The Marine Environment of the Pitcairn Islands

Total Page:16

File Type:pdf, Size:1020Kb

The Marine Environment of the Pitcairn Islands The Marine Environment of the Pitcairn Islands by Robert Irving Principal Consultant, Sea-Scope Marine Environmental Consultants, Devon, UK and Terry Dawson SAGES Chair in Global Environmental Change, School of the Environment, University of Dundee, UK Report commissioned by The Pew Environment Group Global Ocean Legacy August 2012 The Marine Environment of the Pitcairn Islands The Marine Environment of the Pitcairn Islands Dedication This book is dedicated to the memory of Jo Jamieson, underwater photographer extraordinaire and Robert Irving’s diving colleague in 1991 on the Sir Peter Scott Commemorative Expedition to the Pitcairn Islands, who sadly died just five years after what she described as “the adventure of her lifetime”. Acknowledgements The authors are grateful for the support of the Pew Environment Group and a Darwin Initiative Overseas Territories Challenge Fund (Ref. no. EIDCF003) awarded to Terence Dawson. In addition, we should like to thank the following for commenting on the final draft of this report: Dr Michael Brooke and Dr Richard Preece (University of Cambridge); Jonathan Hall (RSPB); The Pew Environment Group’s Global Ocean Legacy staff; The Government of the Pitcairn Islands and the Head of its Natural Resources Department (Michele Christian); and especially the entire community of Pitcairn. While the majority of photographs featured in the report have been taken by the authors, we should like to thank the following for the use of their photographs, namely Dr Enric Sala (National Geographic Society), Dr Michael Brooke, Kale Garcia, Jo Jamieson (posthumously), Andrew MacDonald, Dr Richard Preece, Dr Jack Randall, Tubenoses Project ©Hadoram Shirihai and Dr Stephen Waldren. [The photo credit SPSCEPI stands for the Sir Peter Scott Commemorative Expedition to the Pitcairn Islands in 1991/92]. Citation Irving, R.A. and Dawson, T.P. 2012. The marine environment of the Pitcairn Islands. A report to Global Ocean Legacy, a project of the Pew Environment Group. The warm-hearted and welcoming people of Pitcairn, whose good fortune it is to live on a wonderful island and be surrounded by a beautiful and plentiful sea. Photo: Courtesy of Pew Environment Group/Global Ocean Legacy Cover Galapagos reef sharks Carcharhinus galapagensis swimming above the reef at Ducie atoll. © Enric Sala / National Geographic. The Marine Environment of the Pitcairn Islands The Marine Environment of the Pitcairn Islands CONTENTS Executive summary i 1. Introduction 1 1.1 Historical background 1 1.2 The Islands today 2 1.3 Geology / geomorphology 4 1.4 Marine biogeography 4 First published in Great Britain in 2012 by Dundee University Press 2. Information relevant to all four islands 6 University of Dundee 2.1 Differences and similarities 6 Dundee 2.2 Endemism 9 DD1 4HN 2.3 Measures of protection 10 3. Nearshore waters 11 Dundee 3.1 Pitcairn Island 11 University 3.1.1 Introduction 12 Press 3.1.2 Intertidal zone – habitats and species 12 3.1.3 Bathymetry and marine habitats 13 3.1.4 Marine species 14 3.1.5 Nearshore fisheries 19 Copyright – The Pew Charitable Trusts 3.2 Henderson 21 ISBN – 9781845861612 3.2.1 Introduction 22 3.2.2 Intertidal zone – habitats and species 22 All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form, 3.2.3 Bathymetry and marine habitats 22 or by any means electronic or mechanical or photocopying, or recording or otherwise without the express 3.2.4 Marine species 23 written permission of the publisher. 3.2.5 Nearshore fisheries 28 The rights of Robert Irving and Terry Dawson to be identified as the authors of this work has been asserted 3.3 Oeno 29 in accordance with the Copyright, Designs and Patents Act, 1988. 3.3.1 Introduction 30 3.3.2 Lagoon – habitats and species 30 British Library Cataloguing-in-Publication Data 3.3.3 Bathymetry and marine habitats 30 A catalogue record for this book is available on request from the British Library 3.3.4 Marine species 30 3.3.5 Nearshore fisheries 31 Typeset by Communications Inc 3.4 Ducie 33 Printed by Dundee University Press 3.4.1 Introduction 34 3.4.2 Lagoon – habitats and species 34 3.4.3 Bathymetry and marine habitats 34 3.4.4 Marine species 34 3.4.5 Nearshore fisheries 37 4. Offshore waters 38 4.1 Introduction 38 4.2 Geology/geomorphology 38 4.3 Marine species 38 4.4 Fisheries 41 4.4.1 Non-commercial 41 4.4.2 Commercial 42 Appendix 1: Bibliography 45 Appendix 2: Additional data sources 49 Appendix 3: IUCN Red List Species 50 Appendix 4: Scientific research expeditions to the Pitcairn Islands 54 Appendix 5: Marine species recorded from the Pitcairn Islands 57 The Marine Environment of the Pitcairn Islands The Marine Environment of the Pitcairn Islands 20° Pacific Ocean 200-nautical-mile