Understanding and Evaluation of Badminton Shuttlecocks Through Flight Dynamics and Experimental Approach
Total Page:16
File Type:pdf, Size:1020Kb
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Understanding and evaluation of badminton shuttlecocks through flight dynamics and experimental approach Lin, Calvin Shenghuai 2015 Lin, C. S. (2015). Understanding and evaluation of badminton shuttlecocks through flight dynamics and experimental approach. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/65286 https://doi.org/10.32657/10356/65286 Downloaded on 07 Oct 2021 04:27:51 SGT UNDERSTANDING AND EVALUATION OF BADMINTON SHUTTLECOCKS THROUGH FLIGHT DYNAMICS AND EXPERIMENTAL APPROACH LIN SHENGHUAI CALVIN School of Mechanical and Aerospace Engineering A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy 2015 i Acknowledgement First and foremost, I would like to thank Professor Chua Chee Kai and Associate Professor Yeo Joon Hock for supervising my research. I am especially thankful for their patience in guiding me through technical writing. I would also like to extend my heartfelt gratitude to Associate Professor Leong Kah Fai for giving me the opportunity to pursue a degree under the ISR family. I am grateful to ISR, especially Mr Pascal Joubert des Ouches and Mr Anthony Bert, for providing support to my work. I would also like to express my sincere appreciation to Associate Professor Chen Chun-Hsien, Associate Professor Chan Weng Kong and Assistant Professor Wu Yanhua for their time in assessing my qualifying exam. With special thanks to Mr Edwin Lam, Mr Leonard Lee, Mr Chia Yak Khoong, Mr Seow Tzer Fook, Associate Professor Ng Teng Yong and Assistant Professor Tiauw Hiong Yongki Go. i Table of Contents Acknowledgement i List of Tables xi List of Figures xiii List of Symbols xxiii List of Abbreviations xxvi Abstract xxvii 1. INTRODUCTION 1 1.1 Background 1 1.2 Motivation 3 1.3 Objectives 6 1.4 Scope 7 1.5 Organisation of Thesis 8 2. LITERATURE REVIEW 10 2.1 Badminton Shuttlecock 10 2.2 Patents and Developments of Shuttlecocks 13 2.2.1 Patents Reinventing Badminton and the Shuttlecock 13 2.2.2 Patents Improving the Traditional Shuttlecocks 16 2.3 Flow along a shuttlecock 21 2.4 Aerodynamic Experiments on Shuttlecocks 27 ii 2.5 Flight Experiments on Shuttlecocks 33 2.6 Spin Experiments on Shuttlecocks 38 2.7 Summary 41 3. AERODYNAMICS of SHUTTLECOCKS 43 3.1 Model Geometry and ANSYS CFX Method 43 3.2 Flow Over a Perfect Gapless Conical Skirt 48 3.3 Effect of Gaps on Coefficient of Pressure and Drag 57 3.4 Reduction in Blunt Body Effect with Gap size 65 3.5 Discussion of Coefficient of Pressure with Gaps 69 3.6 Summary 74 4. SHUTTLECOCK FLIGHT DYNAMICS 76 4.1 States of Flight 76 4.1.1 Unsteady Flight 77 4.1.2 Steady Flight 78 4.2 Flight Modelling 79 4.2.1 Multiple Reference Frame 79 4.2.2 Translation 81 4.2.2.1 Gravitational force 81 4.2.2.2 Lift and Drag 81 4.2.2.3 Magnus Force 84 4.2.2.4 Force Summation 85 4.2.3 Rotation 85 4.2.3.1 Pitch and Yaw Moment 86 iii 4.2.3.2 Spin 87 4.2.3.3 Angular Damping Factor 90 4.2.3.4 Torque Summation 91 4.2.4 Equation of motion 91 4.3 Flight Phenomena 92 4.3.1 Turnover 92 4.3.1.1 Stability in Turnover 93 4.3.1.2 Modelling 98 4.3.1.3 Physical Parameters 99 4.3.2 Axial Spin 100 4.3.2.1 Theory 100 4.3.2.2 Preliminary Observations 101 4.3.3 Gyroscopic Precession 105 4.3.3.1 Theory 105 4.3.3.2 Primary and Secondary Precession 107 4.3.3.3 Implications 110 4.3.3.4 Experimental Observation 112 4.3.3.5 Modelling and Simulation 114 4.3.3.6 Reverse Gyroscopic Precession 121 4.4 Important Parameters 124 4.4.1 Unsteady Flight State 124 4.4.2 Steady Flight State 126 4.5 Summary 127 5. SHUTTLECOCK TESTING: PHASE I (STATIC) 129 5.1 Overview of Testing 129 5.2 Introduction to Phase I 130 5.2.1 Physical Properties 131 5.2.1.1 Mass 131 iv 5.2.1.2 Diameter and Chord 132 5.2.1.3 Moments of Inertia 135 5.2.2 Wind Tunnel Study 135 5.3 Experimental Method 137 5.3.1 Shuttlecock Specimens 137 5.3.2 Physical Properties 138 5.3.2.1 Mass 138 5.3.2.2 Diameter and Chord 138 5.3.2.3 Moments of Inertia 139 5.3.3 Wind Tunnel Study 141 5.4 Results and Discussion 144 5.4.1 Physical Properties 144 5.4.1.1 Mass 144 