Ubiquitylome Profiling of Parkin-Null Brain Reveals Dysregulation Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Downloaded from the National Database for Autism Research (NDAR)
International Journal of Molecular Sciences Article Phenotypic Subtyping and Re-Analysis of Existing Methylation Data from Autistic Probands in Simplex Families Reveal ASD Subtype-Associated Differentially Methylated Genes and Biological Functions Elizabeth C. Lee y and Valerie W. Hu * Department of Biochemistry and Molecular Medicine, The George Washington University, School of Medicine and Health Sciences, Washington, DC 20037, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-202-994-8431 Current address: W. Harry Feinstone Department of Molecular Microbiology and Immunology, y Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA. Received: 25 August 2020; Accepted: 17 September 2020; Published: 19 September 2020 Abstract: Autism spectrum disorder (ASD) describes a group of neurodevelopmental disorders with core deficits in social communication and manifestation of restricted, repetitive, and stereotyped behaviors. Despite the core symptomatology, ASD is extremely heterogeneous with respect to the severity of symptoms and behaviors. This heterogeneity presents an inherent challenge to all large-scale genome-wide omics analyses. In the present study, we address this heterogeneity by stratifying ASD probands from simplex families according to the severity of behavioral scores on the Autism Diagnostic Interview-Revised diagnostic instrument, followed by re-analysis of existing DNA methylation data from individuals in three ASD subphenotypes in comparison to that of their respective unaffected siblings. We demonstrate that subphenotyping of cases enables the identification of over 1.6 times the number of statistically significant differentially methylated regions (DMR) and DMR-associated genes (DAGs) between cases and controls, compared to that identified when all cases are combined. Our analyses also reveal ASD-related neurological functions and comorbidities that are enriched among DAGs in each phenotypic subgroup but not in the combined case group. -
Rab3a As a Modulator of Homeostatic Synaptic Plasticity
Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2014 Rab3A as a Modulator of Homeostatic Synaptic Plasticity Andrew G. Koesters Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Biomedical Engineering and Bioengineering Commons Repository Citation Koesters, Andrew G., "Rab3A as a Modulator of Homeostatic Synaptic Plasticity" (2014). Browse all Theses and Dissertations. 1246. https://corescholar.libraries.wright.edu/etd_all/1246 This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. RAB3A AS A MODULATOR OF HOMEOSTATIC SYNAPTIC PLASTICITY A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By ANDREW G. KOESTERS B.A., Miami University, 2004 2014 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL August 22, 2014 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Andrew G. Koesters ENTITLED Rab3A as a Modulator of Homeostatic Synaptic Plasticity BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. Kathrin Engisch, Ph.D. Dissertation Director Mill W. Miller, Ph.D. Director, Biomedical Sciences Ph.D. Program Committee on Final Examination Robert E. W. Fyffe, Ph.D. Vice President for Research Dean of the Graduate School Mark Rich, M.D./Ph.D. David Ladle, Ph.D. F. Javier Alvarez-Leefmans, M.D./Ph.D. Lynn Hartzler, Ph.D. -
Germline Mutations Affecting Gα11 in Hypoparathyroidism
T h e new england journal o f medicine of a meta-analysis of studies of the effect of re- terone levels were increased. Although long- duced dietary salt on the incidence of cardiovas- term, modest reductions in salt intake result in cular events and death.1 The authors of the Co- small, physiologic increases in plasma renin ac- chrane report wrote that there was “no strong tivity,3 the preponderance of evidence suggests evidence of benefit.” In a summary statement, we that a reduced salt intake is associated with a wrote that this particular Cochrane analysis con- decreased risk of cardiovascular events and cluded that reducing dietary salt intake did not death. Furthermore, it is worth remembering decrease the risk of death or