Bacillus Massiliogorillae Sp. Nov

Total Page:16

File Type:pdf, Size:1020Kb

Bacillus Massiliogorillae Sp. Nov Standards in Genomic Sciences (2013) 9:93-105 DOI:10.4056/sigs.4388124 Non-contiguous finished genome sequence and description of Bacillus massiliogorillae sp. nov. Mamadou Bhoye Keita1, Seydina M. Diene1, Catherine Robert1, Didier Raoult1,2, Pierre- Edouard Fournier1, and Fadi Bittar1* 1URMITE, Aix-Marseille Université, Faculté de Médecine, Marseille, France 2King Fahad Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia *Correspondence: Fadi Bittar ([email protected]) Keywords: Bacillus massiliogorillae, genome, culturomics, taxonogenomics Strain G2T sp. nov. is the type strain of B. massiliogorillae, a proposed new species within the genus Bacillus. This strain, whose genome is described here, was isolated in France from the fecal sample of a wild western lowland gorilla from Cameroon. B. massiliogorillae is a facul- tative anaerobic, Gram-variable, rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,431,633 bp long genome (1 chromosome but no plasmid) contains 5,179 protein-coding and 98 RNA genes, including 91 tRNA genes. Introduction Strain G2T (= CSUR P206 = DSM 26159) is the type Here we present a summary classification and a strain of B. massiliogorillae sp. nov. This bacterium set of features for B. massiliogorillae sp. nov. strain is a Gram-variable, facultatively anaerobic, indole- G2T together with the description of the complete negative bacillus having rounded-ends. It was iso- genome sequence and annotation. These charac- lated from the stool sample of Gorilla gorilla goril- teristics support the circumscription of the spe- la as part of a “culturomics” study aiming at culti- cies B. massiliogorillae [9]. vating bacterial species within gorilla feces. The genus Bacillus (Cohn 1872) was created about Classification and features 140 years ago [1]. To date this genus, comprised In July 2011, a fecal sample was collected from a mostly of Gram-positive, motile, and spore- wild western lowland gorilla near Messok, a vil- forming bacteria, includes 276 species with validly lage in the south-eastern part of the DJA FAUNAL published names [2]. Members of the genus Bacil- Park (Cameroon). The collection of the stool sam- lus are ubiquitous bacteria isolated from various ple was approved by the Ministry of Scientific Re- environments including soil, fresh and sea water, search and Innovation of Cameroon. No experi- food, and occasionally from humans and animals mentation was conducted on this gorilla. The fecal in which they are either pathogens, such as B. specimen was preserved at -80°C after collection anthracis (the causative agent of anthrax) [3] and and sent to Marseille. Strain G2T (Table 1) was iso- B. cereus (associated mainly with food poisoning) lated in January 2012 by cultivation on Brucella [4], or saprophytes [5]. Bacillus species may also agar medium (Oxoid, Dardilly, France). This strain rarely be involved in a variety of human infec- exhibited a 97.3% 16S rRNA nucleotide sequence tions, including pneumonia, bacteremia, meningi- similarity with Bacillus simplex, the tis, endocarditis, endophthalmitis, osteomyelitis phylogenetically closest validly published Bacillus and skin/soft tissue infection [5]. However, in species (Figure 1). This value was lower than the great apes, few data are available about the pres- 98.7% 16S rRNA gene sequence threshold rec- ence of the genus Bacillus. Recent reports have ommended by Stackebrandtia and Beers to delin- described the isolation of atypical B. anthracis (B. eate a new species without carrying out DNA-DNA anthracis-like bacteria) in wild chimpanzees and hybridization [23]. gorillas from Africa [6-8]. The Genomic Standards Consortium Bacillus massiliogorillae sp. nov. Table 1. Classification and general features of Bacillus massiliogorillae strain G2T MIGS ID Property Term Evidence codea Domain Bacteria TAS [10] Phylum Firmicutes TAS [11-13] Class Bacilli TAS [14,15] Order Bacillales TAS [16,17] Current classification Family Bacillaceae TAS [16,18] Genus Bacillus TAS [16,19,20] Species Bacillus massiliogorillae IDA Type strain G2T IDA Gram stain Variable IDA Cell shape Rod IDA Motility Motile IDA Sporulation Sporulating IDA Temperature range