limit / EEZ boundary Tropic of Capricorn Oeno Island Henderson Island Ducie Island Crough * Pitcairn Island Seamounts * * Bounty Seamount * 40 Mile Reef (Adams Seamount) Pitcairn Exclusive Economic Zone / 0 km 100 0 nautical miles 100 * Submarine volcano (seamount) 130° 120° ©2012 Pew Environment Group; used by permission Executive summary The extent of the Pitcairn Islands’ Exclusive Economic Zone The extent of the Indo-West Pacific biogeographic (EEZ), which defines the geographic extent of this report. province (shown in dark blue). (Source: http://en.wikipedia.org/wiki/File:Indo-Pacific_ biogeographic_region_map-en.png) Introduction occupation lasted until about 14502. In 1606, Fernández The Pitcairn Islands are a group of four near-pristine small de Quirós was the first European to discover Henderson islands which can claim to be some of the most remote Island (by now uninhabited) and Ducie Island. British islands in the world. They are situated between latitudes interest in the islands (and in Pitcairn in particular) began 23° and 26° south and longitudes 124° and 131° west more than a century-and-a-half later in 1767 when HMS and located in the crystal-clear waters of the central South Swallow, under the command of Captain Philip Carteret, Pacific, about 2,200 km south-east of Tahiti and 2,100 km encountered Pitcairn and mistakenly plotted its position west of Easter Island. The group comprises: 188 nautical miles west of its actual location. This mistake, l Pitcairn Island, a high volcanic island of 450 ha with however, was to be of great benefit to the island’s next lava cliffs and rugged hills rising to a peak at 347 m; inhabitants, the mutineers from HMS Bounty, who were it is the only inhabited island, with a population of looking for a safe island hideaway in 1790, and remained around 60 as of 2012; undiscovered there for 18 years. Pitcairn Island officially l Henderson (200 km east-north-east of Pitcairn) is the became a British dependency on 29 November 1838. The largest island in the group with an area of 4,310 ha. other three islands (Henderson, Oeno and Ducie) were It is a raised fossilised coral atoll which rises to 33 m. annexed by Great Britain in 1902 and were included in the It is designated a UNESCO World Heritage Site on dependency in 1938. The Pitcairn Islands remain the only account of its unique natural history and ecological UK Overseas Territory in the Pacific. intactness, and it has been described as “a South Pacific conservation jewel”1; Biogeography l Ducie (472 km east of Pitcairn), the most southerly The Pitcairn Islands are located at the south-eastern coral atoll in the world, consists of a central lagoon extremity of the Indo-West Pacific biogeographic province, surrounded by four islets covering an area of 70 ha; resulting in a number of barriers to the establishment of l Oeno (120 km north-west of Pitcairn) is a low coral species. atoll of 65 ha comprising a central low-lying island l Prevailing winds and currents are dominantly from the surrounded by a shallow lagoon and a fringing reef east in the central South Pacific, with the Islands lying (diameter approximately 4 km). upwind and upstream of all Indo-Pacific source areas. l The Islands lie south of the Tropic of Capricorn Together, all four islands and their surrounding waters out (23°26’S), with relatively cool waters and climates to the 200 nautical mile limit – also known as the Exclusive imposing further barriers to the establishment of Economic Zone (EEZ) – span a vast area of ocean of about tropical species. 836,000 km2, more than three times the size of the UK. Studies of groups as diverse as corals, reef fishes, vascular A brief history plants and land birds support the arguments that It is believed that Pitcairn and Henderson were first colonisation has been from the biologically rich source colonised by Polynesians in about AD 900 and their areas to the west on the margins of South-East Asia, The Marine Environment of the Pitcairn Islands The Marine Environment of the Pitcairn Islands i taking advantage of the inter-island connectivity of the with each of the islands being declared Important Bird Endangered marine species* known to be present within the Pitcairn Islands EEZ south-west Pacific Ocean3. As a consequence of these Areas. Henderson is, without question, one of the petrel factors, the diversity of marine species present within the capitals of the world9. It is the only location in the world Species Status* Notes** nearshore waters of the EEZ4, when compared to island where the Henderson petrel Pterodroma atrata is known Humpback whale EN Has a circumglobal distribution but subpopulations now recognised in groups further to the west, is limited5. It also reflects to breed, with over 16,000 pairs being resident (>95% of Megaptera the South Pacific and Australia.
