Universidade Federal Do Paraná Nicole Stakowian
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Print This Article
Mediterranean Marine Science Vol. 9, 2008 Molluscan species of minor commercial interest in Hellenic seas: Distribution, exploitation and conservation status KATSANEVAKIS S. European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra LEFKADITOU E. Hellenic Centre for Marine Research, Institute of Marine Biological Resources, Agios Kosmas, P.C. 16610, Elliniko, Athens GALINOU-MITSOUDI S. Fisheries & Aquaculture Technology, Alexander Technological Educational Institute of Thessaloniki, 63200, Nea Moudania KOUTSOUBAS D. University of the Aegean, Department of Marine Science, University Hill, 81100 Mytilini ZENETOS A. Hellenic Centre for Marine Research, Institute of Marine Biological Resources, Agios Kosmas, P.C. 16610, Elliniko, Athens https://doi.org/10.12681/mms.145 Copyright © 2008 To cite this article: KATSANEVAKIS, S., LEFKADITOU, E., GALINOU-MITSOUDI, S., KOUTSOUBAS, D., & ZENETOS, A. (2008). Molluscan species of minor commercial interest in Hellenic seas: Distribution, exploitation and conservation status. Mediterranean Marine Science, 9(1), 77-118. doi:https://doi.org/10.12681/mms.145 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 27/09/2021 17:44:35 | Review Article Mediterranean Marine Science Volume 9/1, 2008, 77-118 Molluscan species of minor commercial interest in Hellenic seas: Distribution, exploitation and conservation status S. KATSANEVAKIS1, E. LEFKADITOU1, S. GALINOU-MITSOUDI2, D. KOUTSOUBAS3 and A. ZENETOS1 1 Hellenic Centre for Marine Research, Institute of Marine Biological -
FAU Institutional Repository
FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1991 Elsevier B.V. The final published version of this manuscript is available at http://www.sciencedirect.com/science/journal/00448486 and may be cited as: Gustafson, R. G., Creswell, R. L., Jacobsen, T. R., & Vaughan, D. E. (1991). Larval biology and mariculture of the angelwing clam, Cyrtopleura costata. Aquaculture, 95(3-4), 257-279. doi:10.1016/0044-8486(91)90092-L Aquaculture, 95 (1991) 257-279 257 Elsevier Science Publishers B.V .. Amsterdam Larval biology and mariculture ofthe angelwing clam, Cyrtopleura costata KG. Gustafson"·l, R.L. Creswell", T.R. Jacobsen" and D.E. Vaughan" "Division olCoastal. Environmental and .iquacultural SCiCIICCS, Harbor Branch Oceanographic Institution, 5600 Old DixlC Highway, Fort Pierce, FL 34946, U,)',I "Department otMarinc and Coastal SCiCIICCS, Rutgers Shellfish Research l.aboratorv. New Jcrscv .tgnrultural Evperimcnt Station, Rutgers University, Port Norris, NJ 08349, USI (Accepted 7 November 1990) ABSTRACT Gustafson. R.G .. Creswell, R.L. Jacobsen. T.R. and Vaughan. D.E .. 1991. Larval biology and mari culture of the angclwing clam. Cvrtoplcura costata. Aquaculture, 95: 25 7~2 79. The deep-burrowing angclwing clam. Cvrtoplcura costata (Family Pholadidac ). occurs in shallow water from Massachusetts. USA. to Brazil and has been a commercially harvested food product in Cuba and Puerto Rico. This study examines its potential for commercial aquaculture development. The combined effects of salinity and temperature on survival and shell growth to metamorphosis of angclwing larvae were studied using a 5 X 5 factorial design: salinities ranged from 15 to 35%0 S. -
Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora)
