FAU Institutional Repository

Total Page:16

File Type:pdf, Size:1020Kb

FAU Institutional Repository FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1991 Elsevier B.V. The final published version of this manuscript is available at http://www.sciencedirect.com/science/journal/00448486 and may be cited as: Gustafson, R. G., Creswell, R. L., Jacobsen, T. R., & Vaughan, D. E. (1991). Larval biology and mariculture of the angelwing clam, Cyrtopleura costata. Aquaculture, 95(3-4), 257-279. doi:10.1016/0044-8486(91)90092-L Aquaculture, 95 (1991) 257-279 257 Elsevier Science Publishers B.V .. Amsterdam Larval biology and mariculture ofthe angelwing clam, Cyrtopleura costata KG. Gustafson"·l, R.L. Creswell", T.R. Jacobsen" and D.E. Vaughan" "Division olCoastal. Environmental and .iquacultural SCiCIICCS, Harbor Branch Oceanographic Institution, 5600 Old DixlC Highway, Fort Pierce, FL 34946, U,)',I "Department otMarinc and Coastal SCiCIICCS, Rutgers Shellfish Research l.aboratorv. New Jcrscv .tgnrultural Evperimcnt Station, Rutgers University, Port Norris, NJ 08349, USI (Accepted 7 November 1990) ABSTRACT Gustafson. R.G .. Creswell, R.L. Jacobsen. T.R. and Vaughan. D.E .. 1991. Larval biology and mari­ culture of the angclwing clam. Cvrtoplcura costata. Aquaculture, 95: 25 7~2 79. The deep-burrowing angclwing clam. Cvrtoplcura costata (Family Pholadidac ). occurs in shallow water from Massachusetts. USA. to Brazil and has been a commercially harvested food product in Cuba and Puerto Rico. This study examines its potential for commercial aquaculture development. The combined effects of salinity and temperature on survival and shell growth to metamorphosis of angclwing larvae were studied using a 5 X 5 factorial design: salinities ranged from 15 to 35%0 S. in 5OftlO S intervals. and temperatures ranged from 15 to 35C in 5 C intervals. Greatest larval shell growth occurred at 30"C and 20OftlO S over the first 8 days and at 30"C and 25°1<., S over the entire 16­ day larval period. Substantial survival (at least 70% of maximal ) occurred at all temperature-salinity combinations below 30'C and 35°1<., S over the first 8 days: and at 15.20 and 25'T combined with all salinities. as well as at 3(YC combined with 20°1<., Sand 25°l<lO S over 16 days. Larvae were competent to metamorphose at 12 days (at optimal temperature-salinity) at a mean shell length of 317 11m. Exposure to a 10- 1 M solution of epinephrine for 1 h induced more than 95(l'" metamorphosis in competent angelwing larvae. Juvenile angclwing shell length increased at a mean rate of 0.190 mm/ day over the first 60 days of post-larval life. Field-planted angclwings reached market size (5~ 7 cm) in 5-6 months. INTRODUCTION Indigenous bivalve populations of the family Pholadidae are harvested for food in various parts of the world, although none are cultured on a commer­ cial scale. The early Romans used the piddock, Pholas dactylus L., as food (Turner, 1954) and this species is still gathered for human consumption on the Normandy coast (Rogers, 1951), in Brittany, in the Channel Islands 'Current address: Institute of Marine and Coastal Sciences. Rutgers Shellfish Research Labo­ ratory. New Jersey Agricultural Experiment Station. Rutgers University. P.O. Box 687. Port Norris. NJ 08349. USA. 0044-8486/91/$03.50 C<) 1991 - Elsevier Science Publishers B.V. 258 R.G. CiUSTAFSON ET AL. (Davidson, 1980) and in Italy (Palombi and Santarelli, 1969). P. chi/oensis Molina is harvested recreationally in parts of Chile (Turner, 1954; P. Chan­ ley, pers. comm., 1984), whereas P. (Monothyra) orientalis Gmelin is sold either fresh or dried in markets in Thailand (hoy pim), Malaysia (siput selat batu), Hong Kong (haw chung), and the Philippines (diwal) (Ablan, 1938; Davidson, 1976; Saraya, 1982; Young and Serna, 1982; Tokrisana et aI., 1985; Amornjaruchit, 1988). The angelwing clam Cyrtopleura costata (Linne 1758) was at one time a staple food item in the markets of Havana, Cuba (Arango y Molina, 1878; Rogers, 1951; Turner, 1954) and was commercially har­ vested in Puerto Rico (Warmke and Abbott, 1975). The deep-burrowing habit and fragile shell of these edible