P619, a Giant Protein Related to Thechromosome Condensation

Total Page:16

File Type:pdf, Size:1020Kb

P619, a Giant Protein Related to Thechromosome Condensation The EMBO Journal vol.15 no.16 pp.4262-4273, 1996 p619, a giant protein related to the chromosome condensation regulator RCC1, stimulates guanine nucleotide exchange on ARFi and Rab proteins Jose Luis Rosa1, Ricardo P.Casaroli-Marano2, by Rothman, 1994). One of these families of proteins, Alan J.Buckler3, Senen Vilaro2 and designated as ARFs, was identified initially as co-factors Mariano Barbacid4 required for ADP-ribosylation of the trimeric G protein o-chain by cholera toxin (Kahn and Gilman, 1986). More Department of Molecular Oncology, Bristol-Myers Squibb, recently, ARF proteins have been found to be involved in Pharmaceutical Research Institute, Princeton, NJ 08543, USA, intracellular vesicular transport and phospholipid metabol- 2Departament de Biologia Cellular, Universitat de Barcelona, 08028 Barcelona, Spain and 3Molecular Genetics Laboratory, ism (reviewed by Kahn et al., 1993; Donaldson and Massachusetts General Hospital, Charlestown, MA 02129, USA Klausner, 1994). In agreement with these observations, 'Present address: Unitat de Bioquimica, Campus Bellvitge, Universitat ARFI, the best characterized member of this protein de Barcelona, Barcelona, Spain family, appears to be localized primarily on coated vesicles and Golgi membranes. Binding of ARFI to membranes 4Corresponding author is essential for its biological activity. This interaction We report the identification of a novel human gene, requires addition of a myristoyl group to its amino- designated p619, that encodes a polypeptide of 4861 terminus, a post-translational modification unique among amino acid residues, one of the largest human proteins small GTP binding proteins which are modified by the known to date. The p619 protein contains two regions addition of isoprenyl derivatives to their carboxy-terminus of seven internal repeats highly related to the cell cycle (reviewed by Nuoffer and Balch, 1994). regulator RCC1, a guanine nucleotide exchange factor Another group of small GTP binding proteins involved for the small GTP binding protein, Ran. In addition, in membrane trafficking is the Rab family (reviewed by p619 possesses seven 13-repeat domains characteristic Novick and Brennwald, 1993; Zerial and Stenmark, 1993; of the p-subunit of heterotrimeric G proteins, three Pfeffer, 1994). The members of this large family of putative SH3 binding sites, seven polar amino acid- proteins (>30) are localized to the surfaces of various rich regions, a putative leucine zipper and a carboxy- membrane-bound organelles involved in both exocytic and terminal HECT domain characteristic of E3 ubiquitin- endocytic pathways. Rab proteins play a role in those protein ligases. p619 is expressed ubiquitously in mouse processes by which transport vesicles dock and/or fuse and human tissues and overexpressed in several human with their cognate target membranes. Association of Rab tumor cell lines. Subcellular localization studies indi- proteins with membranes, a process mediated by the cate that p619 is located in the cytosol and in the Golgi addition of geranyl-geranyl groups to their carboxy- apparatus. Localization of p619 in the Golgi is altered terminal cysteine motif, is essential for their function by Brefeldin A. The carboxy-terminal RCC1-like (reviewed by Clarke, 1992). domain ofp619 interacts specifically with myristoylated The activity of the ARF and Rab proteins, like those ARF1, a small GTP binding protein also located in the of all known small GTP binding proteins, is regulated by Golgi. Moreover, the second RCC1-like motif located binding of guanine nucleotides (reviewed by Boguski and at the amino-terminus of p619 stimulates guanine McCormick, 1993). The GDP-bound forms of ARF and nucleotide exchange