Gulf of Mexico Science Volume 34 Article 4 Number 1 Number 1/2 (Combined Issue) 2018 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution Martha Reguero Universidad Nacional Autónoma de México Andrea Raz-Guzmán Universidad Nacional Autónoma de México DOI: 10.18785/goms.3401.04 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Reguero, M. and A. Raz-Guzmán. 2018. Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution. Gulf of Mexico Science 34 (1). Retrieved from https://aquila.usm.edu/goms/vol34/iss1/4 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Reguero and Raz-Guzmán: Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Lagu Gulf of Mexico Science, 2018(1), pp. 32–55 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution MARTHA REGUERO AND ANDREA RAZ-GUZMA´ N Molluscs were collected in Laguna Madre from seagrass beds, macroalgae, and bare substrates with a Renfro beam net and an otter trawl. The species list includes 96 species and 48 families. Six species are dominant (Bittiolum varium, Costoanachis semiplicata, Brachidontes exustus, Crassostrea virginica, Chione cancellata, and Mulinia lateralis) and 25 are commercially important (e.g., Strombus alatus, Busycoarctum coarctatum, Triplofusus giganteus, Anadara transversa, Noetia ponderosa, Brachidontes exustus, Crassostrea virginica, Argopecten irradians, Argopecten gibbus, Chione cancellata, Mercenaria campechiensis, and Rangia flexuosa). -
Marine Boring Bivalve Mollusks from Isla Margarita, Venezuela
ISSN 0738-9388 247 Volume: 49 THE FESTIVUS ISSUE 3 Marine boring bivalve mollusks from Isla Margarita, Venezuela Marcel Velásquez 1 1 Museum National d’Histoire Naturelle, Sorbonne Universites, 43 Rue Cuvier, F-75231 Paris, France; [email protected] Paul Valentich-Scott 2 2 Santa Barbara Museum of Natural History, Santa Barbara, California, 93105, USA; [email protected] Juan Carlos Capelo 3 3 Estación de Investigaciones Marinas de Margarita. Fundación La Salle de Ciencias Naturales. Apartado 144 Porlama,. Isla de Margarita, Venezuela. ABSTRACT Marine endolithic and wood-boring bivalve mollusks living in rocks, corals, wood, and shells were surveyed on the Caribbean coast of Venezuela at Isla Margarita between 2004 and 2008. These surveys were supplemented with boring mollusk data from malacological collections in Venezuelan museums. A total of 571 individuals, corresponding to 3 orders, 4 families, 15 genera, and 20 species were identified and analyzed. The species with the widest distribution were: Leiosolenus aristatus which was found in 14 of the 24 localities, followed by Leiosolenus bisulcatus and Choristodon robustus, found in eight and six localities, respectively. The remaining species had low densities in the region, being collected in only one to four of the localities sampled. The total number of species reported here represents 68% of the boring mollusks that have been documented in Venezuelan coastal waters. This study represents the first work focused exclusively on the examination of the cryptofaunal mollusks of Isla Margarita, Venezuela. KEY WORDS Shipworms, cryptofauna, Teredinidae, Pholadidae, Gastrochaenidae, Mytilidae, Petricolidae, Margarita Island, Isla Margarita Venezuela, boring bivalves, endolithic. INTRODUCTION The lithophagans (Mytilidae) are among the Bivalve mollusks from a range of families have more recognized boring mollusks. -
Supplementary Data Aristotle's Scientific Contributions