pholadids have to date prevented their use in aquaculture (Alston et al., 1983). Preliminary studies have shown the angelwing clam, Cyrtopleura costata, to be an excellent candidate for aquaculture (Chanley, 1984; Creswell and Schilling, 1985; Kraeuter and Castagna, 1989). Angelwings burrow in sandy mud and are found in shallow water from southern Massachusetts, USA, to Brazil (Turner, 1954; Abbott, 1974; Rios, 1975). Larvae of the angelwing clam have been successfully reared in a commercial-scale hatchery and expe­ rience with post-larvae and juveniles indicates that angelwings are capable of reaching market size (5-7 cm ) in 4-6 months (Creswell and Schilling, 1985). Tan Tui et al. (1989) have investigated growth and survival of angelwing larvae in response to known rations of various warm-water-adapted phyto­ plankton strains. In this paper, we examine: growth of angelwing larvae and ju veniles to market size; the combined effects of temperature and salinity on larval angelwing survival and shell growth; and methods used to induce larval angelwing metamorphosis in the hatchery. MATERIALS AND METHODS , /,' Spawning stock was obtained from indigenous populations in the Banana River Lagoon and Indian River Lagoon, Florida, USA. Mature clams were collected by hand, encircled with an elastic rubber band to maintain lateral pressure on the valves, dry-packed in damp seaweed, and transported to the mollusc hatchery of the Division of Coastal, Environmental and Aquacul­ tural Sciences, Harbor Branch Oceanographic Institution (HBOI), Fort Pierce, Florida. Spawning ofmature angelwings was induced by thermal stim­ ulation or, rarely, by injection of 0.4 ml of a 2 mM serotonin solution (crys­ talline 5-hydroxytryptamine, creatine sulfate complex, Sigma Chemical Co. ). Hatchery, nursery andfield techniques In the case of batch cultures, fertilized eggs were washed in 5 Jim filtered and UV-treated seawater on a 20 Jim screen and placed in 500-1 conical fiber­ glass tanks. After 24-48 h, density of straight-hinge larvae was adjusted to 7 lARVAL BIOLOGY AND MARlCliLTliRE OF THE AN(iELWING CLAM 259 larvae/rnl. Cultures were gently aerated and seawater was exchanged either every day or every other day, at which time mixed rations of unicellular algal cultures [Nannoehloris oculata Butcher, Thalassiosira pseudonana Hassel et Heimdal (Husdedt) (clone 3H), Dunaliella tertiolecta Butcher, and Isochry­ sis aff. galbana Green (clone T-ISO) ] were provided at a nominal combined initial density of25000 cells/rnl, which was increased to 50 000 cells/rnl after 72 h. Growth rates were determined from a sample of 100 randomly selected larvae taken at each water change. In early experiments (1983), larvae were maintained at ambient salinity and temperature, which fluctuated between 22-32%0 Sand 22-30°e. In later cultures (1987), larvae were maintained at the optimum salinity-temperature combination of25%0 Sand 30°e. In early experiments (1983), chloramphenicol (6 mg /l ) was added to cultures to re­ tard bacterial growth. When larvae reached pediveliger stage, shallow fiberglass cylinders (20.3 em diameterX 2.5 ern depth) with mesh bottoms and containing graded sili­ con sand (300-500 zzm ) to a depth of 2 em, were suspended in the conical tanks to collect competent larvae. In other cases, competent larvae were in­ duced to metamorphose upon exposure for I h to a 10- 3 M solution of epi­ nephrine dissolved in natural seawater. These treated larvae were then resus­ pended within upwellers in the conical tanks until metamorphosis was complete. In early experiments ( 1983), newly settled juveniles were stocked in mesh­ lined, sand-filled "Nestier" trays (56 X 56 X 5 cm ) at a density of4000 clams/ tray (12755 clams/m') and suspended on racks in concrete raceways (2.1 X 0.72 X 0.53 m). Mixed phytoplankton assemblages [lsoehrysis aff. gal­ bana (clone T-ISO) and unidentified local diatoms], cultured in 50 000 I semi-cylindrical aluminum tanks, were combined with filtered seawater and continuously supplied to the raceways. Juveniles were placed in the field at a mean shell length of 11.6 mm in shallow, sand-filled trays ( 1.2 X2.4 X0.1 