on ARF1 and on members of the Rab proteins are inactive and remain located mostly in related Rab proteins, but not on other small GTP the cytosol. Exchange of GDP by GTP is mediated by binding proteins such as Ran or R-Ras2/TC21. These guanine nucleotide exchange factors (GEF) which, for the observations suggest that p619 is a Brefeldin A-sensitive most part, remain to be identified. Several reports have Golgi protein that functions as a guanine nucleotide described the presence of ARFI GEF activity in Golgi exchange factor for ARF1 and, possibly, for members membranes (Donaldson et al., 1992; Helms and Rothman, of the Rab family of proteins. 1992). More recently, Tsai et al. (1994) have reported the Keywords: Golgi apparatus/guanine nucleotide exchange partial purification of a protein from bovine brain with factors/membrane trafficking/small GTP binding proteins ARFI GEF activity. In yeast, the DSS4-1 gene product, a small protein of 17 kDa, functions as a GEF for the yeast Sec4 protein and, with lesser efficiency, for the mammalian Introduction Rab3A (Moya et al., 1993). Similar activities have been observed in its mammalian homolog, MSS4p (Burton Intracellular protein transport between organelles is funda- et al., 1993). A Rab3A-GEF protein of -300 kDa has mental to eukaryotic cell function. This transport has to been partially purified from bovine brain (Burstein and be tightly regulated in order to deliver specific molecules Macara, 1992). Finally, Rab5 and Rab9 GEF activities to their target acceptor organelles. Membrane trafficking associated with endosomes and clathrin-coated vesicles, is believed to be regulated by a series of small (20- have been described recently (Soldati et al., 1994; Ullrich 25 kDa) GTP binding proteins that confer the necessary et al., 1994; Horiuchi et al., 1995). specificity and directionality to this transport (reviewed ARF and Rab proteins are representative examples of 426246©Oxford University Press p619 has GEF activity for ARF1 and Rab proteins a class of small GTP binding proteins whose GTP binding gene (> 150 kbp) with a complex arrangement of sequences and hydrolysis appear to be strictly coupled to a rapid derived from at least three distinct loci, only two of which membrane-cytosol localization cycle. Binding of GTP to were found to be of human origin (T.Koda, E.Sakai and ARF proteins results in their biochemical activation and M.Barbacid, unpublished observations). Exon trapping of subsequent association with their cognate membranes oncH genomic sequences yielded a 382 bp long cDNA (Rothman, 1994). However, in the case of the Rab proteins, fragment derived from one of the two human genes present it has been postulated that membrane association precedes in oncH. Nucleotide sequence analysis of this DNA GTP binding (Stenmark et al., 1995). Moreover, activation fragment revealed significant sequence homology with the of Rab proteins is regulated by cytosolic proteins known gene encoding the regulator of chromosome condensation, as GDIs (guanine nucleotide dissociation inhibitors) and RCC1 (Ohtsubo et al., 1987). REPs (Rab escort proteins) that prevent the exchange Considering the potential biological relevance of mem- of GDP by GTP by forming stochiometric complexes bers of the RCC1 gene family, we decided to isolate a with the Rab proteins (Alexandrov et al., 1994; Soldati full-length cDNA clone of this novel gene from a human et al., 1994; Ullrich et al., 1994). These complexes fetal brain cDNA library. After seven rounds of screening, dissociate upon binding to their target membranes, eight overlapping cDNA clones encompassing a linear allowing the GTP-mediated activation of Rab proteins sequence of 15 171 nucleotides were obtained. Sequences (Ullrich et al., 1994; Horiuchi et al., 1995). To date, no derived from these overlapping clones were combined to GDI or REP factors