5.4.1.2 Diameter and Chord 146 5.4.1.3 Moments of Inertia 147 5.4.2 Wind Tunnel Study 150 5.4.2.1 Drag Parameter, 150 5.4.2.2 Axial Spin 151 5.4.2.3 Skirt Deformation 152 5.4.2.4 Drag per Unit Mass, 155 5.5 Summary of Phase I 158 6. SHUTTLECOCK TESTING: PHASE II (FLIGHT) 159 6.1 Shuttlecock Launcher Development 159 6.1.1 Existing Problems 159 6.1.2 Motion Analysis of Racket Speed 160 6.1.3 Developed Launcher 161 v 6.1.4 Initial Trial 163 6.1.4.1 Experimental Method 163 6.1.4.2 Results and Discussion 164 6.1.4.3 Launch Condition 167 6.2 Overview of Phase II 169 6.2.1 Turnover 169 6.2.2 Flight Trajectory 169 6.3 Experimental Setup and Methodology 171 6.3.1 Turnover 171 6.3.1.1 Experimental Method 171 6.3.1.2 Response Modelling 173 6.3.2 Flight Trajectory 174 6.3.2.1 Shuttlecocks 174 6.3.2.2 Experimental Setup 175 6.3.2.3 Methodology 177 6.3.2.4 Experimental Error from High-Speed Capturing178 6.4 Result and Discussion 180 6.4.1 Turnover 180 6.4.1.1 Parameter Identified from Experimental Data 180 6.4.1.2 Response Modelling 184 6.4.1.3 Realistic Damping Parameters 186 6.4.2 Flight Trajectory 187 6.4.2.1 Shuttlecock Launch Velocity and Range 187 6.4.2.2 Feather Shuttlecock Trajectories 189 6.4.2.3 Synthetic Shuttlecock Trajectories 193 6.4.2.4 Velocity Profile 197 6.4.2.5 Feather Shuttlecock Spin Rate 198 6.4.2.6 Synthetic Shuttlecock Spin Rate 201 6.4.2.7 Stall Velocities 205 6.4.2.8 Trajectory Similarities 206 6.5 Summary of Experimental Work 209 vi 7. SHUTTLECOCK TESTING: PHASE III (MECHANICAL) 211 7.1 Introduction 211 7.2 Shuttlecock Skirt Compression Tester (SSCT) 213 7.2.1 SSCT Components 213 7.2.2 SSCT Functioning 215 7.2.3 SSCT Preliminary Trial 217 7.3 Wear Induction Machines 219 7.3.1 Vane Wear Induction Device (VWID) 221 7.3.1.1 VWID Components 222 7.3.1.2 VWID Functioning 223 7.3.1.3 VWID Preliminary Trial 225 7.3.1.4 VWID Limitations 228 7.3.2 Smash Test Machine (STM) 229 7.3.2.1 STM Components 229 7.3.2.2 STM Functioning 230 7.3.2.3 STM Preliminary Trial 231 7.3.2.4 STM Limitations 234 7.4 Experimental Methods 236 7.4.1 Skirt Stiffness 236 7.4.2 Durability 237 7.4.2.1 Shuttlecock Preparation- VWID 237 7.4.2.2 Shuttlecock Preparation- STM 237 7.4.2.3 Flight Evaluation 238 7.5 Results and Discussion 240 7.5.1 Skirt Stiffness 240 7.5.2 VWID Prepared Specimen 245 vii 7.5.3 STM Prepared Specimen 247 7.5.4 Flight Evaluation 252 7.5.4.1 Launch Conditions 252 7.5.4.2 Trajectory 253 7.5.4.3 Spin 256 7.6 Summary 260 8. SHUTTLECOCK DEVELOPMENT PROCESS 261 8.1 Overview 261 8.2 Design Objectives 262 8.3 Conceptual Design 263 8.4 Preliminary Concept Exploration 264 8.5 Concept Selection 266 8.6 Concept Development- Design 267 8.6.1 Feasibility Analysis 268 8.6.2 Physical Properties Simulation 269 8.6.3 Flow Design 270 8.7 Concept Development- Testing 271 8.8 Advantages 272 8.9 Limitations 273 8.10 Summary 274 9. CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 275 9.1 Conclusion 275 viii 9.1.1 Shuttlecock Evaluation Framework 276 9.1.2 Flight Modelling 278 9.1.3 Rapid Design iteration 278 9.2 Future Work 279 9.2.1 Improvement to Motion Capture 279 9.2.2 Perception studies 279 9.2.3 Spin Effect on Skirt Deformation 280 9.2.4 Racket-Shuttlecock Impact Mechanism 281 9.2.5 Extension to Shuttlecock Development Process 281 9.3 Publications 282 9.3.1 Journal Papers 282 9.3.2 Conference Papers 283 REFERENCES 285 Appendix A 301 Translation 301 Rotation 302 Flight Path Frame 303 Appendix B 304 Experimental Setup 304 Results 307 Range and Velocity 312 ix Spin Rate 315 Shuttlecock Damage 319 Appendix C 322 Appendix D 324 Appendix E 325 Calibrating for Lens Radial Distortion 325 Applied Error (Planar) 334 Appendix F 337 Appendix G 338 Appendix H 345 x List of Tables Table 1 Permissible dimensions for badminton shuttlecock based on BWF standards. ................................................................................................................................... 10 Table 2 Patents that reinvent badminton and the shuttlecock. .................................. 16 Table 3 Patents that improve on the current shuttlecocks. ........................................ 21 Table 4 BWF standard for shuttlecock testing [38].