41653410006.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
KUALITAS SILASE JERAMI PADI UNTUK PAKAN TERNAK RUMINANSIA DENGAN PENAMBAHAN Bacillus Circulans
KUALITAS SILASE JERAMI PADI UNTUK PAKAN TERNAK RUMINANSIA DENGAN PENAMBAHAN Bacillus circulans SANTIKA INDRIYANI PROGRAM STUDI BIOLOGI FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA 2019 M/1441 H KUALITAS SILASE JERAMI PADI UNTUK PAKAN TERNAK RUMINANSIA DENGAN PENAMBAHAN Bacillus circulans SKRIPSI Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada Program Studi Biologi Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah Jakarta SANTIKA INDRIYANI 11150950000046 PROGRAM STUDI BIOLOGI FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA 2019 M / 1441 H ii ABSTRAK Santika Indriyani. Kualitas Silase Jerami Padi untuk Pakan Ternak Ruminansia dengan Penambahan Bacillus circulans. SKRIPSI. Program Studi Biologi. Fakultas Sains dan Teknologi. Universitas Islam Negeri Syarif Hidayatullah Jakarta. 2019. Dibimbing Oleh Wahidin Teguh Sasongko, M.Sc dan Etyn Yunita M.Si Ketersediaan pakan hijauan terbatas tergantung dengan musim. Jerami padi belum dimanfaatkan secara maksimal untuk pakan ternak ruminansia karena kandungan nutrisinya rendah. Teknologi pakan ternak dengan pembuatan silase dapat mengawetkan sekaligus mempertahankan bahkan dapat meningkatkan kualitas nutrisi bahan pakan. Bacillus circulans berpotensi untuk ditambahkan pada pembuatan silase. Penelitian ini bertujuan untuk mengetahui apakah penambahan B.circulans pada pembuatan silase mampu meningkatkan kualitas fermentatif dan kualitas nutrisi silase jerami padi dan untuk mengetahui pada konsentrasi berapa B.circulans mampu meningkatkan kualitas fermentatif dan kualitas nutrisi silase jerami padi. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) dengan empat perlakuan penambahan B.circulans (0%, 0,075%, 0,1%, dan 0,125%) dan empat pengulangan. Analisis kualitas fermentatif dan nutrisi dilakukan pada hari ke 21. Hasil silase jerami padi dengan penambahan B.circulans 0,125% memiliki pH lebih rendah dari 0%, namun masih pada kisaran pH basa. -
Bacillus Cereus Group Species
The ISME Journal (2020) 14:2997–3010 https://doi.org/10.1038/s41396-020-0728-x ARTICLE Unique inducible filamentous motility identified in pathogenic Bacillus cereus group species 1 1 1 1 1 2 Martha M. Liu ● Shannon Coleman ● Lauren Wilkinson ● Maren L. Smith ● Thomas Hoang ● Naomi Niyah ● 2 3 3 2 1 Manjari Mukherjee ● Steven Huynh ● Craig T. Parker ● Jasna Kovac ● Robert E. W. Hancock ● Erin C. Gaynor 1 Received: 6 January 2020 / Revised: 11 July 2020 / Accepted: 23 July 2020 / Published online: 7 August 2020 © The Author(s) 2020. This article is published with open access Abstract Active migration across semi-solid surfaces is important for bacterial success by facilitating colonization of unoccupied niches and is often associated with altered virulence and antibiotic resistance profiles. We isolated an atmospheric contaminant, subsequently identified as a new strain of Bacillus mobilis, which showed a unique, robust, rapid, and inducible filamentous surface motility. This flagella-independent migration was characterized by formation of elongated cells at the expanding edge and was induced when cells were inoculated onto lawns of metabolically inactive Campylobacter jejuni 1234567890();,: 1234567890();,: cells, autoclaved bacterial biomass, adsorbed milk, and adsorbed blood atop hard agar plates. Phosphatidylcholine (PC), bacterial membrane components, and sterile human fecal extracts were also sufficient to induce filamentous expansion. Screening of eight other Bacillus spp. showed that filamentous motility was conserved amongst B. cereus group species to varying degrees. RNA-Seq of elongated expanding cells collected from adsorbed milk and PC lawns versus control rod- shaped cells revealed dysregulation of genes involved in metabolism and membrane transport, sporulation, quorum sensing, antibiotic synthesis, and virulence (e.g., hblA/B/C/D and plcR). -
GRAS Notice 975, Maltogenic Alpha-Amylase Enzyme Preparation
