Sericitic and Advanced Argillic Mineral Assemblages and Their Relationship

Total Page:16

File Type:pdf, Size:1020Kb

Sericitic and Advanced Argillic Mineral Assemblages and Their Relationship Sericitic and Advanced Argillic Mineral Assemblages and Their Relationship to Copper Mineralization, Resolution Porphyry Cu-(Mo) Deposit, Superior District, Pinal County, Arizona by Alexander Raine Winant A Prepublication Manuscript Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2010 1 STATEMENT BY THE AUTHOR This manuscript, prepared for publication in Economic Geology, has been submitted in partial fulfillment of requirements for the Master of Science degree at The University of Arizona and is deposited in the Antevs Reading Room to be made available to borrowers, as are copies of regular theses and dissertations. Brief quotations from this manuscript are allowable without special permission, provided that accurate acknowledgment of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the Department of Geosciences when the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. __________________________________________ _____________ (author’s signature) (date) APPROVAL BY RESEARCH COMMITTEE As members of the Research Committee, we recommend that this prepublication manuscript be accepted as fulfilling the research requirement for the degree of Master of Science. Dr. Eric Seedorff__________________________ _____________ Major Advisor (type name) (signature) (date) Dr. Mark D. Barton____________________________ _____________ (type name) (signature) (date) Dr. Frank K. Mazdab _________________________ _____________ (type name) (signature) (date) 2 Sericitic and Advanced Argillic Mineral Assemblages and Their Relationship to Copper Mineralization, Resolution Porphyry Cu-(Mo) Deposit, Superior District, Pinal County, Arizona Alexander R. Winant and Eric Seedorff Lowell Institute for Mineral Resources, Department of Geosciences, University of Arizona 1040 East Fourth Street, Tucson, Arizona 85721-0077 Hamish R. Martin Resolution Copper Company, 47206 N. Magma Shaft #9 Road, Superior, Arizona 85273 Frank K. Mazdab and Mark D. Barton Lowell Institute for Mineral Resources, Department of Geosciences, University of Arizona 1040 East Fourth Street, Tucson, Arizona 85721-0077 3 Abstract The Resolution deposit is a giant, deep, high-grade deposit in the Laramide porphyry copper province of Arizona that is currently being developed. This study focuses on the features at Resolution that formed from acidic hydrothermal fluids (including sericitic and advanced argillic alteration types) that are well developed in the upper part of the system. The distribution of alteration-mineralization features are illustrated along two, roughly perpendicular fences of drill holes that were logged with concurrent mineral identifications made with a PIMA™ infrared spectrometer and ultraviolet light and supplemented with subsequent reflected and transmitted light petrographic observations. Hydrothermal minerals formed during intense hydrolytic alteration at Resolution commonly are related to multiple superimposed, crosscutting events. Though showing some degree of stratigraphic control, particularly at deep levels, the distribution of hydrothermal minerals and mineral assemblages shows only weak degrees of structural control at the deposit scale. The intermediate sulfidation opaque assemblages containing chalcopyrite characterize the many hydrothermal mineral assemblages that formed potassic alteration of igneous rocks, skarn, and calc-silicate hornfels, which are best developed outside the region of this study. Earlier sericitically altered rocks contain pyrite ± chalcopyrite, but later sericitic and advanced argillic assemblages contain higher sulfidation state opaque assemblages, such as pyrite + bornite ± chalcocite with kaolinite, dickite, and topaz, with lesser alunite, pyrophyllite, and zunyite. 