Mesophile IDA Optimum temperature 37°C IDA MIGS-6.3 Salinity Growth in BHI medium + 2% NaCl IDA MIGS-22 Oxygen requirement Facultative anaerobic IDA Carbon source Unknown NAS Energy source Unknown NAS MIGS-6 Habitat Gorilla gut IDA MIGS-15 Biotic relationship Free living IDA MIGS-14 Pathogenicity Unknown NAS Biosafety level 2 NAS Isolation Gorilla feces NAS MIGS-4 Geographic location Cameroon IDA MIGS-5 Sample collection time July 2011 IDA MIGS-4.1 Latitude Unknown NAS MIGS-4.1 Longitude Unknown NAS MIGS-4.3 Depth Unknown NAS MIGS-4.4 Altitude Unknown NAS Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report ex- ists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolat- ed sample, but based on a generally accepted property for the species, or anecdotal evidence). These evi- dence codes are from the Gene Ontology project [21]. If the evidence is IDA, then the property was direct- ly observed for a live isolate by one of the authors or an expert mentioned in the acknowledgements. 94 Standards in Genomic Sciences Keita et al. 39 Bacillus infernus (NR027227) 18 Bacillus methanolicus (NR 040985) 15 Bacillus fumarioli (FJ973527) 23 Bacillus jeotgali (JX094165) Bacillus lentus (NR040792) Bacillus smithii (NR036987) 62 56 54 Bacillus badius (EU717967) Bacillus firmus (JX428993) 52 40 Bacillus benzoevorans (Y14693) 78 Bacillus nealsoniis (NR044546) 100 Bacillus circulans (JF833093) 74 Bacillus massiliogorillae (JX650055) 97 Bacillus simplex (HQ327114) 87 Bacillus psychrosaccharolyticus (JX429005) Bacillus flexus (JN033557) 100 Bacillus megaterium (FJ685764) Bacillus thuringiensis (HF545324) Clostridium botulinum (AM412317) Figure 1. Phylogenetic tree highlighting the position of Bacillus massiliogorillae strain G2T relative to other type strains within the Bacillus genus. GenBank accession numbers are indicated in parentheses. Se- quences were aligned using CLUSTAL X (V2), and phylogenetic inferences obtained using the maximum- likelihood method within the MEGA 5 software [22]. Numbers at the nodes are percentages of bootstrap values obtained by repeating the analysis 1,000 times to generate a majority consensus tree. Clostridium botulinum was used as outgroup. The scale bar represents a 2% nucleotide sequence divergence. Different growth temperatures (25, 30, 37, 45°C) Strain G2T exhibited catalase activity but not oxi- were tested. Growth occurred at all tested tem- dase activity. Using the API 50CH system peratures, and the optimal growth was observed (BioMerieux), a positive reaction was observed for at 37°C. Colonies were 2-5 mm in diameter on Co- D-glucose, D-fructose, D-ribose, N- lumbia agar, grey opaque in color. Growth of the acetylglucosamine, amygdalin, arbutin, aesculin, strain was tested under anaerobic and salicin, cellobiose, maltose, D-lactose, D-trehalose, microaerophilic conditions using GENbag anaer D-saccharose, and hydrolysis of starch. Using the and GENbag microaer systems, respectively API ZYM system, positive reactions were observed (BioMérieux), and in aerobic conditions, with or for esterase (C4), esterase lipase (C8), phospha- without 5% CO2. Growth was achieved under aer- - glucosidase and N-acetyl- - obic (with and without CO2), microaerophilic and glucosaminidase. The urease reaction was also anaerobic conditions. Gram staining showed Gram positive,tase acid, but nitrateα reduction and indole produβc- variable bacilli (Figure 2). A motility test was posi- tion were negative. B. massiliogorillae is suscepti- tive. Cells grown on agar sporulate and the rods ble to amoxicillin, nitrofurantoin, erythromycin, have a length ranging from 3.2 to 7.5 µm (mean doxycycline, rifampin, vancomycin, gentamycin 5.4 µm) and a diameter ranging from 0.8 to 1.2 µm and imipenem but resistant to trimethoprim- (mean 1 µm) as determined by negative staining sulfamethoxazole, ciprofloxacin, ceftriaxon and transmission electron microscopy (Figure 3). amoxicillin-clavulanic acid. http://standardsingenomics.org 95 Bacillus massiliogorillae sp. nov. Figure 2. Gram staining of B. massiliogorillae strain G2T Figure 3. Transmission electron microscopy of B. massiliogorillae strain G2T, using a Morgani 268D (Philips) at an operating voltage of 60kV. The scale bar represents 1 µm. 96 Standards in Genomic Sciences Keita