Recommended publications
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Taxonomic Checklist of CITES Listed Coral Species Part II
    CoP16 Doc. 43.1 (Rev. 1) Annex 5.2 (English only / Únicamente en inglés / Seulement en anglais) Taxonomic Checklist of CITES listed Coral Species Part II CORAL SPECIES AND SYNONYMS CURRENTLY RECOGNIZED IN THE UNEP‐WCMC DATABASE 1. Scleractinia families Family Name Accepted Name Species Author Nomenclature Reference Synonyms ACROPORIDAE Acropora abrolhosensis Veron, 1985 Veron (2000) Madrepora crassa Milne Edwards & Haime, 1860; ACROPORIDAE Acropora abrotanoides (Lamarck, 1816) Veron (2000) Madrepora abrotanoides Lamarck, 1816; Acropora mangarevensis Vaughan, 1906 ACROPORIDAE Acropora aculeus (Dana, 1846) Veron (2000) Madrepora aculeus Dana, 1846 Madrepora acuminata Verrill, 1864; Madrepora diffusa ACROPORIDAE Acropora acuminata (Verrill, 1864) Veron (2000) Verrill, 1864; Acropora diffusa (Verrill, 1864); Madrepora nigra Brook, 1892 ACROPORIDAE Acropora akajimensis Veron, 1990 Veron (2000) Madrepora coronata Brook, 1892; Madrepora ACROPORIDAE Acropora anthocercis (Brook, 1893) Veron (2000) anthocercis Brook, 1893 ACROPORIDAE Acropora arabensis Hodgson & Carpenter, 1995 Veron (2000) Madrepora aspera Dana, 1846; Acropora cribripora (Dana, 1846); Madrepora cribripora Dana, 1846; Acropora manni (Quelch, 1886); Madrepora manni ACROPORIDAE Acropora aspera (Dana, 1846) Veron (2000) Quelch, 1886; Acropora hebes (Dana, 1846); Madrepora hebes Dana, 1846; Acropora yaeyamaensis Eguchi & Shirai, 1977 ACROPORIDAE Acropora austera (Dana, 1846) Veron (2000) Madrepora austera Dana, 1846 ACROPORIDAE Acropora awi Wallace & Wolstenholme, 1998 Veron (2000) ACROPORIDAE Acropora azurea Veron & Wallace, 1984 Veron (2000) ACROPORIDAE Acropora batunai Wallace, 1997 Veron (2000) ACROPORIDAE Acropora bifurcata Nemenzo, 1971 Veron (2000) ACROPORIDAE Acropora branchi Riegl, 1995 Veron (2000) Madrepora brueggemanni Brook, 1891; Isopora ACROPORIDAE Acropora brueggemanni (Brook, 1891) Veron (2000) brueggemanni (Brook, 1891) ACROPORIDAE Acropora bushyensis Veron & Wallace, 1984 Veron (2000) Acropora fasciculare Latypov, 1992 ACROPORIDAE Acropora cardenae Wells, 1985 Veron (2000) CoP16 Doc.