m) at a density of 10000 clams/trr', and submerged in < 1.5 m water depth. Shell growth was monitored monthly from a sample of 50 individuals from each tray. In subsequent experiments (1987-1988), newly settled juveniles were placed directly in a sand-filled tray ( 1.2 X 2.4 X 0.1 m) at a density of 100000 clams/m'; supplied with a combination of filtered seawater and cultured al­ gae iIsochrvsis aff. galbana (clone T-ISO) ] of varying cell density. Survivors were subsequently field-planted, without protection, when 10-12 mm in shell length. Temperature-salinity combination A 5 X 5 factorial design was utilized for temperature-salinity experiments. Salinities ranged from 15 to 35%0Sin 5%0S intervals and temperatures ranged from 15 to 35 0 C in SOC intervals. Two complete temperature-salinity exper- 260 R.G. GUSTAFSON ET AL. iments were conducted on separate spawnings of Cyrtopleura costata. Dupli­ cate static cultures of 18-h-old, straight-hinge larvae were established at each of the 25 different temperature-salinity combinations in I-I polystyrene beakers at an initial density of 5 larvae/rnl. Salinities were adjusted with NANOpure (Barnstead/Thermolyne Corp.) water or Instant Ocean (Aquar­ ium Systems, Inc.) sea salts and maintained within ± 1.0%0S of the desired levels. Beakers were immersed to above their water line in constant tempera­ ture ( ± 1.0 0 C) water baths; cultures were lightly aerated and exchanged with 0.45 /lm filtered natural seawater at 2-day intervals.
Recommended publications
  • Print This Article
    Mediterranean Marine Science Vol. 9, 2008 Molluscan species of minor commercial interest in Hellenic seas: Distribution, exploitation and conservation status KATSANEVAKIS S. European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra LEFKADITOU E. Hellenic Centre for Marine Research, Institute of Marine Biological Resources, Agios Kosmas, P.C. 16610, Elliniko, Athens GALINOU-MITSOUDI S. Fisheries & Aquaculture Technology, Alexander Technological Educational Institute of Thessaloniki, 63200, Nea Moudania KOUTSOUBAS D. University of the Aegean, Department of Marine Science, University Hill, 81100 Mytilini ZENETOS A. Hellenic Centre for Marine Research, Institute of Marine Biological Resources, Agios Kosmas, P.C. 16610, Elliniko, Athens https://doi.org/10.12681/mms.145 Copyright © 2008 To cite this article: KATSANEVAKIS, S., LEFKADITOU, E., GALINOU-MITSOUDI, S., KOUTSOUBAS, D., & ZENETOS, A. (2008). Molluscan species of minor commercial interest in Hellenic seas: Distribution, exploitation and conservation status. Mediterranean Marine Science, 9(1), 77-118. doi:https://doi.org/10.12681/mms.145 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 27/09/2021 17:44:35 | Review Article Mediterranean Marine Science Volume 9/1, 2008, 77-118 Molluscan species of minor commercial interest in Hellenic seas: Distribution, exploitation and conservation status S. KATSANEVAKIS1, E. LEFKADITOU1, S. GALINOU-MITSOUDI2, D. KOUTSOUBAS3 and A. ZENETOS1 1 Hellenic Centre for Marine Research, Institute of Marine Biological
    [Show full text]
  • CROSS-SHELF TRANSPORT of PLANKTONIC LARVAE of INNER SHELF BENTHIC INVERTEBRATES LAURA ANN BRINK a THESIS Presented to the Depart
    CROSS-SHELF TRANSPORT OF PLANKTONIC LARVAE OF INNER SHELF BENTHIC INVERTEBRATES by LAURA ANN BRINK I, A THESIS Presented to the Department ofBiology and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Master ofScience March 1997 11 "Cross-Shelf Transport of Planktonic Larvae of Inner Shelf Benthic Invertebrates," a thesis prepared by Laura Ann Brink in partial fulfillment of the requirements for the Master of Science degree in the Department of Biology. This thesis has been approved and accepted by: the Examining Committee Date Committee in charge: Dr. Alan Shanks, Chair Dr. Steve Rumrill Dr. Lynda Shapiro Accepted by: Vice Provost and Dean of the Graduate School 111 An Abstract of the Thesis of Laura Ann Brink for the degree of Master of Science in the Department of Biology to be taken March 1997 Title: CROSS-SHELF TRANSPORT OF PLANKTONIC LARVAE OF INNER SHELF Approved: -l~P:::::::::~~~~'.1-------­ Ian Shanks There