4 Veins with assemblages characteristic of advanced argillic alteration consistently offset veins associated with sericitic alteration. Most of the advanced argillic assemblages at Resolution formed at relatively low temperatures, stable with kaolinite and dickite. Resolution contains fairly high levels of fluorine. The most important fluorine-bearing minerals are biotite (~3-4 wt% F), topaz (~11-12 wt% F), fluorite (~49 wt% F), and sericite (~1 wt% F), although other fluorine-bearing phases also are locally present (e.g., zunyite, 6-7 wt% F). Topaz formed at Resolution during advanced argillic alteration and the mineral has a relatively fluorine-poor composition (XF-tpz ~0.6), as is topaz from other base-metal lode deposits such as Butte, in contrast to topaz in those porphyry deposits in which a more fluorine-rich topaz occurs in sericitic and potassic assemblages. Resolution is a relatively arsenic-poor system, in strong contrast to the nearby Magma vein system. The deeper part of the ore body, where potassic alteration dominates, is nearly arsenic-free, whereas the upper part of the copper ore body is arsenic-bearing. Although enargite has been observed petrographically, arsenic occurring in solid solution in other sulfides (e.g., arsenic-bearing pyrite) may be responsible for many of the local spikes in arsenic content at Resolution. Introduction Intense hydrolytic alteration of the sericitic and advanced argillic types, though known also from other types of hydrothermal ore deposits, occurs commonly in three related types of 5 magmatic-hydrothermal ore deposits, porphyry deposits, base-metal lode deposits, and acid-sulfate or high-sulfidation epithermal deposits (Meyer and Hemley, 1967; Hemley et al., 1980; Einaudi, 1982; Arribas, 1995; Seedorff et al., 2005a). Intense hydrolytic alteration, regardless of deposit type, can be pervasive or can be confined to structures or stratigraphic units; rocks exhibiting intense hydrolytic alteration can be barren to highly mineralized. Where mineralized, high- to very-high sulfidation state opaque minerals commonly are associated with advanced argillic alteration of silicate minerals (Meyer and Hemley, 1967; Einaudi, 1982; Einaudi et al., 2003). Intense hydrolytic alteration is characteristic of shallower levels of certain porphyry systems (e.g., Red Mountain, Arizona; Resolution, Arizona; El Salvador, Chile; Central deposit, Oyu Tolgoi, Mongolia) and base-metal lode deposits (e.g., Bisbee, Arizona), though sericitic and advanced argillic alteration can persist to deep levels, as at Butte, Montana (Bryant, 1968; Meyer et al., 1968; Corn, 1975; Gustafson and Hunt, 1975; Bodnar and Beane, 1980; Hedenquist and Lowenstern, 1994; Reed and Meyer, 1999; Watanabe and Hedenquist, 2001; Manske and Paul, 2002; Khashgerel et al., 2009). For the high-sulfidation epithermal deposits, links to porphyry systems are well established in certain cases (e.g., Lepanto- Far Southeast in the Philippines) but to date are lacking in many other districts (e.g., Goldfield, Nevada, and Yanacocha, Peru) (Einaudi, 1982; Arribas et al., 1995; Harvey et al., 1999; Sillitoe and Hedenquist, 2003). Likewise, it is not necessarily clear whether fluids that formed intense hydrolytic alteration represent evolution of fluids that produced potassic alteration at earlier stages or whether they 6 represent a temporally distinct hydrothermal system (e.g., Meyer et al., 1968; Brimhall and Ghiorso, 1983). Rocks exhibiting intense hydrolytic alteration commonly represent a special challenge in identifying mineral assemblages, defined as a group of minerals that appear to be stable together at the mesoscopic scale and to have formed contemporaneously (e.g., Seedorff et al., 2005a). In many cases, the hydrothermal minerals clearly are related to multiple superimposed, crosscutting events, yet the identity of the products of each event may be difficult to determine at the hand specimen scale. Moreover, the silicate minerals commonly are light colored, fine-grained, and difficult to identify with the naked eye or hand lens and in some cases petrographically, such as distinguishing between sericite and pyrophyllite. Even where the minerals can be determined by with aid of infrared spectrometers and X-ray diffraction, the textural relationships generally are lost at the spatial scales of such determinations, i.e., the minerals identified may have formed in multiple events, so the nature of the mineral assemblage remains uncertain. For these reasons, the identification of mineral assemblages within areas of intense hydrolytic alteration commonly is avoided or not deemed possible (e.g., Khashgerel et al., 2006), thereby limiting the types of geochemical or genetic conclusions that might be drawn. This