    [Show full text]
  • Full Text in Pdf Format
    MARINE ECOLOGY PROGRESS SERIES Vol. 152: 227-239, 1997 Published June 26 Mar Ecol Prog Ser 1 Habitat specialisation and the distribution and abundance of coral-dwelling gobies Philip L. Munday*, Geoffrey P. Jones, M. Julian Caley Department of Marine Biology, James Cook University of North Queensland. Townsville, Queensland 4811, Australia ABSTRACT Many fishes on coral reefs are known to associate with particula~microhabitats If these associations help determine population dynamics then we would expect (1) a close assoclation between the abundances of these fishes and the abundances of the most frequently used mlcrohabitats and (2) changes in the abundance of microhabitats would result in a corresponding change In fish population sizes We examined habitat associations among obligate coral-dwelling gob~es(genus Goblodon) and then investigated relationships between the spatial and temporal ava~labilltyof habitats and the abundances of Goblodon species among locations and anlong zoncs on the leef at Lizard Island (Great Barrler Reef) Out of a total of 11 Acropora species found to be used by Gobiodon, each specic3s of Goblodon occupied 1 01 2 species of Acropora significantly more often than expected from the avail- ability of these corals on the reef Across reef zones, the abundance of most species of Gobiodon was closely correlated with the abundance of coral species most frequently inhabited However, the abun- dance of 1 species G ax~llar~s.iiras not conelated with the availability of most frequently used corals aci oss reef zones or among
    [Show full text]
  • DIET of FREE-RANGING and STRANDED SPERM WHALES (Physeter
    DIET OF FREE-RANGING AND STRANDED SPERM WHALES (Physeter macrocephalus) FROM THE GULF OF MEXICO NATIONAL MARINE FISHERIES SERVICE CONTRACT REPORT Submitted to: Dr. Keith D. Mullin National Marine Fisheries Service Southeast Fisheries Science Center PO. Drawer 1207 Pascagoula, MS 39568-1207 Submitted by: Dr. Nelio B. Barros Mote Marine Laboratory Center for Marine Mammal and Sea Turtle Research 1600 Ken Thompson Parkway Sarasota, FL 34236-1096 (941) 388-4441 x 443 (941) 388-4317 FAX May 2003 Mote Marine Laboratory Technical Report Number 895 ABSTRACT Sperm whales are common inhabitants of the deep waters of the Gulf of Mexico. To date, no information is available on the diet of sperm whales in the Gulf. This study sheds light into the feeding habits ofthese whales by examining data collected from free-ranging and stranded animals. Prey species included a minimum of 13 species within 10 families of cephalopods, the only prey type observed. The most important prey was Histioteuthis, a midwater squid important in the diet of sperm whales worldwide. Most species of cephalopods consumed by Gulf sperm whales are meso to bathypelagic in distribution, being found in surface to waters 2,500 deep. Some of these prey are also vertical migrators. The diet of Gulf sperm whales does not include species targeted by the commercial fisheries. INTRODUCTION Until fairly recently, little was known about the species of whales and dolphins (cetaceans) inhabiting the deep waters of the Gulf of Mexico. Most of the information available came from opportunistic sightings and occasional strandings. In the early 1990' s large-scale dedicated surveys were initiated to study the distribution and abundance of marine mammals in the deep Gulf.
    [Show full text]
  • The Importance of Live Coral Habitat for Reef Fishes and Its Role in Key Ecological Processes
    ResearchOnline@JCU This file is part of the following reference: Coker, Darren J. (2012) The importance of live coral habitat for reef fishes and its role in key ecological processes. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/23714/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/23714/ THE IMPORTANCE OF LIVE CORAL HABITAT FOR REEF FISHES AND ITS ROLE IN KEY ECOLOGICAL PROCESSES Thesis submitted by Darren J. Coker (B.Sc, GDipResMeth) May 2012 For the degree of Doctor of Philosophy In the ARC Centre of Excellence for Coral Reef Studies and AIMS@JCU James Cook University Townsville, Queensland, Australia Statement of access I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and via the Australian Digital Thesis Network for use elsewhere. I understand that as an unpublished work this thesis has significant protection under the Copyright Act and I do not wish to put any further restrictions upon access to this thesis. Signature Date ii Statement of sources Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at my university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.
    [Show full text]
  • Concluding Remarks
    Concluding Remarks The bulk of secretory material necessary for the encapsulation of spermatozoa into a spermatophore is commonly derived from the male accessory organs of re­ production. Not surprisingly, the extraordinary diversity in size, shape, and struc­ ture of the spermatophores in different phyla is frequently a reflection of the equally spectacular variations in the anatomy and secretory performance of male reproductive tracts. Less obvious are the reasons why even within a given class or order of animals, only some species employ spermatophores, while others de­ pend on liquid semen as the vehicle for spermatozoa. The most plausible expla­ nation is that the development of methods for sperm transfer must have been in­ fluenced by the environment in which the animals breed, and that adaptation to habitat, rather than phylogeny, has played a decisive role. Reproduction in the giant octopus of the North Pacific, on which our attention has been focussed, pro­ vides an interesting example. During copulation in seawater, which may last 2 h, the sperm mass has to be pushed over the distance of 1 m separating the male and female genital orifices. The metre-long tubular spermatophore inside which the spermatozoa are conveyed offers an obvious advantage over liquid semen, which could hardly be hauled over such a long distance. Apart from acting as a convenient transport vehicle, the spermatophore serves other purposes. Its gustatory and aphrodisiac attributes, the provision of an ef­ fective barrier to reinsemination, and stimulation of oogenesis and oviposition are all of great importance. Absolutely essential is its function as storage organ for spermatozoa, at least as effective as that of the epididymis for mammalian spermatozoa.