et al. Table 2. Differential phenotypic characteristics between B. massiliogorillae sp. nov. strain G2T and phylogenetically close Bacillus species. Characteristic B. massiliogorillae sp. nov. B. simplex B. psychrosaccharolyticus B. circulans Cell diameter (µm) 0.87-1.2 0.7-0.9 0.9-1 0.5-0.8 Oxygen requirement aerobic aerobic facultative anaerobic aerobic Gram stain var var var var Salt requirement < 5% <7% <10% <7% Motility + v + + Endospore formation + + + + Production of Alkaline phosphatase + na na na Acid phosphatase + na na na Catalase + + + + Oxidase - - na na Nitrate reductase - na + na Urease + na na w α-galactosidase - na na na β-galactosidase - na + + β -glucuronidase - na na na α -glucosidase + na na na N-acetyl- β- glucosaminidase + na na na Indole - na na na Esterase + na na na Esterase lipase + na na na Naphthyl-AS-BI- phosphohydrolase - na na na Phenylalanine arylamidase - na na na Leucine
Recommended publications
  • KUALITAS SILASE JERAMI PADI UNTUK PAKAN TERNAK RUMINANSIA DENGAN PENAMBAHAN Bacillus Circulans
    KUALITAS SILASE JERAMI PADI UNTUK PAKAN TERNAK RUMINANSIA DENGAN PENAMBAHAN Bacillus circulans SANTIKA INDRIYANI PROGRAM STUDI BIOLOGI FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA 2019 M/1441 H KUALITAS SILASE JERAMI PADI UNTUK PAKAN TERNAK RUMINANSIA DENGAN PENAMBAHAN Bacillus circulans SKRIPSI Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada Program Studi Biologi Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah Jakarta SANTIKA INDRIYANI 11150950000046 PROGRAM STUDI BIOLOGI FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA 2019 M / 1441 H ii ABSTRAK Santika Indriyani. Kualitas Silase Jerami Padi untuk Pakan Ternak Ruminansia dengan Penambahan Bacillus circulans. SKRIPSI. Program Studi Biologi. Fakultas Sains dan Teknologi. Universitas Islam Negeri Syarif Hidayatullah Jakarta. 2019. Dibimbing Oleh Wahidin Teguh Sasongko, M.Sc dan Etyn Yunita M.Si Ketersediaan pakan hijauan terbatas tergantung dengan musim. Jerami padi belum dimanfaatkan secara maksimal untuk pakan ternak ruminansia karena kandungan nutrisinya rendah. Teknologi pakan ternak dengan pembuatan silase dapat mengawetkan sekaligus mempertahankan bahkan dapat meningkatkan kualitas nutrisi bahan pakan. Bacillus circulans berpotensi untuk ditambahkan pada pembuatan silase. Penelitian ini bertujuan untuk mengetahui apakah penambahan B.circulans pada pembuatan silase mampu meningkatkan kualitas fermentatif dan kualitas nutrisi silase jerami padi dan untuk mengetahui pada konsentrasi berapa B.circulans mampu meningkatkan kualitas fermentatif dan kualitas nutrisi silase jerami padi. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) dengan empat perlakuan penambahan B.circulans (0%, 0,075%, 0,1%, dan 0,125%) dan empat pengulangan. Analisis kualitas fermentatif dan nutrisi dilakukan pada hari ke 21. Hasil silase jerami padi dengan penambahan B.circulans 0,125% memiliki pH lebih rendah dari 0%, namun masih pada kisaran pH basa.
    [Show full text]
  • Investigation of Bacteria Associated with Australian Wine Grapes Using Cultural and Molecular Methods
    Investigation of bacteria associated with Australian wine grapes using cultural and molecular methods Sung Sook Bae A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of New South Wales Food Science and Technology School of Chemical Engineering and Industrial Chemistry Sydney, Australia 2005 i DECLARATION I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of materials which have been accepted for the award of any other degree or diploma at UNSW or any other education institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged. Sung Sook Bae ii ACKNOWLEDGEMENTS I owe a tremendous debt of gratitude to numerous individuals who have contributed to the completion of this work, and I wish to thank them for their contribution. Firstly and foremost, my sincere appreciation goes to my supervisor, Professor Graham Fleet. He has given me his time, expertise, constant guidance and inspiration throughout my study. I also would like to thank my co-supervisor, Dr. Gillian Heard for her moral support and words of encouragement. I am very grateful to the Australian Grape and Wine Research Development and Corporation (GWRDC) for providing funds for this research.