have been found associated with generate a single cDNA clone (pJLR75) which encom- ARF proteins. passes 96 nucleotides of 5' non-coding sequences with During the course of our efforts aimed at characterizing translational terminator codons in all possible reading human sequences with oncogenic activity, we identified a frames, a single open reading frame (ORF) of 14 586 novel oncogene that contains sequences derived from a nucleotides whose first codon is in an optimal context for novel human locus, designated p619, related to the regu- translation initiation and a 3' non-coding region of 492 lator of chromosomal condensation, RCC1. RCC1 was nucleotides with a polyadenylation signal and a 20 nucleo- first identified as the product of a hamster gene whose tide long poly(A) tail. The single ORF of this cDNA clone function was required to prevent chromosome condensa- predicts a 4861 amino acid long polypeptide with an Mr tion before completion of DNA replication (Ohtsubo et al., of 619 062 Da (pl = 5.62), the second largest human 1987). Subsequently, RCC1 has been shown to be a protein known to date (Figure 1). We have designated this GEF for Ran, a small GTP binding protein located novel human gene as p619 to predominantly in the nucleus (Bischoff and Ponstingl, reflect the molecular mass 1991). Ran has been implicated in the nuclear import of of its gene product. proteins with nuclear localization signals (Ren et al., 1995; Analysis of the amino acid sequence of the p619 protein Schlenstedt et al., 1995). Therefore, it is believed that revealed several structural domains including two regions loss of RCC1 may lead to suppression of nuclear import of high internal homology (48% identity and 64% of proteins needed for proper regulation of the cell cycle similarity) each consisting of seven internal repeats of (Tachibana et al., 1994). RCC1 and Ran may also be 50-56 amino acid residues located at both ends of the involved in RNA processing and in its export to the molecule (residues 377-735 and 4002-4360). The overall cytosol (Cheng et al., 1995; Ren et al., 1995; Schlenstedt structure of these motifs is highly reminiscent of the et al., 1995). RCC 1 protein. More importantly, these p619 domains, Based on the structural similarities between this novel designated as RLD (RCC1 like domains), have significant human gene and RCC 1, we set about to determine whether sequence homology (30% and 29% identity and 51% and its gene product, p619, had guanine nucleotide exchange 49% similarity, respectively) with RCCI (Figure 1).
Recommended publications
  • Rab3a As a Modulator of Homeostatic Synaptic Plasticity
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2014 Rab3A as a Modulator of Homeostatic Synaptic Plasticity Andrew G. Koesters Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Biomedical Engineering and Bioengineering Commons Repository Citation Koesters, Andrew G., "Rab3A as a Modulator of Homeostatic Synaptic Plasticity" (2014). Browse all Theses and Dissertations. 1246. https://corescholar.libraries.wright.edu/etd_all/1246 This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. RAB3A AS A MODULATOR OF HOMEOSTATIC SYNAPTIC PLASTICITY A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By ANDREW G. KOESTERS B.A., Miami University, 2004 2014 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL August 22, 2014 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Andrew G. Koesters ENTITLED Rab3A as a Modulator of Homeostatic Synaptic Plasticity BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. Kathrin Engisch, Ph.D. Dissertation Director Mill W. Miller, Ph.D. Director, Biomedical Sciences Ph.D. Program Committee on Final Examination Robert E. W. Fyffe, Ph.D. Vice President for Research Dean of the Graduate School Mark Rich, M.D./Ph.D. David Ladle, Ph.D. F. Javier Alvarez-Leefmans, M.D./Ph.D. Lynn Hartzler, Ph.D.