    [Show full text]
  • Part 11 (1950
    Memoirs of the Queensland Museum | Nature 57 Revision and catalogue of worldwide staghorn corals Acropora and Isopora (Scleractinia: Acroporidae) in the Museum of Tropical Queensland Carden C. Wallace, Barbara J. Done & Paul R. Muir © Queensland Museum PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Director. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qm.qld.gov.au A Queensland Government Project Typeset at the Queensland Museum Revision and Catalogue of Acropora and Isopora FIG. 86. Acropora samoensis, Orpheus Is., North Queensland, 2008 (photo: P. Muir). Map of documented distribution: blue squares = MTQ specimens; pink squares = literature records; orange diamonds = type localities (where given), including primary synonyms. Memoirs of the Queensland Museum — Nature 2012 57 177 Wallace, Done & Muir Acropora sarmentosa (Brook, 1892) (Fig. 87) Madrepora sarmentosa Brook, 1892: 462; 1893: 127, pl. G28579, G28582–83, G29407, G58919; Samoa: G34772; 22. Cook Is.: G35731; Austral Is.: G35806. Acropora vermiculata Nemenzo, 1967: 108, pl. 31 fig. 4. Species group: florida. Type locality. Port Denison, Queensland (lectotype Description.
    [Show full text]
  • Composition and Ecology of Deep-Water Coral Associations D
    HELGOLK---~DER MEERESUNTERSUCHUNGEN Helgoltinder Meeresunters. 36, 183-204 (1983) Composition and ecology of deep-water coral associations D. H. H. Kfihlmann Museum ffir Naturkunde, Humboldt-Universit~t Berlin; Invalidenstr. 43, DDR- 1040 Berlin, German Democratic Republic ABSTRACT: Between 1966 and 1978 SCUBA investigations were carried out in French Polynesia, the Red Sea, and the Caribbean, at depths down to 70 m. Although there are fewer coral species in the Caribbean, the abundance of Scleractinia in deep-water associations below 20 m almost equals that in the Indian and Pacific Oceans. The assemblages of corals living there are described and defined as deep-water coral associations. They are characterized by large, flattened growth forms. Only 6 to 7 % of the species occur exclusively below 20 m. More than 90 % of the corals recorded in deep waters also live in shallow regions. Depth-related illumination is not responsible for depth differentiations of coral associations, but very likely, a complex of mechanical factors, such as hydrodynamic conditions, substrate conditions, sedimentation etc. However, light intensity deter- mines the general distribution of hermatypic Scleractinia in their bathymetric range as well as the platelike shape of coral colonies characteristic for deep water associations. Depending on mechani- cal factors, Leptoseris, Montipora, Porites and Pachyseris dominate as characteristic genera in the Central Pacific Ocean, Podabacia, Leptoseris, Pachyseris and Coscinarea in the Red Sea, Agaricia and Leptoseris in the tropical western Atlantic Ocean. INTRODUCTION Considerable attention has been paid to shallow-water coral associations since the first half of this century (Duerden, 1902; Mayer, 1918; Umbgrove, 1939). Detailed investigations at depths down to 20 m became possible only through the use of autono- mous diving apparatus.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Fishery Ecosystem Plan for the Mariana Archipelago
    Fishery Ecosystem Plan for the Mariana Archipelago Western Pacific Regional Fishery Management Council 1164 Bishop Street, Suite 1400 Honolulu, Hawaii 96813 December 1, 2005 Cover Artwork Courtesy of: So Jung Song Saipan Community School Susupe, Saipan, Northern Mariana Islands EXECUTIVE SUMMARY This Mariana Archipelago Fishery Ecosystem Plan (FEP) was developed by the Western Pacific Regional Fishery Management Council and represents the first step in an incremental and collaborative approach to implement ecosystem approaches to fishery management in Guam and the Commonwealth of the Northern Mariana Islands (CNMI). Since the 1980s, the Council has managed fisheries throughout the Western Pacific Region through separate species-based fishery management plans (FMP) – the Bottomfish and Seamount Groundfish FMP, the Crustaceans FMP, the Precious Corals FMP, the Coral Reef Ecosystems FMP and the Pelagic FMP. However, the Council is now moving towards an ecosystem-based approach to fisheries management and is restructuring its management framework from species-based FMPs to place-based FEPs. Recognizing that a comprehensive ecosystem approach to fisheries management must be initiated through an incremental, collaborative, and adaptive management process, a multi-step approach is being used to develop and implement the FEPs. To be successful, this will require increased understanding of a range of issues including, biological and trophic relationships, ecosystem indicators and models, and the ecological effects of non-fishing activities on the marine environment. This FEP, in conjunction with the Council's American Samoa Archipelago, Hawaii Archipelago, Pacific Remote Island Areas and Pacific Pelagic FEPs, reorganizes and amends the Council's existing Bottomfish and Seamount Groundfish, Coral Reef Ecosystems, Crustaceans, Precious Corals and Pelagic Fishery Management Plans.