are two schools of thought on the affect of the physical environment in larval transport and dispersal. One is that larvae act as passive particles, being transported solely by physical means. The other idea is that through behavioral changes, larvae can alter their transport so as to improve their chances of successfully settling. Both cross-shelf and 23 hour vertical sampling of meroplanktonic larvae was conducted to investigate the hypothesis that larvae act as passive particles, being dispersed by the currents. The lengths ofbivalve larvae were also measured to determine if there were ontogenetic differences in the vertical distributions of these larvae.
    [Show full text]
  • Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora)
    Gulf of Mexico Science Volume 34 Article 4 Number 1 Number 1/2 (Combined Issue) 2018 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution Martha Reguero Universidad Nacional Autónoma de México Andrea Raz-Guzmán Universidad Nacional Autónoma de México DOI: 10.18785/goms.3401.04 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Reguero, M. and A. Raz-Guzmán. 2018. Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution. Gulf of Mexico Science 34 (1). Retrieved from https://aquila.usm.edu/goms/vol34/iss1/4 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Reguero and Raz-Guzmán: Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Lagu Gulf of Mexico Science, 2018(1), pp. 32–55 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution MARTHA REGUERO AND ANDREA RAZ-GUZMA´ N Molluscs were collected in Laguna Madre from seagrass beds, macroalgae, and bare substrates with a Renfro beam net and an otter trawl. The species list includes 96 species and 48 families. Six species are dominant (Bittiolum varium, Costoanachis semiplicata, Brachidontes exustus, Crassostrea virginica, Chione cancellata, and Mulinia lateralis) and 25 are commercially important (e.g., Strombus alatus, Busycoarctum coarctatum, Triplofusus giganteus, Anadara transversa, Noetia ponderosa, Brachidontes exustus, Crassostrea virginica, Argopecten irradians, Argopecten gibbus, Chione cancellata, Mercenaria campechiensis, and Rangia flexuosa).
    [Show full text]
  • Marine Boring Bivalve Mollusks from Isla Margarita, Venezuela
    ISSN 0738-9388 247 Volume: 49 THE FESTIVUS ISSUE 3 Marine boring bivalve mollusks from Isla Margarita, Venezuela Marcel Velásquez 1 1 Museum National d’Histoire Naturelle, Sorbonne Universites, 43 Rue Cuvier, F-75231 Paris, France; [email protected] Paul Valentich-Scott 2 2 Santa Barbara Museum of Natural History, Santa Barbara, California, 93105, USA; [email protected] Juan Carlos Capelo 3 3 Estación de Investigaciones Marinas de Margarita. Fundación La Salle de Ciencias Naturales. Apartado 144 Porlama,. Isla de Margarita, Venezuela. ABSTRACT Marine endolithic and wood-boring bivalve mollusks living in rocks, corals, wood, and shells were surveyed on the Caribbean coast of Venezuela at Isla Margarita between 2004 and 2008. These surveys were supplemented with boring mollusk data from malacological collections in Venezuelan museums. A total of 571 individuals, corresponding to 3 orders, 4 families, 15 genera, and 20 species were identified and analyzed. The species with the widest distribution were: Leiosolenus aristatus which was found in 14 of the 24 localities, followed by Leiosolenus bisulcatus and Choristodon robustus, found in eight and six localities, respectively. The remaining species had low densities in the region, being collected in only one to four of the localities sampled. The total number of species reported here represents 68% of the boring mollusks that have been documented in Venezuelan coastal waters. This study represents the first work focused exclusively on the examination of the cryptofaunal mollusks of Isla Margarita, Venezuela. KEY WORDS Shipworms, cryptofauna, Teredinidae, Pholadidae, Gastrochaenidae, Mytilidae, Petricolidae, Margarita Island, Isla Margarita Venezuela, boring bivalves, endolithic. INTRODUCTION The lithophagans (Mytilidae) are among the Bivalve mollusks from a range of families have more recognized boring mollusks.