Supplementary Data Aristotle’s scientific contributions to the classification, nomenclature and distribution of marine organisms ELENI VOULTSIADOU, VASILIS GEROVASILEIOU, LEEN VANDEPITTE, KOSTAS GANIAS and CHRISTOS ARVANITIDIS Mediterranean Marine Science, 2017, 18 (3) Table S1. Aristotle’s classification ranks of marine animals and identified current taxa. Identification was mostly based on previ- ous publications, i.e. Voultsiadou and Vafidis (2007), Voultsiadou et al. (2010) and Ganias et al. (2017). Rank 4 Rank 3 Rank 2 Rank 1 Identified as Anhaima Spongoi spongos acheilios/σπόγγος Ἀχίλλειος Spongia (Spongia) lamella (Schulze, 1879) Anhaima Spongoi spongos aplysias/σπόγγος ἀπλυσίας Sarcotragus foetidus Schmidt, 1862 Anhaima Spongoi spongos manos/σπόγγος μανός Hippospongia communis (Lamarck, 1814) Anhaima Spongoi spongos pyknos/σπόγγος πυκνός Spongia (Spongia) officinalis Linnaeus, 1759 Anhaima Spongoi spongos tragos/σπόγγος τράγος Spongia (Spongia) zimocca Schmidt, 1862 Anhaima Acalyphes acalyphē edodimos/ακαλύφη ἐδώδιμος Anemonia viridis (Forsskål, 1775) Anhaima Acalyphes acalyphē sklērē/ακαλύφη σκληρή Actinia equina (Linnaeus, 1758) Anhaima aspis/ασπίς Antedon mediterranea (Lamarck, 1816) Anhaima dokias/δοκίας Holothuriidae sp. Anhaima oistros ton thynnon/οἶστρος των θύννων Caligus sp. Anhaima phtheir thalattia/φθείρ θαλαττία Cymothoidae sp. Anhaima psyllos thalattios/ψύλλος θαλάττιος Amphipoda sp. Anhaima holothourion/ὁλοθούριον Alcyonium palmatum Pallas, 1766 Anhaima pneumōn/πνεύμων Pelagia noctiluca (Forsskål, 1775) Anhaima aidoion -
TREATISE ONLINE Number 48
TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North -
Marine Shells of the Western Coast of Flordia
wm :iii! mm ilili ! Sfixing cHdL J^oad .Sandivicl'i, j\{ai.i.ach.u±£.tti. icuxucm \^*^£ FRONTISPIECE Photo by Ruth Bernhard Spondylus americanus Hermann MARINE SHELLS f>4 OF THE WESTERN COAST OF FLORIDA By LOUISE M. PERRY AND JEANNE S. SCHWENGEL With Revisions and Additions to Louise M. Perry's Marine Shells of the Southwest Coast of Florida Illustrations by W. Hammersley Southwick, Axel A. Olsson, and Frank White March, 1955 PALEONTOLOGICAL RESEARCH INSTITUTION ITHACA, NEW YORK U. S. A. MARINE SHELLS OF THE SOUTHWEST COAST OF FLORIDA printed as Bulletins of American Paleontology, vol. 26, No. 95 First printing, 1940 Second printing, 1942 Copyright, 1955, by Paleontological Research Institution Library of Congress Catalog Card Number: 5-^-12005 Printed in the United States of America // is perhaps a more fortunate destiny to have a taste for collecting shells than to be born a millionaire. Robert Louis Stevenson imeters 50 lllllllllllllllllllllllllllll II II III nil 2 Inches CONTENTS Page Preface by reviser 7 Foreword by Wm. J. Clench 9 Introduction 11 Generalia 13 Collection and preparation of specimens 17 Systematic descriptions 24 Class Amphineura :. 24 Class Pelecypoda 27 Class Scaphopoda 97 Class Gasteropoda 101 Plates 199 Index 311 PREFACE BY THE REVISER It has been a privilege to revise Louise M. Perry's fine book on "Marine Shells of Southwest Florida", to include her studies on eggs and larvae of mollusks; and to add descriptions and illustra- tions of several newly discovered shells thus making it a more com- prehensive study of the molluscan life of western Florida. The work that I have done is only a small return to Dr. -
Guide to Estuarine and Inshore Bivalves of Virginia
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1968 Guide to Estuarine and Inshore Bivalves of Virginia Donna DeMoranville Turgeon College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Marine Biology Commons, and the Oceanography Commons Recommended Citation Turgeon, Donna DeMoranville, "Guide to Estuarine and Inshore Bivalves of Virginia" (1968). Dissertations, Theses, and Masters Projects. Paper 1539617402. https://dx.doi.org/doi:10.25773/v5-yph4-y570 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. GUIDE TO ESTUARINE AND INSHORE BIVALVES OF VIRGINIA A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Arts LIBRARY o f the VIRGINIA INSTITUTE Of MARINE. SCIENCE. By Donna DeMoranville Turgeon 1968 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts jfitw-f. /JJ'/ 4/7/A.J Donna DeMoranville Turgeon Approved, August 1968 Marvin L. Wass, Ph.D. P °tj - D . dvnd.AJlLJ*^' Jay D. Andrews, Ph.D. 'VL d. John L. Wood, Ph.D. William J. Hargi Kenneth L. Webb, Ph.D. ACKNOWLEDGEMENTS The author wishes to express sincere gratitude to her major professor, Dr. -