GRAS Notice (GRN) No. 975 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory novozyme~ Rethink Tomorrow A Maltogenic Alpha-Amylase from Geobacillus stearothermophilus Produced by Bacillus licheniformis Janet Oesterling, Regulatory Affairs, Novozymes North America, Inc., USA October 2020 novozyme~ Reth in k Tomorrow PART 2 - IDENTITY, METHOD OF MANUFACTURE, SPECIFICATIONS AND PHYSICAL OR TECHNICAL EFFECT OF THE NOTIFIED SUBSTANCE ..................................................................... 4 2.1 IDENTITY OF THE NOTIFIED SUBSTANCE ................................................................................ 4 2.2 IDENTITY OF THE SOURCE ......................................................................................................... 4 2.2(a) Production Strain .................................................................................................. 4 2.2(b) Recipient Strain ..................................................................................................... 4 2.2(c) Maltogenic Alpha-Amylase Expression Plasmid ................................................... 5 2.2(d) Construction of the Recombinant Microorganism ................................................. 5 2.2(e) Stability of the Introduced Genetic Sequences .................................................... 5 2.2(f) Antibiotic Resistance Gene .................................................................................. 5 2.2(g) Absence of Production Organism in Product ...................................................... -
The Effect of Bacillus Licheniformis-Fermented Products
animals Article The Effect of Bacillus licheniformis-Fermented Products and Postpartum Dysgalactia Syndrome on Litter Performance Traits, Milk Composition, and Fecal Microbiota in Sows Yu-Hsiang Yu , Ting-Yu Hsu, Wei-Jung Chen, Yi-Bing Horng and Yeong-Hsiang Cheng * Department of Biotechnology and Animal Science, National Ilan University, Yilan 260, Taiwan; [email protected] (Y.-H.Y.); [email protected] (T.-Y.H.); [email protected] (W.-J.C.); [email protected] (Y.-B.H.) * Correspondence: [email protected]; Tel.: +886-3-931-7712 Received: 6 October 2020; Accepted: 4 November 2020; Published: 5 November 2020 Simple Summary: Supplementation of probiotics can shape the gut microbiota of sows and further influence their offspring’s gut microbiota. Postpartum dysgalactia syndrome (PDS) is a common disease in sows worldwide. Sows with PDS have depressed milk production and increased piglet mortality. The bacterial pathogen is an important factor in the etiology of PDS. Bacillus licheniformis-fermented products (BLFP) containing probiotics and antimicrobial substances can prevent disease and improve growth performance in broilers and weaning piglets. However, little is known about the effect of BLFP, PDS, and interaction on litter performance traits, milk composition, and fecal microbiota in sows. In this study, the effects of BLFP and PDS on sows were evaluated. Results show that BLFP supplementation in the diet of sows improves the piglet body weight at weaning. Dietary supplementation of BLFP or PDS differentially regulates the fecal microbiota of sows. Abstract: This study was designed to evaluate the effects of Bacillus licheniformis-fermented products (BLFP) and postpartum dysgalactia syndrome (PDS) on litter performance traits, milk composition, and fecal microbiota in sows in a commercial farrow to finish pig farm. -
Production of Antimicrobial Agents by Bacillus Spp. Isolated from Al-Khor Coast Soils, Qatar
Vol. 11(41), pp. 1510-1519, 7 November, 2017 DOI: 10.5897/AJMR2017.8705 Article Number: EA9F76966550 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR Full Length Research Paper Production of antimicrobial agents by Bacillus spp. isolated from Al-Khor coast soils, Qatar Asmaa Missoum* and Roda Al-Thani Microbiology Laboratory, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha, Qatar. Received 12 September, 2017; Accepted 6 October, 2017 Bacilli are Gram-positive, sporulating bacteria that can be found in diverse habitats, but mostly in soil. Many recent studies showed the importance of their antimicrobial agents that mainly target other Gram- positive bacteria. This study was conducted to assess the antibacterial activity of Al-Khor coastal soil Bacillus strains against four bacterial strains (Staphylococcus aureus, Staphylococcus epidermis, Escherichia coli, and Pseudomonas aeruginosa) by agar diffusion method as well as investigating best strain antibiotic production in liquid medium. The 25 isolated strains were identified using physical and biochemical