    [Show full text]
  • Food Waste Composting and Microbial Community Structure Profiling
    processes Review Food Waste Composting and Microbial Community Structure Profiling Kishneth Palaniveloo 1,* , Muhammad Azri Amran 1, Nur Azeyanti Norhashim 1 , Nuradilla Mohamad-Fauzi 1,2, Fang Peng-Hui 3, Low Hui-Wen 3, Yap Kai-Lin 3, Looi Jiale 3, Melissa Goh Chian-Yee 3, Lai Jing-Yi 3, Baskaran Gunasekaran 3,* and Shariza Abdul Razak 4,* 1 Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, University of Malaya, Wilayah Persekutuan Kuala Lumpur 50603, Malaysia; [email protected] (M.A.A.); [email protected] (N.A.N.) 2 Institute of Biological Sciences, Faculty of Science, University of Malaya, Wilayah Persekutuan Kuala Lumpur 50603, Malaysia; [email protected] 3 Faculty of Applied Science, UCSI University (South Wing), Cheras, Wilayah Persekutuan Kuala Lumpur 56000, Malaysia; [email protected] (F.P.-H.); [email protected] (L.H.-W.); [email protected] (Y.K.-L.); [email protected] (L.J.); [email protected] (M.G.C.-Y.); [email protected] (L.J.-Y.) 4 Nutrition and Dietetics Program, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia * Correspondence: [email protected] (K.P.); [email protected] (B.G.); [email protected] (S.A.R.); Tel.: +60-3-7967-4640 (K.P.); +60-16-323-4159 (B.G.); +60-19-964-4043 (S.A.R.) Received: 20 May 2020; Accepted: 16 June 2020; Published: 22 June 2020 Abstract: Over the last decade, food waste has been one of the major issues globally as it brings a negative impact on the environment and health.
    [Show full text]
  • Mai Muun Muntant Un an to the Man Uniti
    MAIMUUN MUNTANTUS009855303B2 UN AN TO THEMAN UNITI (12 ) United States Patent ( 10 ) Patent No. : US 9 , 855 ,303 B2 McKenzie et al. (45 ) Date of Patent: * Jan . 2 , 2018 ( 54 ) COMPOSITIONS AND METHODS (58 ) Field of Classification Search ??? . A61K 35 / 742 (71 ) Applicant : SERES THERAPEUTICS , INC . , See application file for complete search history . Cambridge, MA (US ) (72 ) Inventors : Gregory McKenzie , Arlington , MA ( 56 ) References Cited (US ) ; Mary - Jane Lombardo McKenzie , Arlington , MA (US ) ; David U . S . PATENT DOCUMENTS N . Cook , Brooklyn , NY (US ) ; Marin 3 ,009 , 864 A 11 / 1961 Gordon - Aldterton et al. Vulic , Boston , MA (US ) ; Geoffrey von 3 ,228 , 838 A 1 / 1966 Rinfret Maltzahn , Boston , MA (US ) ; Brian 3 ,608 ,030 A 9 / 1971 Tint Goodman , Boston , MA (US ) ; John 4 ,077 , 227 A 3 / 1978 Larson Grant Aunins , Doylestown , PA (US ) ; 4 , 205 , 132 A 5 / 1980 Sandine Matthew R . Henn , Somerville , MA 4 ,655 ,047 A 4 / 1987 Temple (US ) ; David Arthur Berry , Brookline , 4 ,689 , 226 A 8 / 1987 Nurmi MA (US ) ; Jonathan Winkler , Boston , 4 ,839 , 281 A 6 / 1989 Gorbach et al . 5 , 196 , 205 A 3 / 1993 Borody MA (US ) 5 , 425 , 951 A 6 / 1995 Goodrich 5 ,436 ,002 A 7 / 1995 Payne ( 73 ) Assignee : Seres Therapeutics , Inc ., Cambridge , 5 ,443 ,826 A 8 / 1995 Borody MA (US ) 5 , 599 , 795 A 2 / 1997 McCann 5 ,648 ,206 A 7 / 1997 Goodrich ( * ) Notice : Subject to any disclaimer , the term of this 5 , 951 , 977 A 9 / 1999 Nisbet et al. patent is extended or adjusted under 35 5 , 965 , 128 A 10 / 1999 Doyle et al .