study was conducted at the Resolution deposit in Arizona. The study focuses on the upper part of the Resolution system where sericitic and advanced argillic assemblages are prevalent, building on work by Manske and Paul (2002), Ballantyne et al. (2003), Schwarz (2007), and the geologic staff at Resolution, especially on previous work by Troutman (2001) 7 and Harrison (2007) on sericitic and advanced argillic alteration. The purposes of this study are to document the distribution, abundance, and compositions of associated hydrothermal minerals, to attempt to define the mineral assemblages that constitute sericitic and advanced argillic alteration, to determine the lateral and vertical changes in abundance of sericitic and advanced argillic alteration,,
Recommended publications
  • Zunyite Al13si5o20cl(OH,F)18
    Zunyite Al13Si5O20Cl(OH; F)18 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Cubic. Point Group: 43m: As excellent tetrahedral or pseudo-octahedral crystals, may be modi¯ed by the cube, up to 2 cm. Twinning: On 111 , contact and penetration. f g Physical Properties: Cleavage: Good on 111 . Tenacity: Brittle. Hardness = 7 f g D(meas.) = 2.874(5) D(calc.) = 2.87{2.90 May °uoresce red under UV. Optical Properties: Transparent; may be more or less opaque from inclusions. Color: Grayish white, °esh-red; colorless in thin section. Luster: Vitreous. Optical Class: Isotropic. n = 1.592{1.600 Cell Data: Space Group: F 43m: a = 13.8654{13.8882 Z = 4 X-ray Powder Pattern: Beni-Embarek, Algeria. 8.07 (100), 4.21 (100), 2.679 (90), 1.639 (90), 4.02 (60), 2.840 (50), 2.008 (50) Chemistry: (1) SiO2 24.33 Al2O3 57.88 Fe2O3 0.20 Li2O trace Na2O 0.24 K2O 0.10 F 5.61 Cl 2.91 H2O 10.89 P2O5 0.60 O = (F; Cl) 3.02 ¡ 2 Total 99.74 3+ (1) Zu~ni mine, Colorado, USA; corresponds to Al13:21Fe0:03P0:10Si4:66O20 Cl0:96[(OH)14:04F3:44]§=17:48: Occurrence: In highly aluminous shales and hydrothermally altered volcanic rocks. Association: Pyrophyllite, kaolinite, alunite, diaspore, rutile, pyrite, hematite, quartz. Distribution: In the USA, in the Zun~i mine, near Silverton, San Juan Co., and in the Charter Oak mine, Ouray Co., Colorado; near Silver City, Tintic district, Juab Co., Utah; in the Dome Rock Mountains, near Quartzsite, La Paz Co., Arizona, large crystals.
    [Show full text]
  • Chemical and Structural Evolution of “Metamorphic Vermiculite” in Metaclastic Rocks of the Betic Cordillera, Málaga, Spain: a Synthesis
    249 The Canadian Mineralogist Vol. 44, pp. 249-265 (2006) CHEMICAL AND STRUCTURAL EVOLUTION OF “METAMORPHIC VERMICULITE” IN METACLASTIC ROCKS OF THE BETIC CORDILLERA, MÁLAGA, SPAIN: A SYNTHESIS MARÍA DOLORES RUIZ CRUZ§ Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Campus de Teatinos, E-29071 Málaga, Spain JOSÉ MIGUEL NIETO Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Huelva, E-21071 Huelva, Spain ABSTRACT Vermiculite-like minerals from a metamorphic sequence of the Betic Cordillera, near Málaga, southeastern Spain, were investigated in detail by X-ray diffraction, electron-microprobe analysis, and transmission-analytical electron microscopy. Our results reveal that the chlorite-to-biotite transformation is much more complex than previously assumed. In addition to mixed- layer minerals with a mica:chlorite ratio of 2:1 and 1:1, which had previously been identifi ed, mixed-layer phases with very high and very low chlorite:vermiculite ratios have been identifi ed, together with true vermiculite, as intermediate steps in the chlorite-to-biotite transformation. The observed sequence is: chlorite → random to ordered 1:2 mica–chlorite mixed-layer phases → regular 1:1 chlorite–vermiculite mixed-layer phases → Vrm-rich chlorite–vermiculite mixed-layer phases → vermiculite → biotite. This sequence includes a continuous increase of interlayer cation content, and is similar to that described in the smectite- to-illite transformation. The high Na content of most of these phases suggests that in the absence of K-feldspar, two parallel sites of reactants, chlorite + phengite and chlorite + albite, account for the formation of vermiculitic phases, and later, of biotite. Keywords: mixed-layer minerals, metamorphic vermiculite, X-ray diffraction, electron-microprobe analysis, transmission elec- tron microscopy, analytical electron microscopy, Betic Cordillera, Spain.
