of medium 17 Bacillus macerans-Bacillus cir- Aeration 17 culans intermediates 86 Test reagents for acetoin 18 Bacillus alvei 87 Conclusions on production of acetyl- Bacillus laterosporus 88 methylcarbinol 18 Bacillus brevis 90 Storage of fat 19 Group 3.
    [Show full text]
  • Bacillus Massiliogorillae Sp. Nov
    Standards in Genomic Sciences (2013) 9:93-105 DOI:10.4056/sigs.4388124 Non-contiguous finished genome sequence and description of Bacillus massiliogorillae sp. nov. Mamadou Bhoye Keita1, Seydina M. Diene1, Catherine Robert1, Didier Raoult1,2, Pierre- Edouard Fournier1, and Fadi Bittar1* 1URMITE, Aix-Marseille Université, Faculté de Médecine, Marseille, France 2King Fahad Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia *Correspondence: Fadi Bittar ([email protected]) Keywords: Bacillus massiliogorillae, genome, culturomics, taxonogenomics Strain G2T sp. nov. is the type strain of B. massiliogorillae, a proposed new species within the genus Bacillus. This strain, whose genome is described here, was isolated in France from the fecal sample of a wild western lowland gorilla from Cameroon. B. massiliogorillae is a facul- tative anaerobic, Gram-variable, rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,431,633 bp long genome (1 chromosome but no plasmid) contains 5,179 protein-coding and 98 RNA genes, including 91 tRNA genes. Introduction Strain G2T (= CSUR P206 = DSM 26159) is the type Here we present a summary classification and a strain of B. massiliogorillae sp. nov. This bacterium set of features for B. massiliogorillae sp. nov. strain is a Gram-variable, facultatively anaerobic, indole- G2T together with the description of the complete negative bacillus having rounded-ends. It was iso- genome sequence and annotation. These charac- lated from the stool sample of Gorilla gorilla goril- teristics support the circumscription of the spe- la as part of a “culturomics” study aiming at culti- cies B.
    [Show full text]
  • Antimicrobial Effects of Potential Probiotics of Bacillus Spp. Isolated from Human Microbiota: in Vitro and in Silico Methods
    microorganisms Article Antimicrobial Effects of Potential Probiotics of Bacillus spp. Isolated from Human Microbiota: In Vitro and In Silico Methods Alfonso Torres-Sánchez 1,2,† , Jesús Pardo-Cacho 1,† , Ana López-Moreno 1,2,3,* , Ángel Ruiz-Moreno 1,2 , Klara Cerk 1 and Margarita Aguilera 1,2,3,* 1 Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; [email protected] (A.T.-S.); [email protected] (J.P.-C.); [email protected] (Á.R.-M.); [email protected] (K.C.) 2 Institute of Nutrition and Food Technology “José Mataix”, CIBM, University of Granada, 18016 Granada, Spain 3 Instituto de Investigación Biosanitaria ibs (IBS), 18012 Granada, Spain * Correspondence: [email protected] (A.L.-M.); [email protected] (M.A.); Tel.:+34-9-5824-5129 (A.L.-M.); Fax: +34-958-246235 (M.A.) † These authors have contributed equally to this manuscript. Abstract: The variable taxa components of human gut microbiota seem to have an enormous biotech- nological potential that is not yet well explored. To investigate the usefulness and applications of its biocompounds and/or bioactive substances would have a dual impact, allowing us to better understand the ecology of these microbiota consortia and to obtain resources for extended uses. Our research team has obtained a catalogue of isolated and typified strains from microbiota showing Citation: Torres-Sánchez, A.; resistance to dietary contaminants and obesogens. Special attention was paid to cultivable Bacillus Pardo-Cacho, J.; López-Moreno, A.; species as potential next-generation probiotics (NGP) together with their antimicrobial production Ruiz-Moreno, Á.; Cerk, K.; Aguilera, and ecological impacts.