    [Show full text]
  • Production of Antimicrobial Agents by Bacillus Spp. Isolated from Al-Khor Coast Soils, Qatar
    Vol. 11(41), pp. 1510-1519, 7 November, 2017 DOI: 10.5897/AJMR2017.8705 Article Number: EA9F76966550 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR Full Length Research Paper Production of antimicrobial agents by Bacillus spp. isolated from Al-Khor coast soils, Qatar Asmaa Missoum* and Roda Al-Thani Microbiology Laboratory, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha, Qatar. Received 12 September, 2017; Accepted 6 October, 2017 Bacilli are Gram-positive, sporulating bacteria that can be found in diverse habitats, but mostly in soil. Many recent studies showed the importance of their antimicrobial agents that mainly target other Gram- positive bacteria. This study was conducted to assess the antibacterial activity of Al-Khor coastal soil Bacillus strains against four bacterial strains (Staphylococcus aureus, Staphylococcus epidermis, Escherichia coli, and Pseudomonas aeruginosa) by agar diffusion method as well as investigating best strain antibiotic production in liquid medium. The 25 isolated strains were identified using physical and biochemical tests. Results show that most strains possess significant antibacterial potential against S. aureus and S. epidermis, but however less toward E. coli. Strain 2B-1B optimum activity was achieved using Luria Bertani broth and at 35°C, with pH 9. Therefore, antimicrobial compounds from these strains can be good candidates for future antibiotics production. Further screening for antimicrobial agents should be carried out in search of novel therapeutic compounds. Key words: Al-Khor, zone of inhibition, Bacillus, coastal soil, antimicrobial agent. INTRODUCTION Bacillus bacteria belong to the Firmicutes phylum, the facultative aerobes, some can be anaerobic (Prieto et al., Bacillaceae family, and are Gram-positive bacteria that 2014).
    [Show full text]
  • Bioprospecting of Antibacterial Metabolites in Seaweed Associated Bacterial Flora Along the Southeast Coast of India
    Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India Thesis submitted to COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in MARINE SCIENCES By BINI THILAKAN (Reg. No.3782) CENTRAL MARINE FISHERIES RESEARCH INSTITUTE (Indian council of Agricultural Research) Post Box No. 1603, Cochin-682018, INDIA October 2015 I do hereby declare that the thesis entitled “Bioprospecting of antibacterial metabolites in seaweed associated bacterial flora along the southeast coast of India” is the authentic and bonafide record of the research work carried out by me under the guidance of Dr. Kajal Chakraborty, Senior Scientist, Central Marine Fisheries Research Institute, Cochin, in partial fulfilment for the award of Ph.D. degree under the Faculty of Marine Sciences of Cochin University of Science and Technology, Cochin and no part thereof has been previously formed the basis for the award of any degree, diploma, associate ship, fellowship or other similar titles or recognition. Place: Cochin Date: 16/10/2015 BINI THILAKAN Dedicated to my family On this occasion of completing my doctoral degree dissertation, I realize that this work was not completed in a vacuum. I am thankful to many people who have helped me through the completion of this dissertation. Without thanking them my work will be incomplete. The first and foremost I wish to thank my supervisor, Dr.Kajal Chakraborty, Senior Scientist, Marine Biotechnology Division, CMFRI. who has been supportive since the days i joined CMFRI as a project assistant. He helped me come up with the thesis topic and guided me through the rough road to finish this thesis.