Page 196 the Veliger, Vol. 32, No. 2
Page 196 The Veliger, Vol. 32, No. 2 Explanation of Figures 22 to 41 Figures 22-28. Adelodonax tectus sp. nov., from UCLA 3622. LACMIP 7843 from UCLA 6489, hypotype, right valve; Figure Figure 22: LACMIP 7825, holotype, left valve, xl. Figure 23: 31, exterior, xl; Figure 38, hinge, x2. Figure 32: LACMIP LACMIP 7827, paratype, hinge left valve, x3. Figure 24: 7841 from UCLA 3960, hypotype, hinge left valve, x2. Figure LACMIP 7826, paratype, hinge left valve, x3. Figure 25: LAC- 33: LACMIP 7840 from UCLA loc. 3958, hypotype, hinge right MIP 7829, paratype, right valve, x 1. Figure 26: LACMIP 7828, valve, x2. Figure 34: LACMIP 7842 from UCLA loc. 3960, paratype, right valve, pallial sinus, x2. Figure 27: LACMIP hypotype, "butterflied" valves, xl.5. Figure 35: LACMIP 7862 7830, paratype, hinge right valve, x 2. Figure 28: LACMIP 7831, from UCLA loc. 6489, hypotype, hinge left valve, x2. Figures paratype, hinge right valve, x 3. 36, 40: LACMIP 7837 from LACMIP 28629, hypotype, interior Figures 29-41. Adelodonax altus (Gabb, 1864). Figure 29: ANSP left valve, x 2; Figure 36, rock mold; Figure 40, latex pull. Figures 4557 from Martinez, Contra Costa Co., Calif., lectotype, x2. 37, 41: LACMIP 7839 from LACMIP loc. 28629, hypotype, Photo by Takeo Susuki. Figure 30: ANSP 71880 from Martinez, hinge right valve, x2; Figure 37, rock mold; Figure 41, latex Contra Costa Co., Calif., paralectotype, left valve showing trace pull. Figure 39: LACMIP 7838 from LACMIP loc. 28629, of pallial line, x2. Photo by Takeo Susuki. Figures 31, 38: hypotype, interior of left valve, latex pull, x 2. -
Clam Ctenoides Ales Rsif.Royalsocietypublishing.Org Lindsey F
Downloaded from http://rsif.royalsocietypublishing.org/ on November 15, 2016 A dynamic broadband reflector built from microscopic silica spheres in the ‘disco’ clam Ctenoides ales rsif.royalsocietypublishing.org Lindsey F. Dougherty1,So¨nke Johnsen2, Roy L. Caldwell1 and N. Justin Marshall3 1Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA 2Department of Biology, Duke University, Durham, NC 27708, USA Research 3Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia Cite this article: Dougherty LF, Johnsen S, The ‘disco’ or ‘electric’ clam Ctenoides ales (Limidae) is the only species of Caldwell RL, Marshall NJ. 2014 A dynamic bivalve known to have a behaviourally mediated photic display. This dis- broadband reflector built from microscopic play is so vivid that it has been repeatedly confused for bioluminescence, silica spheres in the ‘disco’ clam Ctenoides ales. but it is actually the result of scattered light. The flashing occurs on the J. R. Soc. Interface 11: 20140407. mantle lip, where electron microscopy revealed two distinct tissue sides: one highly scattering side that contains dense aggregations of spheres com- http://dx.doi.org/10.1098/rsif.2014.0407 posed of silica, and one highly absorbing side that does not. High-speed video confirmed that the two sides act in concert to alternate between vivid broadband reflectance and strong absorption in the blue region of the spectrum. Optical modelling suggests that the diameter of the spheres Received: 17 April 2014 is nearly optimal for scattering visible light, especially at shorter wave- Accepted: 19 May 2014 lengths which predominate in their environment. This simple mechanism produces a striking optical effect that may function as a signal. -