    [Show full text]
  • Supplementary Data Aristotle's Scientific Contributions
    Supplementary Data Aristotle’s scientific contributions to the classification, nomenclature and distribution of marine organisms ELENI VOULTSIADOU, VASILIS GEROVASILEIOU, LEEN VANDEPITTE, KOSTAS GANIAS and CHRISTOS ARVANITIDIS Mediterranean Marine Science, 2017, 18 (3) Table S1. Aristotle’s classification ranks of marine animals and identified current taxa. Identification was mostly based on previ- ous publications, i.e. Voultsiadou and Vafidis (2007), Voultsiadou et al. (2010) and Ganias et al. (2017). Rank 4 Rank 3 Rank 2 Rank 1 Identified as Anhaima Spongoi spongos acheilios/σπόγγος Ἀχίλλειος Spongia (Spongia) lamella (Schulze, 1879) Anhaima Spongoi spongos aplysias/σπόγγος ἀπλυσίας Sarcotragus foetidus Schmidt, 1862 Anhaima Spongoi spongos manos/σπόγγος μανός Hippospongia communis (Lamarck, 1814) Anhaima Spongoi spongos pyknos/σπόγγος πυκνός Spongia (Spongia) officinalis Linnaeus, 1759 Anhaima Spongoi spongos tragos/σπόγγος τράγος Spongia (Spongia) zimocca Schmidt, 1862 Anhaima Acalyphes acalyphē edodimos/ακαλύφη ἐδώδιμος Anemonia viridis (Forsskål, 1775) Anhaima Acalyphes acalyphē sklērē/ακαλύφη σκληρή Actinia equina (Linnaeus, 1758) Anhaima aspis/ασπίς Antedon mediterranea (Lamarck, 1816) Anhaima dokias/δοκίας Holothuriidae sp. Anhaima oistros ton thynnon/οἶστρος των θύννων Caligus sp. Anhaima phtheir thalattia/φθείρ θαλαττία Cymothoidae sp. Anhaima psyllos thalattios/ψύλλος θαλάττιος Amphipoda sp. Anhaima holothourion/ὁλοθούριον Alcyonium palmatum Pallas, 1766 Anhaima pneumōn/πνεύμων Pelagia noctiluca (Forsskål, 1775) Anhaima aidoion
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • Marine Shells of the Western Coast of Flordia
    wm :iii! mm ilili ! Sfixing cHdL J^oad .Sandivicl'i, j\{ai.i.ach.u±£.tti. icuxucm \^*^£ FRONTISPIECE Photo by Ruth Bernhard Spondylus americanus Hermann MARINE SHELLS f>4 OF THE WESTERN COAST OF FLORIDA By LOUISE M. PERRY AND JEANNE S. SCHWENGEL With Revisions and Additions to Louise M. Perry's Marine Shells of the Southwest Coast of Florida Illustrations by W. Hammersley Southwick, Axel A. Olsson, and Frank White March, 1955 PALEONTOLOGICAL RESEARCH INSTITUTION ITHACA, NEW YORK U. S. A. MARINE SHELLS OF THE SOUTHWEST COAST OF FLORIDA printed as Bulletins of American Paleontology, vol. 26, No. 95 First printing, 1940 Second printing, 1942 Copyright, 1955, by Paleontological Research Institution Library of Congress Catalog Card Number: 5-^-12005 Printed in the United States of America // is perhaps a more fortunate destiny to have a taste for collecting shells than to be born a millionaire. Robert Louis Stevenson imeters 50 lllllllllllllllllllllllllllll II II III nil 2 Inches CONTENTS Page Preface by reviser 7 Foreword by Wm. J. Clench 9 Introduction 11 Generalia 13 Collection and preparation of specimens 17 Systematic descriptions 24 Class Amphineura :. 24 Class Pelecypoda 27 Class Scaphopoda 97 Class Gasteropoda 101 Plates 199 Index 311 PREFACE BY THE REVISER It has been a privilege to revise Louise M. Perry's fine book on "Marine Shells of Southwest Florida", to include her studies on eggs and larvae of mollusks; and to add descriptions and illustra- tions of several newly discovered shells thus making it a more com- prehensive study of the molluscan life of western Florida. The work that I have done is only a small return to Dr.