tests. Results show that most strains possess significant antibacterial potential against S. aureus and S. epidermis, but however less toward E. coli. Strain 2B-1B optimum activity was achieved using Luria Bertani broth and at 35°C, with pH 9. Therefore, antimicrobial compounds from these strains can be good candidates for future antibiotics production. Further screening for antimicrobial agents should be carried out in search of novel therapeutic compounds. Key words: Al-Khor, zone of inhibition, Bacillus, coastal soil, antimicrobial agent. INTRODUCTION Bacillus bacteria belong to the Firmicutes phylum, the facultative aerobes, some can be anaerobic (Prieto et al., Bacillaceae family, and are Gram-positive bacteria that 2014). -
Bioprospecting of Antibacterial Metabolites in Seaweed Associated Bacterial Flora Along the Southeast Coast of India
Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India Thesis submitted to COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in MARINE SCIENCES By BINI THILAKAN (Reg. No.3782) CENTRAL MARINE FISHERIES RESEARCH INSTITUTE (Indian council of Agricultural Research) Post Box No. 1603, Cochin-682018, INDIA October 2015 I do hereby declare that the thesis entitled “Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India” is the authentic and bonafide record of the research work carried out by me under the guidance of Dr. Kajal Chakraborty, Senior Scientist, Central Marine Fisheries Research Institute, Cochin, in partial fulfilment for the award of Ph.D. degree under the Faculty of Marine Sciences of Cochin University of Science and Technology, Cochin and no part thereof has been previously formed the basis for the award of any degree, diploma, associate ship, fellowship or other similar titles or recognition. Place: Cochin Date: 16/10/2015 BINI THILAKAN Dedicated to my family On this occasion of completing my doctoral degree dissertation, I realize that this work was not completed in a vacuum. I am thankful to many people who have helped me through the completion of this dissertation. Without thanking them my work will be incomplete. The first and foremost I wish to thank my supervisor, Dr.Kajal Chakraborty, Senior Scientist, Marine Biotechnology Division, CMFRI. who has been supportive since the days i joined CMFRI as a project assistant. He helped me come up with the thesis topic and guided me through the rough road to finish this thesis. -
Effect of Fermented Products Produced by Bacillus Licheniformis on the Growth Performance and Cecal Microbial Community of Broilers Under Coccidial Challenge
animals Article Effect of Fermented Products Produced by Bacillus licheniformis on the Growth Performance and Cecal Microbial Community of Broilers under Coccidial Challenge Yeong-Hsiang Cheng 1 , Yi-Bing Horng 1, Wei-Jung Chen 1 , Kuo-Feng Hua 1, Andrzej Dybus 2 and Yu-Hsiang Yu 1,* 1 Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; [email protected] (Y.-H.C.); [email protected] (Y.-B.H.); [email protected] (W.-J.C.); [email protected] (K.-F.H.) 2 Department of Genetics, West Pomeranian University of Technology, 70-310 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +886-3-931-7716 Simple Summary: Coccidiosis is a severe parasitic disease of poultry caused by parasites of the genus Eimeria. Eimeria species infection disrupts the intestinal microbiota of broilers, thereby reducing gut health and growth performance. Continuous use of anti-coccidial drugs leads to the selection of drug-resistant strains of Eimeria. Therefore, developing substitutes for anti-coccidial drugs is an urgent, unmet need. Fermented products produced by Bacillus licheniformis containing probiotics and antimicrobial peptides can modulate the gut microbiota of broilers. However, little is known about the effect of fermented products produced by B. licheniformis on the health, growth, and gut Citation: Cheng, Y.-H.; Horng, Y.-B.; microbial community of broilers exposed to coccidial challenge. In this study, the anti-coccidial and Chen, W.-J.; Hua, K.-F.; Dybus, A.; Yu, gut microbiota modulatory effect of fermented products produced by B. licheniformis on broilers was Y.-H. -
Bacillus Licheniformis Normalize the Ileum Microbiota of Chickens