cardiovascular dis- that diuretics remain one of the most effective ease. Stigler et al. suggest that “indeterminate antihypertensive therapies, and their beneficial results,” rather than no significant effect, would effect on cardiovascular disease is well docu- be a more appropriate interpretation of the analy- mented.4 Nevertheless, as we suggested, in sis. Both interpretations may be correct. Although terms of safety, the lower limit of salt consump- it may not be possible to reject the null hypothe- tion has not been clearly defined. sis with certainty (i.e., no effect of reduced salt), Theodore A. Kotchen, M.D. the analysis should have been powered to detect Allen W. Cowley, Jr., Ph.D. a clinically meaningful difference, and the con- Medical College of Wisconsin clusion of no effect provides more guidance than Milwaukee, WI “indeterminate results” to clinical decision mak- [email protected] ers. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Glioma Cell Secretion: a Driver of Tumor Progression and a Potential Therapeutic Target Damian A
Published OnlineFirst October 17, 2018; DOI: 10.1158/0008-5472.CAN-18-0345 Cancer Review Research Glioma Cell Secretion: A Driver of Tumor Progression and a Potential Therapeutic Target Damian A. Almiron Bonnin1,2, Matthew C. Havrda1,2, and Mark A. Israel1,2,3 Abstract Cellular secretion is an important mediator of cancer progres- ple oncogenic pathologies. In this review, we describe tumor cell sion. Secreted molecules in glioma are key components of secretion in high-grade glioma and highlight potential novel complex autocrine and paracrine pathways that mediate multi- therapeutic opportunities. Cancer Res; 78(21); 6031–9. Ó2018 AACR. Introduction Glioma-Secreted Molecules Impact Disease Glial cells in the central nervous system (CNS) provide trophic Progression support for neurons (1). In glial tumors, this trophic support is Glioma cells modify their microenvironment by introducing dysregulated creating a pro-oncogenic microenvironment medi- diverse molecules into the extracellular space (Table 1). To exem- ated by a heterogeneous array of molecules secreted into the plify the pro-oncogenic role that secreted molecules can have on – extracellular space (2 15). The glioma secretome includes pro- glioma pathology, we review the functional impact of specific teins, nucleic acids, and metabolites that are often overexpressed cytokines, metabolites, and nucleic acids on glioma biology. By in malignant tissue and contribute to virtually every aspect of describing some of the potent antitumorigenic effects observed in – cancer pathology (Table 1; Fig. 1; refs. 2 15), providing a strong preclinical therapeutic studies targeting tumor cell secretion, we – rationale to target the cancer cell secretory mechanisms. also highlight how blocking secreted molecules might be of fi Although the speci c mechanisms regulating secretion in therapeutic impact in gliomas, as well as other tumors. -
Ras-Associated, Small GTP-Binding Protein Mouse, Recombinant, E. Coli
Rab3AGST-His Ras-associated, small GTP-binding protein mouse, recombinant, E. coli Cat. No. Amount Description: N-terminal tagged Rab3A is a small GTPase that belongs to the Ras PR-115 50 µg superfamily. Rab proteins play an important role in various aspects of membrane traffic, including cargo selection, vesicle budding, vesicle motility, tethering, docking, and fusion. Rab3A, a member of For in vitro use only! the Rab small G protein family, is involved in the process of Ca2+- dependent neurotransmitter release. Rab3A activity is regulated by Shipping: shipped on dry ice a GDP/GTP exchange protein (Rab3 GEP), a Rab GDP dissociation inhibitor (Rab GDI), and a GTPaseactivating protein (Rab3 GAP). Storage Conditions: store at -80 °C The Rab3A recycling is coupled with synaptic vesicle trafficking as follows: (i) GDP-Rab3A forms an inactive complex with Rab GDI and Additional Storage Conditions: avoid freeze/thaw cycles stays in the cytosol of nerve terminals. (ii) GDPRab3A released from Shelf Life: 12 months Rab GDI is converted to GTPRab3A by Rab3 GEP. (iii) GTP-Rab3A binds effector molecules, Rabphilin-3 and Rim, localized at synaptic Molecular Weight: 54 kDa vesicles and the active zone, respectively. These complexes facilitate Accession number: NM_009001 translocation and docking of the synaptic vesicles to the active zone. The GST-Tag facilitates the protein‘s application in typical GST Purity: > 90 % (SDS-PAGE) pull-down assays. Form: liquid (Supplied in 50 mM Tris-HCl pH 8.0, 100 mM NaCl, 10 mM Activity: MgCl2 and 2 mM beta-mercaptoethanol) 100 pmol of protein can bind > 80 pmol of GDP. -