    [Show full text]
  • Analysis of Bacteria Associated with Honeys of Different Geographical
    RESEARCH ARTICLE Analysis of bacteria associated with honeys of different geographical and botanical origin using two different identification approaches: MALDI-TOF MS and 16S rDNA PCR technique 1 1 1,2 1,2 Paweø PomastowskiID *, Michaø ZøochID , Agnieszka Rodzik , Magda Ligor , Markus Kostrzewa3, Bogusøaw Buszewski1,2 a1111111111 1 Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, Torun, Poland, 2 Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus a1111111111 University in Torun, Torun, Poland, 3 Bruker Daltonik GmbH, Bremen, Germany a1111111111 a1111111111 * [email protected] a1111111111 Abstract In the presented work identification of microorganisms isolated from various types of honeys OPEN ACCESS was performed. Martix-assisted laser desorption/ionization time-of-flight mass spectrometry Citation: Pomastowski P, Zøoch M, Rodzik A, Ligor (MALDI-TOF MS) and 16S rDNA sequencing were applied to study environmental bacteria M, Kostrzewa M, Buszewski B (2019) Analysis of bacteria associated with honeys of different strains.With both approches, problematic spore-forming Bacillus spp, but also Staphylococ- geographical and botanical origin using two cus spp., Lysinibacillus spp., Micrococcus spp. and Brevibacillus spp were identified. How- different identification approaches: MALDI-TOF MS ever, application of spectrometric technique allows for an unambiguous distinction between and 16S rDNA PCR technique. PLoS ONE 14(5): species/species groups e.g.B. subtilis or B. cereus groups. MALDI TOF MS and 16S rDNA e0217078. https://doi.org/10.1371/journal. pone.0217078 sequencing allow for construction of phyloproteomic and phylogenetic trees of identified bacterial species. Furthermore, the correlation beetween physicochemical properties, geo- Editor: Doralyn S. Dalisay, University of San Agustin, PHILIPPINES graphical and botanical origin and the presence bacterial species in honey samples were investigated.
    [Show full text]
  • Taxonomic Index of Bees*
    Appendix A Taxonomic Index of Bees* *The names of species (or subspecies) were organized by the speci fi c (or subspeci fi c) epithet (e.g., Apis mellifera must be searched as mellifera , Apis and Apis mellifera scutellata as scutellata , Apis mellifera ). Species referred as sp. or spp. are indicated only by the generic name (e.g., Anthophora sp. appears only as Anthophora ). Also, species named approximately to another one, mentioned as af fi nis , near, sp. gr., etc., can be found in the name of the af fi ned species (e.g., Scaptotrigona aff . depilis appears as depili s, Scaptotrigona ). Names in bold are junior synonyms (senior syn- onyms are indicated in brackets). acapulconis (Strand, 1919), Geotrigona , 101, 140, 395 acapulconis Strand, 1919, Trigona , 557 ailyae Camargo, 1980, Partamona , 78 alfkeni Friese, 1900, Trigona , 75 Alphaneura Gray, 1832 (= Trigona ), 7 amalthea (Olivier, 1789), Trigona , 79, 94, 103 Amalthea Ra fi nesque, 1815 (= Trigona ), 7 amazonensis (Ducke, 1916), Trigona , 80 Andrena Fabricius, 1775, 3 anduzei (Schwarz, 1943), Paratrigona , 78, 81 angustula (Latreille, 1811), Tetragonisca , 91, 102, 117, 141, 298, 375, 395 angustula (Latreille, 1811), Tetragonisca angustula , 91, 102, 117, 141, 274, 298, 375, 395 angustula Latreille, 1811, Trigona (Frieseomelitta) angustula , 557 angustula Latreille, 1811, Trigona ( Tetragonisca ), 79 angustula Latreille, 1811, Trigona ( Tetragonisca ) angustula, xiv, 11, 79, anthidioides Lepeletier, 1836, Melipona quadrifasciata , 412, 530, 531, 543 Anthophora Latreille, 1803, 175
    [Show full text]
  • Final Screening Assessment for Bacillus Circulans Strain ATCC 9500
    Final Screening Assessment for Bacillus circulans strain ATCC 9500 Environment and Climate Change Canada Health Canada February 2018 Synopsis Pursuant to paragraph 74(b) of the Canadian Environmental Protection Act, 1999 (CEPA), the Minister of the Environment and the Minister of Health have conducted a screening assessment on Bacillus circulans strain ATCC 9500. B. circulans strain ATCC 9500 is a bacterium that has characteristics in common with other strains of the species B. circulans. B. circulans is an endospore-forming bacterium that is present in many environments. It has been isolated from soils and marine water, and is found in association with plants and animals. B. circulans has properties that make it of potential use in aquaculture, bioremediation, biodegradation, water and wastewater treatment, drain cleaning and degreasing and enzyme production. There has been no adverse effect attributed to B. circulans strain ATCC 9500 in the environment. However, in the context of experimental investigations into their biocontrol potential, some strains of B. circulans have shown pathogenic potential towards some insects and nematodes when directly inoculated with high concentrations. Nonetheless, B. circulans species is not considered a plant or animal pathogen, and in spite of its widespread distribution in the environment, there is no evidence that B. circulans has adversely affected terrestrial invertebrates at the population level. There have been no human infections attributed to B. circulans strain ATCC 9500, and as a species, B. circulans is not known as a human pathogen. Despite its ubiquity, there has been few case reports of human infection with B. circulans, and these occurred mostly in individuals with pre-existing health conditions.
    [Show full text]