    [Show full text]
  • May 24, 2021 Mr. Michael D. Tosatto Pacific Islands Regional Office
    May 24, 2021 Mr. Michael D. Tosatto Pacific Islands Regional Office NOAA Inouye Regional Center 1845 Wasp Boulevard, Building 176 Honolulu, HI 96818 RE: Proposed Critical Habitat Designation for Seven Threatened Corals in U.S. Waters in the Indo-Pacific (NOAA-NMFS-2016-0131) Dear Mike: The Western Pacific Regional Fishery Management Council (Council) appreciates the opportunity to provide comments to the National Marine Fisheries Service (NMFS) on the proposed rule to designate critical habitat for the seven threatened corals in U.S. waters in the Indo-Pacific pursuant to section 4 of the Endangered Species Act (ESA)1. The Council appreciates NMFS for responding to the requests for holding public hearings and extending the public comment period. The Council believes that the proposed critical habitat designations in U.S. waters published by NMFS are overly broad, and not based upon the best available scientific or economic information. Furthermore, the Council concludes that existing federal and local mechanisms also provide adequate protections for corals and their habitat, and designation of critical habitat is not likely to provide additional conservation benefits. By way of background, in 2018, the Supreme Court held that critical-habitat designations are limited to areas that are “also habitat for the species.” See Weyerhauser Co. v. U.S. Fish & Wildlife Serv., 139 S. Ct. 361,368(2018) (emphasis in original). However, the Court left open the question of whether a currently-uninhabitable area would qualify as critical habitat. In 2019, NMFS promulgated revisions to the ESA implementing regulations. The new regulations included revisions to critical habitat designation.
    [Show full text]
  • Crustaceans Topics in Biodiversity
    Topics in Biodiversity The Encyclopedia of Life is an unprecedented effort to gather scientific knowledge about all life on earth- multimedia, information, facts, and more. Learn more at eol.org. Crustaceans Authors: Simone Nunes Brandão, Zoologisches Museum Hamburg Jen Hammock, National Museum of Natural History, Smithsonian Institution Frank Ferrari, National Museum of Natural History, Smithsonian Institution Photo credit: Blue Crab (Callinectes sapidus) by Jeremy Thorpe, Flickr: EOL Images. CC BY-NC-SA Defining the crustacean The Latin root, crustaceus, "having a crust or shell," really doesn’t entirely narrow it down to crustaceans. They belong to the phylum Arthropoda, as do insects, arachnids, and many other groups; all arthropods have hard exoskeletons or shells, segmented bodies, and jointed limbs. Crustaceans are usually distinguishable from the other arthropods in several important ways, chiefly: Biramous appendages. Most crustaceans have appendages or limbs that are split into two, usually segmented, branches. Both branches originate on the same proximal segment. Larvae. Early in development, most crustaceans go through a series of larval stages, the first being the nauplius larva, in which only a few limbs are present, near the front on the body; crustaceans add their more posterior limbs as they grow and develop further. The nauplius larva is unique to Crustacea. Eyes. The early larval stages of crustaceans have a single, simple, median eye composed of three similar, closely opposed parts. This larval eye, or “naupliar eye,” often disappears later in development, but on some crustaceans (e.g., the branchiopod Triops) it is retained even after the adult compound eyes have developed. In all copepod crustaceans, this larval eye is retained throughout their development as the 1 only eye, although the three similar parts may separate and each become associated with their own cuticular lens.
    [Show full text]