    [Show full text]
  • Guide to Estuarine and Inshore Bivalves of Virginia
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1968 Guide to Estuarine and Inshore Bivalves of Virginia Donna DeMoranville Turgeon College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Marine Biology Commons, and the Oceanography Commons Recommended Citation Turgeon, Donna DeMoranville, "Guide to Estuarine and Inshore Bivalves of Virginia" (1968). Dissertations, Theses, and Masters Projects. Paper 1539617402. https://dx.doi.org/doi:10.25773/v5-yph4-y570 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. GUIDE TO ESTUARINE AND INSHORE BIVALVES OF VIRGINIA A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Arts LIBRARY o f the VIRGINIA INSTITUTE Of MARINE. SCIENCE. By Donna DeMoranville Turgeon 1968 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts jfitw-f. /JJ'/ 4/7/A.J Donna DeMoranville Turgeon Approved, August 1968 Marvin L. Wass, Ph.D. P °tj - D . dvnd.AJlLJ*^' Jay D. Andrews, Ph.D. 'VL d. John L. Wood, Ph.D. William J. Hargi Kenneth L. Webb, Ph.D. ACKNOWLEDGEMENTS The author wishes to express sincere gratitude to her major professor, Dr.
    [Show full text]
  • Clam Ctenoides Ales Rsif.Royalsocietypublishing.Org Lindsey F
    Downloaded from http://rsif.royalsocietypublishing.org/ on November 15, 2016 A dynamic broadband reflector built from microscopic silica spheres in the ‘disco’ clam Ctenoides ales rsif.royalsocietypublishing.org Lindsey F. Dougherty1,So¨nke Johnsen2, Roy L. Caldwell1 and N. Justin Marshall3 1Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA 2Department of Biology, Duke University, Durham, NC 27708, USA Research 3Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia Cite this article: Dougherty LF, Johnsen S, The ‘disco’ or ‘electric’ clam Ctenoides ales (Limidae) is the only species of Caldwell RL, Marshall NJ. 2014 A dynamic bivalve known to have a behaviourally mediated photic display. This dis- broadband reflector built from microscopic play is so vivid that it has been repeatedly confused for bioluminescence, silica spheres in the ‘disco’ clam Ctenoides ales. but it is actually the result of scattered light. The flashing occurs on the J. R. Soc. Interface 11: 20140407. mantle lip, where electron microscopy revealed two distinct tissue sides: one highly scattering side that contains dense aggregations of spheres com- http://dx.doi.org/10.1098/rsif.2014.0407 posed of silica, and one highly absorbing side that does not. High-speed video confirmed that the two sides act in concert to alternate between vivid broadband reflectance and strong absorption in the blue region of the spectrum. Optical modelling suggests that the diameter of the spheres Received: 17 April 2014 is nearly optimal for scattering visible light, especially at shorter wave- Accepted: 19 May 2014 lengths which predominate in their environment. This simple mechanism produces a striking optical effect that may function as a signal.