    [Show full text]
  • Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece †
    Article Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece † Constantinos Mavrogonatos 1,*, Panagiotis Voudouris 1, Paul G. Spry 2, Vasilios Melfos 3, Stephan Klemme 4, Jasper Berndt 4, Tim Baker 5, Robert Moritz 6, Thomas Bissig 7, Thomas Monecke 8 and Federica Zaccarini 9 1 Faculty of Geology & Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece; [email protected] 2 Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA; [email protected] 3 Faculty of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 4 Institut für Mineralogie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany; [email protected] (S.K.); [email protected] (J.B.) 5 Eldorado Gold Corporation, 1188 Bentall 5 Burrard St., Vancouver, BC V6C 2B5, Canada; [email protected] 6 Department of Mineralogy, University of Geneva, CH-1205 Geneva, Switzerland; [email protected] 7 Goldcorp Inc., Park Place, Suite 3400-666, Burrard St., Vancouver, BC V6C 2X8, Canada; [email protected] 8 Center for Mineral Resources Science, Department of Geology and Geological Engineering, Colorado School of Mines, 1516 Illinois Street, Golden, CO 80401, USA; [email protected] 9 Department of Applied Geosciences and Geophysics, University of Leoben, Leoben 8700, Austria; [email protected] * Correspondence: [email protected]; Tel.: +30-698-860-8161 † The paper is an extended version of our paper published in 1st International Electronic Conference on Mineral Science, 16–21 July 2018. Received: 8 October 2018; Accepted: 22 October 2018; Published: 24 October 2018 Abstract: The Konos Hill prospect in NE Greece represents a telescoped Mo–Cu–Re–Au porphyry occurrence overprinted by deep-level high-sulfidation mineralization.
    [Show full text]
  • Minerals of the San Luis Valley and Adjacent Areas of Colorado Charles F
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/22 Minerals of the San Luis Valley and adjacent areas of Colorado Charles F. Bauer, 1971, pp. 231-234 in: San Luis Basin (Colorado), James, H. L.; [ed.], New Mexico Geological Society 22nd Annual Fall Field Conference Guidebook, 340 p. This is one of many related papers that were included in the 1971 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Muscovite Solid Solutions in the System K20-Mgo-Feo-A1203-Sio2-H20: an Experimental Study at 2 Kbar Ph2o and Comparison with Natural Li-Free White Micas
    MINERALOGICAL MAGAZINE, JUNE 1986, VOL. 50, PP. 257-66 Muscovite solid solutions in the system K20-MgO-FeO-A1203-SiO2-H20: an experimental study at 2 kbar PH2o and comparison with natural Li-free white micas GILLES MoNIER Laboratoire de P&rologie, Universit6 d'Or16ans, 45046 Orlrans Cedex, France AND JI~AN-LouIs ROBERT Centre de Recherche sur la Synthrse et Chimie des MinSraux, G.I.S.C.N.R.S.-B.R.G.M., 1A rue de la Frrollerie, 45071 Odrans Cedex 2, France ABSTRACT. This paper presents the results of an experi- K EY W OR O S : muscovite, phengite, solid solution, crystal- mental study of muscovite solid solutions in the system chemistry, experimental mineralogy, granites, hydro- K20-M~+O-A1203 SiO2-H20 (HF), with M2+= thermal alteration. Mg 2+ or Fe 2§ in the temperature range 300 700~ under 2 kbar P.~o, Muscovite solid solutions can be described, in this system, as the result of two substitutions. NATURAL lithium-free white micas are generally One is the phengitic substitution (x), which preserves the described as solid solutions between the muscovite pure dioctahedral character of the mica; the second is the end member K(A12R)(Si3AI)Olo(OH)2, where [] biotitic substitution (y), which leads to trioctahedral stands for an octahedral vacant site, and the micas and does not change the composition of the celadonite end member K(AIM z+ [3)Si4010(OH)2, tetrahedral layer Si3AI. The general formula of muscovite with M 2 + = Mg 2., Fe E+, thus, they are considered in this system is K(A12_~_2y/aM2+yOl_y/a)(Sia+~All_x) to belong to the so-called phengitic series.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]