    [Show full text]
  • EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
    EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated
    [Show full text]
  • 41653410006.Pdf
    Acta Universitaria ISSN: 0188-6266 [email protected] Universidad de Guanajuato México Morales-Barrón, Bruce Manuel; Vázquez-González, Francisco J.; González-Fernández, Raquel; De La Mora-Covarrubias, Antonio; Quiñonez-Martínez, Miroslava; Díaz-Sánchez, Ángel Gabriel; Martínez-Martínez, Alejandro; Nevárez-Moorillón, Virginia; Valero-Galván, José Evaluación de la capacidad antagónica de cepas del orden bacillales aisladas de lixiviados de lombricomposta sobre hongos fitopatógenos Acta Universitaria, vol. 27, núm. 5, septiembre-octubre, 2017, pp. 44-54 Universidad de Guanajuato Guanajuato, México Disponible en: http://www.redalyc.org/articulo.oa?id=41653410006 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0188-6266 doi: 10.15174/au.2017.1313 Evaluación de la capacidad antagónica de cepas del orden bacillales aisladas de lixiviados de lombricomposta sobre hongos fitopatógenos Evaluation of antagonist capacity of bacillales strains isolated from vermicompost leachate on phytopatogenic fungi Bruce Manuel Morales-Barrón*, Francisco J. Vázquez-González*, Raquel González-Fernández*, Antonio De La Mora-Covarrubias*, Miroslava Quiñonez-Martínez*, Ángel Gabriel Díaz-Sánchez*, Alejandro Martínez-Martínez*, Virginia Nevárez-Moorillón**, José Valero-Galván*◊ RESUMEN El orden Bacillales se ha descrito como antagónico de fitopatógenos, además se ha mencionado en varios estudios algunas especies de este orden se encuentra en lixiviados de lombricomposta. En el presente estudio se evaluó el efecto antagónico de cinco cepas del orden Bacillales aisladas de lixiviados de lombricomposta sobre el crecimiento micelial de Phytophthora capsici, Fusarium oxysporum, Alternaria solani, y Rhizopus sp.
    [Show full text]
  • Blighia Sapida Bark and Its Inhibition of Cholinergic Enzymes Linked to Alzheimer’S Disease 257 – 264 Oluwafemi A
    ��ﺍﻟﻤﺠﻠﺔ ﺍﻷﺭﺩﻧﻴﺔ ﻟﻠﻌﻠﻮﻡ ﺍﻟﺤﻴﺎﺗﻴﺔ�� Jordan Journal of Biological Sciences (JJBS) http://jjbs.hu.edu.jo Jordan Journal of Biological Sciences (JJBS) (ISSN: 1995–6673 (Print); 2307-7166 (Online)): An International Peer- Reviewed Open Access Research Journal financed by the Scientific Research Support Fund, Ministry of Higher Education and Scientific Research, Jordan and published quarterly by the Deanship of Research and Graduate Studies, The Hashemite University, Jordan. Editor-in-Chief Professor Abu-Elteen, Khaled H. Medical Mycology ,The Hashemite University Editorial Board (Arranged alphabetically) Professor Abdalla, Shtaywy S Professor Lahham, Jamil N. Human Physiology, Plant Taxonomy, Tafila Technical University Yarmou k University Professor Al-Hadidi, Hakam F. Professor . Sallal, Abdul-Karim J. Toxicology and Clinical Pharmacology Applied Microbiology, Jordan University of Science and Technology Jordan University of Science and Technology Professor Bashir, Nabil A. Professor Tarawneh, Khaled A. Biochemistry and Molecular Genetics Molecular Microbiology, Mutah University Jordan University of Science and Technology Professor Khyami-Horani, Hala Microbial ,Biotechnology, The University of Jordan Submission Address Editorial Board Support Team Professor Abu-Elteen, Khaled H Language Editor Publishing Layout The Hashemite University Dr. Qusai Al-Debyan Eng.Mohannad Oqdeh P.O. Box 330127, Zarqa, 13115, Jordan Phone: +962-5-3903333 ext. 5157 E-Mail: [email protected] ��ﺍﻟﻤﺠﻠﺔ ﺍﻷﺭﺩﻧﻴﺔ ﻟﻠﻌﻠﻮﻡ ﺍﻟﺤﻴﺎﺗﻴﺔ�� Jordan Journal of Biological Sciences (JJBS) http://jjbs.hu.edu.jo International Advisory Board Prof. Abdel-Hafez, Sami K. Prof. Abdul-Haque, Allah Hafiz Yarmouk University, Jordan National Institute for Biotechnology and Genetic Engineering, Pakistan Prof. Abuharfeil, Nizar M Prof. Al-Najjar, Tariq Hasan Ahmad Jordan University of science and Technology, Jordan The University of Jordan, Jordan Prof.