Dominance of SARS-Cov-2 D614G Variant Explained by the Requirement of COVID-19 for Calcium; Proximate Therapeutic Implication(S) for COVID-19
Cashman DP, J Clin Immunol Immunother 2020, 6: 048 DOI: 10.24966/CIIT-8844/1000048 HSOA Journal of Clinical Immunology and Immunotherapy Research Article Decreased SPCA1 expression causes Hailey-Hailey disease, a rare Dominance of SARS-CoV-2 skin disorder that impairs a cells’ ability to transport Ca2+ (i.e., human ATP2C1 gene). Clinically, the hypocalcemia associated with hospi- D614G Variant Explained by talized COVID-19 patients can effectively impair Ca2+ transport in an analogous manner to the SPCA1 deficiency. Here, the D614G the Requirement of COVID-19 SAR-CoV-2 mutant strain can make use of clinical hypocalcemia like the D104G mutated hPIV-3 virus takes advantage of SPCA1 deficient cells to increase infectivity. These data demonstrate the for Calcium; Proximate critical importance of calcium for effective SARS-CoV-2/COVID-19 infection and how understanding this mechanism can be exploited Therapeutic Implication(s) for for therapeutic gain to stop, or otherwise attenuate virus infection at the earliest steps. Calcium chelation by pharmaceutical EDTA, has COVID-19 been, and can be safely delivered via nebulizer or oral ingestion. Daniel P Cashman M.D.* EDTA treatment is available in outpatient and inpatient settings and can be self-administered during “quarantine” periods. These proven PO Box 841, Los Altos, CA, United States and safe EDTA treatments should effectively disrupt SARS-CoV-2 spread at the earliest step in the virus lifecycle and warrant investi- Abstract gation and optimization to save lives post haste. The current dominance of D614G mutation in the SARS-CoV-2 Keywords: Calcium; Covid-19; Pandemic; SARS-CoV-2; D614G; pandemic implies increased infectivity of the virus S protein that Spike Protein Variant; EDTA; Nebulizer; Treatment; Zinc drives cellular entry which is triggered by binding to the angioten- sin converting enzyme-2 (ACE2) receptor and calcium-dependent Introduction protease-mediated activation. -
140503 IPF Signatures Supplement Withfigs Thorax
Supplementary material for Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis Daryle J. DePianto1*, Sanjay Chandriani1⌘*, Alexander R. Abbas1, Guiquan Jia1, Elsa N. N’Diaye1, Patrick Caplazi1, Steven E. Kauder1, Sabyasachi Biswas1, Satyajit K. Karnik1#, Connie Ha1, Zora Modrusan1, Michael A. Matthay2, Jasleen Kukreja3, Harold R. Collard2, Jackson G. Egen1, Paul J. Wolters2§, and Joseph R. Arron1§ 1Genentech Research and Early Development, South San Francisco, CA 2Department of Medicine, University of California, San Francisco, CA 3Department of Surgery, University of California, San Francisco, CA ⌘Current address: Novartis Institutes for Biomedical Research, Emeryville, CA. #Current address: Gilead Sciences, Foster City, CA. *DJD and SC contributed equally to this manuscript §PJW and JRA co-directed this project Address correspondence to Paul J. Wolters, MD University of California, San Francisco Department of Medicine Box 0111 San Francisco, CA 94143-0111 [email protected] or Joseph R. Arron, MD, PhD Genentech, Inc. MS 231C 1 DNA Way South San Francisco, CA 94080 [email protected] 1 METHODS Human lung tissue samples Tissues were obtained at UCSF from clinical samples from IPF patients at the time of biopsy or lung transplantation. All patients were seen at UCSF and the diagnosis of IPF was established through multidisciplinary review of clinical, radiological, and pathological data according to criteria established by the consensus classification of the American Thoracic Society (ATS) and European Respiratory Society (ERS), Japanese Respiratory Society (JRS), and the Latin American Thoracic Association (ALAT) (ref. 5 in main text). Non-diseased normal lung tissues were procured from lungs not used by the Northern California Transplant Donor Network. -