  • Sulfur-Poor Intense Acid Hydrothermal Alteration: a Distinctive Hydrothermal Environment ⇑ Douglas C
    Ore Geology Reviews 88 (2017) 174–187 Contents lists available at ScienceDirect Ore Geology Reviews journal homepage: www.elsevier.com/locate/oregeo Sulfur-poor intense acid hydrothermal alteration: A distinctive hydrothermal environment ⇑ Douglas C. Kreiner , Mark D. Barton Department of Geosciences and Lowell Institute for Mineral Resources, University of Arizona, Tucson, AZ 85721, United States article info abstract Article history: A fundamentally distinct, sulfide-poor variant of intense acid (advanced argillic) alteration occurs at the Received 8 June 2016 highest structural levels in iron oxide-rich hydrothermal systems. Understanding the mineralogy, and Received in revised form 16 February 2017 geochemical conditions of formation in these sulfide-poor mineral assemblages have both genetic and Accepted 20 April 2017 environmental implications. New field observations and compilation of global occurrences of low- Available online 23 April 2017 sulfur advanced argillic alteration demonstrates that in common with the sulfide-rich variants of advanced argillic alteration, sulfide-poor examples exhibit nearly complete removal of alkalis, leaving Keywords: a residuum of aluminum-silicate + quartz. In contrast, the sulfur-poor variants lack the abundant pyri- Iron-oxide copper gold te ± other sulfides, hypogene alunite, Al-leached rocks (residual ‘‘vuggy” quartz) as well as the Au-Cu- IOCG Advanced argillic Ag ± As-rich mineralization of some sulfur-rich occurrences. Associated mineralization is dominated by Low-sulfur advanced argillic magnetite and/or hematite with accessory elements such as Cu, Au, REE, and P. These observations pre- sented here indicate there must be distinct geologic processes that result in the formation of low-sulfur advanced argillic styles of alteration. Hydrolysis of magmatic SO2 to sulfuric acid is the most commonly recognized mechanism for generat- ing hypogene advanced argillic alteration, but is not requisite for its formation.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • ZUNYITE POSTER 1St ECMS 2018.Cdr
    (1) (2) (3) (4) (5) National and Kapodistrian University of Athens est. 1837 First zunyite-bearing lithocap in Greece: The case of Konos Hill Mo-Re-Cu-Au porphyry system Constantinos Mavrogonatos¹, Panagiotis Voudouris¹, Paul G. Spry², Vasilios Melfos³, Stephan Klemme⁴, Jasper Berndt⁴, Robert Mori⁵ and Christos Kanellopoulos¹. a b 1. Introduction and Regional Geology Advanced argillic alteration Zunyite [AlSiO(OH,F)Cl] is a rare F- and Cl- Qz stockwork bearing, aluminosilicate that was originally described from and named after the Zuni Mine, Colorado, USA. Zunyite has been recognized as a rare mineral in Phyllic alteration c advanced argillic alteration assemblages, which commonly develop in shallow levels, above porphyry Cu-Au deposits. In the Sapes-Kassiteres district, lithologies of the Makri d e Qz f unit (Circum Rhodope Belt) predominate, especially in Qz veins its southern part. Overlying extended outcrops of the Eocene volcanosedimentary sequence occupy most of Alu+Qz Qz+Alu+Zn the study area, along with hydrothermally-altered subvolcanic intrusions. Konos Hill, its most prominent topographic feature, Figure 2. Field and hand-specimens photographs: (a) Panoramic view of Konos consists of a hydrothermally-altered granodiorite which Hill; (b) Quartz-alunite-zunyite bearing rocks on top of Konos Hill; (c) Quartz- alunite-diaspore bearing in the NW slopes of Konos Hill; (d,e) Hand-specimens intruded into the volcanosedimentary sequence (Figure of quartz-alunite and quartz-alunite-zunyite assemblages; (f) Quartz porphyry 1). Further to the E-NE part of the study area, a stockwork veins in sericitic-altered granodiorite (Saporema Creek). m o n z o d i o r i t i c b o d y h a s i n t r u d e d t h e Figure 1.