www.nature.com/scientificreports OPEN Bacillus licheniformis normalize the ileum microbiota of chickens infected with necrotic enteritis Received: 31 October 2016 Shuai Xu1,2, Yicen Lin1,2, Dong Zeng1,2, Mengjia Zhou1,2, Yan Zeng1,2, Hesong Wang1,2, Accepted: 12 January 2018 Yi Zhou1,2, Hui Zhu1,2, Kangcheng Pan1, Bo Jing1 & Xueqin Ni1,2 Published: xx xx xxxx Necrotic enteritis (NE) is a severe intestinal disease, which can change gut microbiota and result in a high cost for the poultry industry worldwide. However, little is known regarding how the gut microbiota of NE chicken ileum are changed by Bacillus licheniformis. This study was conducted to investigate how ileum microbiota structure was changed by B. licheniformis in broiler chickens challenged with Clostridium perfringens-induced NE through Illumina MiSeq sequencing. The broilers were randomly separated into four groups: the negative control group (NC), the positive control group (PC), the fshmeal and coccidia group (FC), and the PC group supplied with feed containing B. licheniformis (BL). Compared to the PC and FC, alpha diversity, beta diversity, and the bacterial taxa of the ileum microbiota were more similar in BL and NC. Some genera, which were related to the NE control, became insignifcant in BL with NC, such as Lactobacillus, Lactococcus, Bacteroides, Ruminococcus and Helicobacter. The PICRUSt analysis revealed that a tumour suppressor gene, p53, which was negatively correlated with Helicobacter, was enriched in the BL group. Our fndings showed that the ileum microbiota disorder caused by NE in chickens was normalized by dietary B. licheniformis supplementation. Necrotic enteritis (NE) in chickens, which was frst reported by Parish in 19611, is a common illness caused by Clostridium perfringens2. -
Blighia Sapida Bark and Its Inhibition of Cholinergic Enzymes Linked to Alzheimer’S Disease 257 – 264 Oluwafemi A
��ﺍﻟﻤﺠﻠﺔ ﺍﻷﺭﺩﻧﻴﺔ ﻟﻠﻌﻠﻮﻡ ﺍﻟﺤﻴﺎﺗﻴﺔ�� Jordan Journal of Biological Sciences (JJBS) http://jjbs.hu.edu.jo Jordan Journal of Biological Sciences (JJBS) (ISSN: 1995–6673 (Print); 2307-7166 (Online)): An International Peer- Reviewed Open Access Research Journal financed by the Scientific Research Support Fund, Ministry of Higher Education and Scientific Research, Jordan and published quarterly by the Deanship of Research and Graduate Studies, The Hashemite University, Jordan. Editor-in-Chief Professor Abu-Elteen, Khaled H. Medical Mycology ,The Hashemite University Editorial Board (Arranged alphabetically) Professor Abdalla, Shtaywy S Professor Lahham, Jamil N. Human Physiology, Plant Taxonomy, Tafila Technical University Yarmou k University Professor Al-Hadidi, Hakam F. Professor . Sallal, Abdul-Karim J. Toxicology and Clinical Pharmacology Applied Microbiology, Jordan University of Science and Technology Jordan University of Science and Technology Professor Bashir, Nabil A. Professor Tarawneh, Khaled A. Biochemistry and Molecular Genetics Molecular Microbiology, Mutah University Jordan University of Science and Technology Professor Khyami-Horani, Hala Microbial ,Biotechnology, The University of Jordan Submission Address Editorial Board Support Team Professor Abu-Elteen, Khaled H Language Editor Publishing Layout The Hashemite University Dr. Qusai Al-Debyan Eng.Mohannad Oqdeh P.O. Box 330127, Zarqa, 13115, Jordan Phone: +962-5-3903333 ext. 5157 E-Mail: [email protected] ��ﺍﻟﻤﺠﻠﺔ ﺍﻷﺭﺩﻧﻴﺔ ﻟﻠﻌﻠﻮﻡ ﺍﻟﺤﻴﺎﺗﻴﺔ�� Jordan Journal of Biological Sciences (JJBS) http://jjbs.hu.edu.jo International Advisory Board Prof. Abdel-Hafez, Sami K. Prof. Abdul-Haque, Allah Hafiz Yarmouk University, Jordan National Institute for Biotechnology and Genetic Engineering, Pakistan Prof. Abuharfeil, Nizar M Prof. Al-Najjar, Tariq Hasan Ahmad Jordan University of science and Technology, Jordan The University of Jordan, Jordan Prof. -
Prevalence and Genetic Diversity of Bacillus Licheniformis in Avian Plumage