    [Show full text]
  • Glioma Cell Secretion: a Driver of Tumor Progression and a Potential Therapeutic Target Damian A
    Published OnlineFirst October 17, 2018; DOI: 10.1158/0008-5472.CAN-18-0345 Cancer Review Research Glioma Cell Secretion: A Driver of Tumor Progression and a Potential Therapeutic Target Damian A. Almiron Bonnin1,2, Matthew C. Havrda1,2, and Mark A. Israel1,2,3 Abstract Cellular secretion is an important mediator of cancer progres- ple oncogenic pathologies. In this review, we describe tumor cell sion. Secreted molecules in glioma are key components of secretion in high-grade glioma and highlight potential novel complex autocrine and paracrine pathways that mediate multi- therapeutic opportunities. Cancer Res; 78(21); 6031–9. Ó2018 AACR. Introduction Glioma-Secreted Molecules Impact Disease Glial cells in the central nervous system (CNS) provide trophic Progression support for neurons (1). In glial tumors, this trophic support is Glioma cells modify their microenvironment by introducing dysregulated creating a pro-oncogenic microenvironment medi- diverse molecules into the extracellular space (Table 1). To exem- ated by a heterogeneous array of molecules secreted into the plify the pro-oncogenic role that secreted molecules can have on – extracellular space (2 15). The glioma secretome includes pro- glioma pathology, we review the functional impact of specific teins, nucleic acids, and metabolites that are often overexpressed cytokines, metabolites, and nucleic acids on glioma biology. By in malignant tissue and contribute to virtually every aspect of describing some of the potent antitumorigenic effects observed in – cancer pathology (Table 1; Fig. 1; refs. 2 15), providing a strong preclinical therapeutic studies targeting tumor cell secretion, we – rationale to target the cancer cell secretory mechanisms. also highlight how blocking secreted molecules might be of fi Although the speci c mechanisms regulating secretion in therapeutic impact in gliomas, as well as other tumors.
    [Show full text]
  • Ubiquitylome Profiling of Parkin-Null Brain Reveals Dysregulation Of
    Neurobiology of Disease 127 (2019) 114–130 Contents lists available at ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium T homeostasis factors ATP1A2, Hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons Key J.a,1, Mueller A.K.b,1, Gispert S.a, Matschke L.b, Wittig I.c, Corti O.d,e,f,g, Münch C.h, ⁎ ⁎ Decher N.b, , Auburger G.a, a Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany b Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany c Functional Proteomics, SFB 815 Core Unit, Goethe University Medical School, 60590 Frankfurt am Main, Germany d Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France e Inserm, U1127, Paris, F-75013, France f CNRS, UMR 7225, Paris, F-75013, France g Sorbonne Universités, Paris, F-75013, France h Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany ARTICLE INFO ABSTRACT Keywords: Parkinson's disease (PD) is the second most frequent neurodegenerative disorder in the old population. Among Parkinson's disease its monogenic variants, a frequent cause is a mutation in the Parkin gene (Prkn). Deficient function of Parkin Mitochondria triggers ubiquitous mitochondrial dysfunction and inflammation in the brain, but it remains unclear howse- Parkin lective neural circuits become vulnerable and finally undergo atrophy. Ubiquitin We attempted to go beyond previous work, mostly done in peripheral tumor cells, which identified protein Calcium targets of Parkin activity, an ubiquitin E3 ligase.
    [Show full text]
  • Hras Intracellular Trafficking and Signal Transduction Jodi Ho-Jung Mckay Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 HRas intracellular trafficking and signal transduction Jodi Ho-Jung McKay Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Cancer Biology Commons, Cell Biology Commons, Genetics and Genomics Commons, and the Medical Cell Biology Commons Recommended Citation McKay, Jodi Ho-Jung, "HRas intracellular trafficking and signal transduction" (2007). Retrospective Theses and Dissertations. 13946. https://lib.dr.iastate.edu/rtd/13946 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. HRas intracellular trafficking and signal transduction by Jodi Ho-Jung McKay A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Genetics Program of Study Committee: Janice E. Buss, Co-major Professor Linda Ambrosio, Co-major Professor Diane Bassham Drena Dobbs Ted Huiatt Iowa State University Ames, Iowa 2007 Copyright © Jodi Ho-Jung McKay, 2007. All rights reserved. UMI Number: 3274881 Copyright 2007 by McKay, Jodi Ho-Jung All rights reserved. UMI Microform 3274881 Copyright 2008 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O.