    [Show full text]
  • Crystalcavernlapaz250.Pdf
    CONTACT INFORMATION Mining Records Curator Arizona Geological Survey 1520 West Adams St. Phoenix, AZ 85007 602-771-1601 http://www.azgs.az.gov [email protected] The following file is part of the Arizona Department of Mines and Mineral Resources Mining Collection ACCESS STATEMENT These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue. CONSTRAINTS STATEMENT The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of “fair use.” The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works. QUALITY STATEMENT The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files.
    [Show full text]
  • Characteristics of Zunyite in the Advanced Argillic Alteration Zones of High-Sulfidation Epithermal Deposits: Implications for Exploration in Lithocaps
    ©2017 Society of Economic Geologists, Inc. SEG 2017 Conference Characteristics of zunyite in the advanced argillic alteration zones of high-sulfidation epithermal deposits: Implications for exploration in lithocaps Lejun Zhang*, Jiannie Chin, Carlos Jimenez, Noel White, David Cooke, and Evan Orovan ARC Research Hub for Transforming the Mining Value Chain, CODES, University of Tasmania, Hobart, Tasmania, Australia, *e-mail, [email protected] Lithocaps are large, topographically prominent domains of strong silicic, hypogene advanced argillic and argillic-altered rocks that can form above and laterally away from subvolcanic intrusive complexes. Commonly, lithocaps form as part of porphyry-epithermal systems. They may host high sulfidation epithermal mineralization, and overlie or be adjacent to intermediate- sulfidation epithermal deposits; they can also overlie and partially overprint porphyry deposits, if the systems are telescoped sufficiently. All lithocaps have a structure-controlled root zone, which is proximal to most high sulfidation mineralization. Temperature controls on clay mineralogy cause vertical mineral zonation in advanced argillic assemblages, with pyrophyllite, dickite, zunyite, topaz and diaspore more likely to be encountered closer to the heat source. Zunyite as one of the diagnostic minerals of advanced argillic alteration proximal to the heat source has been documented in detail in this study, and the results can be applied in high sulfidation and porphyry deposits exploration. Zunyite is a hydroxyl-fluoro-chloro silicate of aluminum (Al13Si5O20(OH,F)18Cl), which has a unique crystal structure; it has been reported from porphyry copper deposits, epithermal deposits and from altered aluminous shales located near manganese ore deposits. Zunyite crystals usually are less than 10 μm, rarely can up to 200 μm.
    [Show full text]
  • The Case of Konos Hill Mo-Re-Cu-Au Porphyry System
    Geological and Atmospheric Sciences Conference Presentations, Posters and Geological and Atmospheric Sciences Proceedings 7-18-2018 First zunyite-bearing lithocap in Greece: The case of Konos Hill Mo-Re-Cu-Au porphyry system Constantinos Mavrogonatos National and Kapodistrian University of Athens Panagiotis Voudouris National and Kapodistrian University of Athens Paul G. Spry Iowa State University, [email protected] Vasilios Melfos Aristotle University of Thessaloniki Stephan Klemme Westfälische Wilhelms-Universität Münster FSeeollow next this page and for additional additional works authors at: https:/ /lib.dr.iastate.edu/ge_at_conf Part of the Geochemistry Commons, Geology Commons, Mineral Physics Commons, and the Sedimentology Commons Recommended Citation Mavrogonatos, Constantinos; Voudouris, Panagiotis; Spry, Paul G.; Melfos, Vasilios; Klemme, Stephan; Berndt, Jasper; Moritz, Robert; and Kanellopoulos, Christos, "First zunyite-bearing lithocap in Greece: The case of Konos Hill Mo-Re-Cu-Au porphyry system" (2018). Geological and Atmospheric Sciences Conference Presentations, Posters and Proceedings. 12. https://lib.dr.iastate.edu/ge_at_conf/12 This Conference Proceeding is brought to you for free and open access by the Geological and Atmospheric Sciences at Iowa State University Digital Repository. It has been accepted for inclusion in Geological and Atmospheric Sciences Conference Presentations, Posters and Proceedings by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. First zunyite-bearing lithocap in Greece: The case of Konos Hill Mo-Re-Cu-Au porphyry system Abstract The Konos Hill prospect, represents a telescoped Mo-Re-Cu-Au porphyry system overprinted by a high sulfidation event. Porphyry mineralization is exposed in the deeper parts of the study area and comprises quartz stockwork veins, hosted in subvolcanic bodies of granodioritic composition.
    [Show full text]