    [Show full text]
  • WO 2016/086210 Al 2 June 2016 (02.06.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/086210 Al 2 June 2016 (02.06.2016) P O P C T (51) International Patent Classification: (74) Agents: MELLO, Jill, Ann et al; McCarter & English, A61P 1/00 (2006.01) A61P 37/00 (2006.01) LLP, 265 Franklin Street, Boston, MA 021 10 (US). A61P 29/00 (2006.01) A61K 35/74 (2015.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/US20 15/0628 10 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 25 November 2015 (25.1 1.2015) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (25) Filing Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (26) Publication Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 62/084,537 25 November 2014 (25. 11.2014) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 62/084,536 25 November 2014 (25.
    [Show full text]
  • Bhargavaea Cecembensis Gen. Nov., Sp. Nov., Isolated from the Chagos–Laccadive Ridge System in the Indian Ocean
    International Journal of Systematic and Evolutionary Microbiology (2009), 59, 2618–2623 DOI 10.1099/ijs.0.002691-0 Bhargavaea cecembensis gen. nov., sp. nov., isolated from the Chagos–Laccadive ridge system in the Indian Ocean 3 3 R. Manorama, P. K. Pindi, G. S. N. Reddy and S. Shivaji Correspondence Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India S. Shivaji [email protected] A novel Gram-positive, rod-shaped, non-motile, non-spore-forming bacterium, strain DSE10T, was isolated from a deep-sea sediment sample collected at a depth of 5904 m from the Chagos– Laccadive ridge system in the Indian Ocean. Cells of strain DSE10T were positive for catalase, oxidase, urease and lipase activities and contained iso-C14 : 0, iso-C15 : 0, iso-C16 : 0 and anteiso- C15 : 0 as the major fatty acids. The major respiratory quinones were MK-6 and MK-8 and the major lipids were phosphatidylglycerol and diphosphatidylglycerol. The cell-wall peptidoglycan contained diaminopimelic acid as the diagnostic diamino acid. A BLAST sequence similarity search based on 16S rRNA gene sequences indicated that the genera Planococcus, Planomicrobium, Bacillus and Geobacillus were the nearest phylogenetic neighbours to the novel isolate with gene sequence similarities ranging from 94.9 to 95.2 %. Phylogenetic analyses using neighbour- joining, minimum-evolution and maximum-parsimony methods indicated that strain DSE10T formed a deeply rooted lineage distinct from the clades represented by the genera Planococcus, Planomicrobium, Bacillus and Geobacillus. Further, strain DSE10T could be distinguished from the above-mentioned genera based on the presence of signature nucleotides G, A, C, T, C, A, G, C and T at positions 182, 444, 480, 492, 563, 931, 1253, 1300 and 1391, respectively, in the 16S rRNA gene sequence.
    [Show full text]
  • Manganese-II Oxidation and Copper-II Resistance in Endospore Forming Firmicutes Isolated from Uncontaminated Environmental Sites
    AIMS Environmental Science, 3(2): 220-238. DOI: 10.3934/environsci.2016.2.220 Received 21 January 2016, Accepted 05 April 2016, Published 12 April 2016 http://www.aimspress.com/journal/environmental Research article Manganese-II oxidation and Copper-II resistance in endospore forming Firmicutes isolated from uncontaminated environmental sites Ganesan Sathiyanarayanan 1,†, Sevasti Filippidou 1,†, Thomas Junier 1,2, Patricio Muñoz Rufatt 1, Nicole Jeanneret 1, Tina Wunderlin 1, Nathalie Sieber 1, Cristina Dorador 3 and Pilar Junier 1,* 1 Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Emile-Argand 11, CH-2000 Neuchâtel, Switzerland 2 Vital-IT group, Swiss Institute of Bioinformatics, CH-1000 Lausanne, Switzerland 3 Laboratorio de Complejidad Microbiana y Ecología Funcional; Departamento de Biotecnología; Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta; CL-, 1270190, Antofagasta, Chile * Correspondence: Email: [email protected]; Tel: +41-32-718-2244; Fax: +41-32-718-3001. † These authors contributed equally to this work. Abstract: The accumulation of metals in natural environments is a growing concern of modern societies since they constitute persistent, non-degradable contaminants. Microorganisms are involved in redox processes and participate to the biogeochemical cycling of metals. Some endospore-forming Firmicutes (EFF) are known to oxidize and reduce specific metals and have been isolated from metal-contaminated sites. However, whether EFF isolated from uncontaminated sites have the same capabilities has not been thoroughly studied. In this study, we measured manganese oxidation and copper resistance of aerobic EFF from uncontaminated sites. For the purposes of this study we have sampled 22 natural habitats and isolated 109 EFF strains.
    [Show full text]