    [Show full text]
  • Bivalve Mollusc Exploitation in Mediterranean Coastal Communities: an Historical Approach
    Journal of Biological Research-Thessaloniki 12: 00 – 00, 2009 J. Biol. Res.-Thessalon. is available online at http://www.jbr.gr Indexed in: WoS (Web of Science, ISI Thomson), SCOPUS, CAS (Chemical Abstracts Service) and DOAJ (Directory of Open Access Journals) Bivalve mollusc exploitation in Mediterranean coastal communities: an historical approach ELENI VOULTSIADOU1*, DROSOS KOUTSOUBAS2 and MARIA ACHPARAKI1 1 Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece 2 Department of Marine Sciences, School of Environment, University of the Aegean, 81100 Mytilene, Greece Received: 3 July 2009 Accepted after revision: 14 September 2009 The aim of this work was to survey the early history of bivalve mollusc exploitation and con- sumption in the Mediterranean coastal areas as recorded in the classical works of Greek antiq- uity. All bivalve species mentioned in the classical texts were identified on the basis of modern taxonomy. The study of the works by Aristotle, Hippocrates, Xenocrates, Galen, Dioscorides and Athenaeus showed that out of the 35 exploited marine invertebrates recorded in the texts, 20 were molluscs, among which 11 bivalve names were included. These data examined under the light of recent information on bivalve exploitation showed that the diet of ancient Greeks in- cluded the same bivalve species consumed nowadays in the coastal areas of the Mediterranean. The habitats of the exploited bivalves and consequently their fishing areas were well known and recorded in the classical texts. Information on the morphology and various aspects of the biolo- gy of certain edible species was given mostly in Aristotle’s zoological works, while Xenocrates and Athenaeus presented instructions and recipes on how bivalves were cooked and served.
    [Show full text]
  • Invertebrate ID Guide
    11/13/13 1 This book is a compilation of identification resources for invertebrates found in stomach samples. By no means is it a complete list of all possible prey types. It is simply what has been found in past ChesMMAP and NEAMAP diet studies. A copy of this document is stored in both the ChesMMAP and NEAMAP lab network drives in a folder called ID Guides, along with other useful identification keys, articles, documents, and photos. If you want to see a larger version of any of the images in this document you can simply open the file and zoom in on the picture, or you can open the original file for the photo by navigating to the appropriate subfolder within the Fisheries Gut Lab folder. Other useful links for identification: Isopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-33/htm/doc.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-48/htm/doc.html Polychaetes http://web.vims.edu/bio/benthic/polychaete.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-34/htm/doc.html Cephalopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-44/htm/doc.html Amphipods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-67/htm/doc.html Molluscs http://www.oceanica.cofc.edu/shellguide/ http://www.jaxshells.org/slife4.htm Bivalves http://www.jaxshells.org/atlanticb.htm Gastropods http://www.jaxshells.org/atlantic.htm Crustaceans http://www.jaxshells.org/slifex26.htm Echinoderms http://www.jaxshells.org/eich26.htm 2 PROTOZOA (FORAMINIFERA) ................................................................................................................................ 4 PORIFERA (SPONGES) ............................................................................................................................................... 4 CNIDARIA (JELLYFISHES, HYDROIDS, SEA ANEMONES) ............................................................................... 4 CTENOPHORA (COMB JELLIES)............................................................................................................................
    [Show full text]
  • Regulation (EU) 2019/ of the European Parliament
    25.7.2019 EN Official Journal of the European Union L 198/105 REGULATION (EU) 2019/1241 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 20 June 2019 on the conservation of fisheries resources and the protection of marine ecosystems through technical measures, amending Council Regulations (EC) No 1967/2006, (EC) No 1224/2009 and Regulations (EU) No 1380/2013, (EU) 2016/1139, (EU) 2018/973, (EU) 2019/472 and (EU) 2019/1022 of the European Parliament and of the Council, and repealing Council Regulations (EC) No 894/97, (EC) No 850/98, (EC) No 2549/2000, (EC) No 254/2002, (EC) No 812/2004 and (EC) No 2187/2005 THE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EUROPEAN UNION, Having regard to the Treaty on the Functioning of the European Union, and in particular Article 43(2) thereof, Having regard to the proposal from the European Commission, After transmission of the draft legislative act to the national parliaments, Having regard to the opinion of the European Economic and Social Committee ( 1 ), Having regard to the opinion of the Committee of the Regions ( 2), Acting in accordance with the ordinary legislative procedure ( 3 ), Whereas: (1) Regulation (EU) No 1380/2013 of the European Parliament and of the Council ( 4) establishes a Common Fisheries Policy (CFP) for the conservation and sustainable exploitation of fisheries resources. (2) Technical measures are tools to support the implementation of the CFP. However, an evaluation of the current regulatory structure in relation to technical measures showed that it is unlikely to achieve the objectives of the CFP and a new approach should be taken to increase the effectiveness of technical measures, focusing on adapting the governance structure.
    [Show full text]