    [Show full text]
  • Ras-Associated, Small GTP-Binding Protein Mouse, Recombinant, E. Coli
    Rab3AGST-His Ras-associated, small GTP-binding protein mouse, recombinant, E. coli Cat. No. Amount Description: N-terminal tagged Rab3A is a small GTPase that belongs to the Ras PR-115 50 µg superfamily. Rab proteins play an important role in various aspects of membrane traffic, including cargo selection, vesicle budding, vesicle motility, tethering, docking, and fusion. Rab3A, a member of For in vitro use only! the Rab small G protein family, is involved in the process of Ca2+- dependent neurotransmitter release. Rab3A activity is regulated by Shipping: shipped on dry ice a GDP/GTP exchange protein (Rab3 GEP), a Rab GDP dissociation inhibitor (Rab GDI), and a GTPaseactivating protein (Rab3 GAP). Storage Conditions: store at -80 °C The Rab3A recycling is coupled with synaptic vesicle trafficking as follows: (i) GDP-Rab3A forms an inactive complex with Rab GDI and Additional Storage Conditions: avoid freeze/thaw cycles stays in the cytosol of nerve terminals. (ii) GDPRab3A released from Shelf Life: 12 months Rab GDI is converted to GTPRab3A by Rab3 GEP. (iii) GTP-Rab3A binds effector molecules, Rabphilin-3 and Rim, localized at synaptic Molecular Weight: 54 kDa vesicles and the active zone, respectively. These complexes facilitate Accession number: NM_009001 translocation and docking of the synaptic vesicles to the active zone. The GST-Tag facilitates the protein‘s application in typical GST Purity: > 90 % (SDS-PAGE) pull-down assays. Form: liquid (Supplied in 50 mM Tris-HCl pH 8.0, 100 mM NaCl, 10 mM Activity: MgCl2 and 2 mM beta-mercaptoethanol) 100 pmol of protein can bind > 80 pmol of GDP.
    [Show full text]
  • ADP-Ribosylation Factor, a Small GTP-Binding Protein, Is Required for Binding of the Coatomer Protein Fl-COP to Golgi Membranes JULIE G
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 6408-6412, July 1992 Biochemistry ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein fl-COP to Golgi membranes JULIE G. DONALDSON*, DAN CASSEL*t, RICHARD A. KAHN*, AND RICHARD D. KLAUSNER* *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, and tLaboratory of Biological Chemistry, Division of Cancer Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Communicated by Marc Kirschner, April 20, 1992 (receivedfor review February 11, 1992) ABSTRACT The coatomer is a cytosolic protein complex localized to the Golgi complex, although their functions have that reversibly associates with Golgi membranes and is Impli- not been defined. Distinct among these proteins is the ADP- cated in modulating Golgi membrane transport. The associa- ribosylation factor (ARF), originally identified as a cofactor tion of 13-COP, a component of coatomer, with Golgi mem- required for in vitro cholera toxin-catalyzed ADP- branes is enhanced by guanosine 5'-[v-thioltriphosphate ribosylation of the a subunit of the trimeric GTP-binding (GTP[yS]), a nonhydrolyzable analogue of GTP, and by a protein G, (G,.) (19). ARF is an abundant cytosolic protein mixture of aluminum and fluoride ions (Al/F). Here we show that reversibly associates with Golgi membranes (20, 21). that the ADP-ribosylation factor (ARF) is required for the ARF has been shown to be present on Golgi coated vesicles binding of (-COP. Thus, 13-COP contained in a coatomer generated in the presence of GTP[yS], but it is not a com- fraction that has been resolved from ARF does not bind to Golgi ponent of the cytosolic coatomer (22).