Calyptogena Diagonalis, a New Vesicomyid Bivalve from Subduction Zone Cold Seeps in the Eastern North Pacific JAMES P
THE VELIGER @ CMS, Inc., 1999 The Veliger 42(2):117-123 (April 1, 1999) Calyptogena diagonalis, a New Vesicomyid Bivalve from Subduction Zone Cold Seeps in the Eastern North Pacific JAMES P. BARRY Monterey Bay Aquarium Research Institute, PO. Box 628, Moss Landing, California 95039, USA AND RANDALLE.KOCHEVAR Monterey Bay Aquarium, Pacific Grove, California 93950, USA Abstract. A new vesicomyid bivalve species, Calyptogena diagonalis, is described from cold seep communities in the Cascadia subduction zone off the Oregon coast and accretionary wedge sediments along the Pacific coast of Costa Rica. Live bivalves and shells were collected at sulfide seeps near 2021 m depth in Oregon and from 2900 to 3800 m depth in Costa Rica. Shell morphology of C. diagonalis differs considerably from sympatric congeneric and confamilial species of the northeastern Pacific. Shells are large (to 24.0 cm) and elongate (H/L = 0.42), with one or more ridges on the external shell surface extending diagonally from the umbo to near the posteroventral margin. Enlarged, sulfur- colored ctenidia and micrographs of endosymbiotic bacteria held in ctenidia suggest that this species, like other vesi- comyids, is a sulfur-based chemolithoautotroph. INTRODUCTION derstanding of the natural history and biology of vesi- comyids, including description of many new species. Ear- The bivalve family Vesicomyidae, first established by ly trawl and dredge samplers were deployed most com- Dall & Simpson (1901) includes more than 50 species monly over soft sediments, thereby undersampling found nearly exclusively in sulfide-rich habitats such as geologically rugged terrain where seep and vent habitats cold seeps, hydrothermal vents, and accumulations of or- often occur. -
Mya Arenaria Class: Bivalvia; Heterodonta Order: Myoida Soft-Shelled Clam Family: Myidae
Phylum: Mollusca Mya arenaria Class: Bivalvia; Heterodonta Order: Myoida Soft-shelled clam Family: Myidae Taxonomy: Mya arenaria is this species cilia allow the style to rotate and press against original name and is almost exclusively used a gastric shield within the stomach, aiding in currently. However, the taxonomic history of digestion (Lawry 1987). In M. arenaria, the this species includes many synonyms, crystalline style can be regenerated after 74 overlapping descriptions, and/or subspecies days (Haderlie and Abbott 1980) and may (e.g. Mya hemphilli, Mya arenomya arenaria, contribute to the clam’s ability to live without Winckworth 1930; Bernard 1979). The oxygen for extended periods of time (Ricketts subgenera of Mya (Mya mya, Mya arenomya) and Calvin 1952). The ligament is white, were based on the presence or absence of a strong, and entirely internal (Kozloff 1993). subumbonal groove on the left valve and the Two types of gland cells (bacillary and goblet) morphology of the pallial sinus and pallial line comprise the pedal aperture gland or (see Bernard 1979). glandular cushion located within the pedal gape. It is situated adjacent to each of the Description two mantle margins and aids in the formation Size: Individuals range in size from 2–150 of pseudofeces from burrow sediments; the mm (Jacobson et al. 1975; Haderlie and structure of these glands may be of Abbott 1980; Kozloff 1993; Maximovich and phylogenetic relevance (Norenburg and Guerassimova 2003) and are, on average, Ferraris 1992). 50–100 mm (Fig. 1). Mean weight and length Exterior: were 74 grams and 8 cm (respectively) in Byssus: Wexford, Ireland (Cross et al.