J. Field Ornithol. 76(3):264±270, 2005 Prevalence and genetic diversity of Bacillus licheniformis in avian plumage Justine M. Whitaker,1 Daniel A. Cristol and Mark H. Forsyth Institute for Integrative Bird Behavior Studies, Department of Biology, College of William and Mary, Williamsburg, Virginia 23187-8795 USA Received 28 May 2004; accepted 30 November 2004 ABSTRACT. Bacillus licheniformis, a soil bacterium capable of degrading the b-keratin in feathers, is present in the plumage of some wild-caught birds, but the published carriage rate is quite low. Microbial degradation could be a selective agent leading to the evolution of molt and plumage pigmentation, but we hypothesized that for B. licheniformis to have played an important role in avian evolution, it is likely to occur more widely in bird populations than previously reported. We sampled the plumage of 461 wild-caught birds of eight species. We designed a selective and differential culture method to isolate bacteria with the potential to degrade feathers. Putative feather-degrading bacteria were isolated from 21±59% of the individuals of each of the species tested, for an average carriage rate of 39%. 16S rRNA (rrnA) sequencing of 98 of these bacterial isolates indicated that 69% were Bacillus lichenformis, suggesting that the prevalence of this feather-degrading bacterium is 4 3 higher than previously reported. We also hypothesized that interspeci®c variation in avian plumage, behavior, and habitat may have led to the evolution of host-speci®c B. licheniformis strains. Fingerprinting of B. licheniformis isolated from Northern Saw-whet Owls (Aegolius acadicus) and Gray Catbirds (Dumetella carolinensis) using REP-PCR demonstrated that for nine owls, one individual carried four different strains and eight individuals carried only one strain. -
Usefulness of Japanese-Radish Residue in Biological Soil
Crop Protection 61 (2014) 64e73 Contents lists available at ScienceDirect Crop Protection journal homepage: www.elsevier.com/locate/cropro Usefulness of Japanese-radish residue in biological soil disinfestation to suppress spinach wilt disease accompanying with proliferation of soil bacteria in the Firmicutes Subrata Mowlick a, Takashi Inoue b, Toshiaki Takehara c, Akio Tonouchi d, Nobuo Kaku a, Katsuji Ueki a, Atsuko Ueki a,* a Faculty of Agriculture, Yamagata University, 1-23, Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan b Yamaguchi Prefectural Technology Center for Agriculture and Forestry, Yamaguchi 753-0214, Japan c NARO Western Region Agricultural Research Center, Hiroshima 721-8514, Japan d Faculty of Agriculture and Life Science, Hirosaki University, Aomori 036-8561, Japan article info abstract Article history: Biological soil disinfestation (BSD) is an effective method to suppress soilborne plant diseases by Received 12 November 2013 incorporation of plant biomass into soil under reduced, anoxic condition. Usefulness of Japanese-radish Received in revised form (daikon) residue as plant biomass for BSD was investigated by both model and field experiments in 5 March 2014 comparison with the effects of Brassica juncea plants or wheat bran. Considerable amounts of acetate Accepted 14 March 2014 together with minor amounts of propionate and butyrate were detected from the radish-treated soils at similar levels with those in soils treated with B. juncea plants or wheat bran. BSD treatments with radish Keywords: residue reduced spinach wilt disease incidence in both model and field experiments. When the BSD- Anaerobic bacteria Biological soil disinfestation (BSD) treated soil was treated again with irrigation and covering without biomass before next cropping, Japanese radish (daikon) however, wilt disease was hardly suppressed. -
Identification and Classification of Known and Putative Antimicrobial Compounds Produced by a Wide Variety of Bacillales Species Xin Zhao1,2 and Oscar P
Zhao and Kuipers BMC Genomics (2016) 17:882 DOI 10.1186/s12864-016-3224-y RESEARCH ARTICLE Open Access Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species Xin Zhao1,2 and Oscar P. Kuipers1* Abstract Background: Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification scheme of known and putative antimicrobial compounds in the specific context of Bacillales species. Results: We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs), polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class their genetic organization and structure. Moreover, we highlight the potential of several known and novel antimicrobials from various species of Bacillales. Conclusions: Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified. Keywords: Antimicrobials, Bacillales, Bacillus, Genome-mining, Lanthipeptides, Sactipeptides, Thiopeptides, NRPs, PKs Background (bacteriocins) [4], as well as non-ribosomally synthesized Most of the species of the genus Bacillus and related peptides (NRPs) and polyketides (PKs) [5].