    [Show full text]
  • 140503 IPF Signatures Supplement Withfigs Thorax
    Supplementary material for Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis Daryle J. DePianto1*, Sanjay Chandriani1⌘*, Alexander R. Abbas1, Guiquan Jia1, Elsa N. N’Diaye1, Patrick Caplazi1, Steven E. Kauder1, Sabyasachi Biswas1, Satyajit K. Karnik1#, Connie Ha1, Zora Modrusan1, Michael A. Matthay2, Jasleen Kukreja3, Harold R. Collard2, Jackson G. Egen1, Paul J. Wolters2§, and Joseph R. Arron1§ 1Genentech Research and Early Development, South San Francisco, CA 2Department of Medicine, University of California, San Francisco, CA 3Department of Surgery, University of California, San Francisco, CA ⌘Current address: Novartis Institutes for Biomedical Research, Emeryville, CA. #Current address: Gilead Sciences, Foster City, CA. *DJD and SC contributed equally to this manuscript §PJW and JRA co-directed this project Address correspondence to Paul J. Wolters, MD University of California, San Francisco Department of Medicine Box 0111 San Francisco, CA 94143-0111 [email protected] or Joseph R. Arron, MD, PhD Genentech, Inc. MS 231C 1 DNA Way South San Francisco, CA 94080 [email protected] 1 METHODS Human lung tissue samples Tissues were obtained at UCSF from clinical samples from IPF patients at the time of biopsy or lung transplantation. All patients were seen at UCSF and the diagnosis of IPF was established through multidisciplinary review of clinical, radiological, and pathological data according to criteria established by the consensus classification of the American Thoracic Society (ATS) and European Respiratory Society (ERS), Japanese Respiratory Society (JRS), and the Latin American Thoracic Association (ALAT) (ref. 5 in main text). Non-diseased normal lung tissues were procured from lungs not used by the Northern California Transplant Donor Network.
    [Show full text]
  • APP Anterograde Transport Requires Rab3a Gtpase Activity for Assembly of the Transport Vesicle
    14534 • The Journal of Neuroscience, November 18, 2009 • 29(46):14534–14544 Neurobiology of Disease APP Anterograde Transport Requires Rab3A GTPase Activity for Assembly of the Transport Vesicle Anita Szodorai,2 Yung-Hui Kuan,2,9 Silke Hunzelmann,1,2 Ulrike Engel,4 Ayuko Sakane,6 Takuya Sasaki,6 Yoshimi Takai,7 Joachim Kirsch,3 Ulrike Mu¨ller,5 Konrad Beyreuther,2,10 Scott Brady,8 Gerardo Morfini,8 and Stefan Kins1,2 1Technical University of Kaiserslautern, Department of Human Biology and Human Genetics, D-67663 Kaiserslautern, Germany, 2Centre for Molecular Biology, 3Department of Anatomy and Cell Biology, 4Nikon Imaging Center, Bioquant, and 5Institute for Pharmacia and Molecular Biotechnology, University of Heidelberg, D-69120 Heidelberg, Germany, 6Department of Biochemistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan, 7Division of Molecular and Cellular Biology and Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine/Faculty of Medicine, Kobe 650-0017, Japan, 8Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, 9Max Planck Institute for Brain Research, D-60528 Frankfurt, Germany, and 10Network Aging Research, D-69115 Heidelberg, Germany The amyloid precursor protein (APP) is anterogradely transported by conventional kinesin in a distinct transport vesicle, but both the biochem- ical composition of such a vesicle and the specific kinesin-1 motor responsible for transport are poorly defined. APP may be sequentially cleaved by ␤- and ␥-secretases leading to accumulation of ␤-amyloid (A␤) peptides in brains of Alzheimer’s disease patients, whereas cleavage of APP by ␣-secretases prevents A␤ generation.
    [Show full text]
  • Supplementary Table 2
    Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942
    [Show full text]
  • Identification of Key Genes and Pathways for Alzheimer's Disease
    Biophys Rep 2019, 5(2):98–109 https://doi.org/10.1007/s41048-019-0086-2 Biophysics Reports RESEARCH ARTICLE Identification of key genes and pathways for Alzheimer’s disease via combined analysis of genome-wide expression profiling in the hippocampus Mengsi Wu1,2, Kechi Fang1, Weixiao Wang1,2, Wei Lin1,2, Liyuan Guo1,2&, Jing Wang1,2& 1 CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China 2 Department of Psychology, University of Chinese Academy of Sciences, Beijing 10049, China Received: 8 August 2018 / Accepted: 17 January 2019 / Published online: 20 April 2019 Abstract In this study, combined analysis of expression profiling in the hippocampus of 76 patients with Alz- heimer’s disease (AD) and 40 healthy controls was performed. The effects of covariates (including age, gender, postmortem interval, and batch effect) were controlled, and differentially expressed genes (DEGs) were identified using a linear mixed-effects model. To explore the biological processes, func- tional pathway enrichment and protein–protein interaction (PPI) network analyses were performed on the DEGs. The extended genes with PPI to the DEGs were obtained. Finally, the DEGs and the extended genes were ranked using the convergent functional genomics method. Eighty DEGs with q \ 0.1, including 67 downregulated and 13 upregulated genes, were identified. In the pathway enrichment analysis, the 80 DEGs were significantly enriched in one Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, GABAergic synapses, and 22 Gene Ontology terms. These genes were mainly involved in neuron, synaptic signaling and transmission, and vesicle metabolism. These processes are all linked to the pathological features of AD, demonstrating that the GABAergic system, neurons, and synaptic function might be affected in AD.
    [Show full text]
  • A Novel Rab11-Rab3a Cascade Required for Lysosome Exocytosis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.06.434066; this version posted March 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A novel Rab11-Rab3a cascade required for lysosome exocytosis Cristina Escrevente1,*, Liliana Bento-Lopes1*, José S Ramalho1, Duarte C Barral1,† 1 iNOVA4Health, CDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal. * These authors contributed equally to this work. † Correspondence should be sent to: Duarte C Barral, CEDOC, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal, Tel: +351 218 803 102, Fax: +351 218 803 006, [email protected]. (ORCID 0000-0001-8867-2407). Abbreviations used in this paper: FIP, Rab11-family of interacting protein; GEF, guanine nucleotide exchange factor; LE, late endosomes; LRO, lysosome-related organelle; NMIIA, non-muscle myosin heavy chain IIA; Slp-4a, synaptotagmin-like protein 4a. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.06.434066; this version posted March 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Lysosomes are dynamic organelles, capable of undergoing exocytosis. This process is crucial for several cellular functions, namely plasma membrane repair.
    [Show full text]
  • ADP Ribosylation Factor 6 Is Activated and Controls Membrane Delivery
    JCBArticle ADP ribosylation factor 6 is activated and controls membrane delivery during phagocytosis in macrophages Florence Niedergang,1 Emma Colucci-Guyon,1 Thierry Dubois,1 Graça Raposo,2 and Philippe Chavrier1 1Membrane and Cytoskeleton Dynamics Group and 2Electron Microscopy Group, UMR 144 Centre National de la Recherche Scientifique, Institut Curie, F-75248 Paris Cedex 05, France ngulfment of particles by phagocytes is induced by immunoglobulins (FcRs). A dominant-negative mutant of their interaction with specific receptors on the cell ARF6 (T27N mutation) dramatically affected FcR-mediated Esurface, which leads to actin polymerization and the phagocytosis. Expression of ARF6-T27N lead to a reduction extension of membrane protrusions to form a closed phago- in the focal delivery of vesicle-associated membrane protein some. Membrane delivery from internal pools is considered 3ϩ endosomal recycling membranes at phagocytosis sites, to play an important role in pseudopod extension during whereas actin polymerization was unimpaired. This resulted phagocytosis. Here, we report that endogenous ADP ribosyla- in an early blockade in pseudopod extension and accumu- tion factor 6 (ARF6), a small GTP-binding protein, undergoes lation of intracellular vesicles, as observed by electron a sharp and transient activation in macrophages when phago- microscopy. We conclude that ARF6 is a major regulator of cytosis was initiated via receptors for the Fc portion of membrane recycling during phagocytosis. Introduction Phagocytosis is the mechanism of internalization used by cells the plasma membrane to be locally elongated to form the to take up relatively large particles (Ͼ0.5 ␮m) into an intra- engulfing pseudopods (Castellano et al., 2001; May and cellular compartment or phagosome.
    [Show full text]