APP Anterograde Transport Requires Rab3a Gtpase Activity for Assembly of the Transport Vesicle
14534 • The Journal of Neuroscience, November 18, 2009 • 29(46):14534–14544 Neurobiology of Disease APP Anterograde Transport Requires Rab3A GTPase Activity for Assembly of the Transport Vesicle Anita Szodorai,2 Yung-Hui Kuan,2,9 Silke Hunzelmann,1,2 Ulrike Engel,4 Ayuko Sakane,6 Takuya Sasaki,6 Yoshimi Takai,7 Joachim Kirsch,3 Ulrike Mu¨ller,5 Konrad Beyreuther,2,10 Scott Brady,8 Gerardo Morfini,8 and Stefan Kins1,2 1Technical University of Kaiserslautern, Department of Human Biology and Human Genetics, D-67663 Kaiserslautern, Germany, 2Centre for Molecular Biology, 3Department of Anatomy and Cell Biology, 4Nikon Imaging Center, Bioquant, and 5Institute for Pharmacia and Molecular Biotechnology, University of Heidelberg, D-69120 Heidelberg, Germany, 6Department of Biochemistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan, 7Division of Molecular and Cellular Biology and Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine/Faculty of Medicine, Kobe 650-0017, Japan, 8Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, 9Max Planck Institute for Brain Research, D-60528 Frankfurt, Germany, and 10Network Aging Research, D-69115 Heidelberg, Germany The amyloid precursor protein (APP) is anterogradely transported by conventional kinesin in a distinct transport vesicle, but both the biochem- ical composition of such a vesicle and the specific kinesin-1 motor responsible for transport are poorly defined. APP may be sequentially cleaved by - and ␥-secretases leading to accumulation of -amyloid (A) peptides in brains of Alzheimer’s disease patients, whereas cleavage of APP by ␣-secretases prevents A generation. -
Transcriptomic Profiling of Ca Transport Systems During
cells Article Transcriptomic Profiling of Ca2+ Transport Systems during the Formation of the Cerebral Cortex in Mice Alexandre Bouron Genetics and Chemogenomics Lab, Université Grenoble Alpes, CNRS, CEA, INSERM, Bâtiment C3, 17 rue des Martyrs, 38054 Grenoble, France; [email protected] Received: 29 June 2020; Accepted: 24 July 2020; Published: 29 July 2020 Abstract: Cytosolic calcium (Ca2+) transients control key neural processes, including neurogenesis, migration, the polarization and growth of neurons, and the establishment and maintenance of synaptic connections. They are thus involved in the development and formation of the neural system. In this study, a publicly available whole transcriptome sequencing (RNA-Seq) dataset was used to examine the expression of genes coding for putative plasma membrane and organellar Ca2+-transporting proteins (channels, pumps, exchangers, and transporters) during the formation of the cerebral cortex in mice. Four ages were considered: embryonic days 11 (E11), 13 (E13), and 17 (E17), and post-natal day 1 (PN1). This transcriptomic profiling was also combined with live-cell Ca2+ imaging recordings to assess the presence of functional Ca2+ transport systems in E13 neurons. The most important Ca2+ routes of the cortical wall at the onset of corticogenesis (E11–E13) were TACAN, GluK5, nAChR β2, Cav3.1, Orai3, transient receptor potential cation channel subfamily M member 7 (TRPM7) non-mitochondrial Na+/Ca2+ exchanger 2 (NCX2), and the connexins CX43/CX45/CX37. Hence, transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1), transmembrane protein 165 (TMEM165), and Ca2+ “leak” channels are prominent intracellular Ca2+ pathways. The Ca2+ pumps sarco/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) and plasma membrane Ca2+ ATPase 1 (PMCA1) control the resting basal Ca2+ levels. -
Mosaic Activating Mutations in GNA11 and GNAQ Are Associated with Phakomatosis Pigmentovascularis and Extensive Dermal Melanocytosis Anna C
ORIGINAL ARTICLE Mosaic Activating Mutations in GNA11 and GNAQ Are Associated with Phakomatosis Pigmentovascularis and Extensive Dermal Melanocytosis Anna C. Thomas1,18, Zhiqiang Zeng2,18, Jean-Baptiste Rivie`re3,18, Ryan O’Shaughnessy4, Lara Al-Olabi1, Judith St.-Onge3, David J. Atherton5,He´le`ne Aubert6, Lorea Bagazgoitia7, Se´bastien Barbarot6, Emmanuelle Bourrat8,9, Christine Chiaverini10, W. Kling Chong11, Yannis Duffourd3, Mary Glover5, Leopold Groesser12, Smail Hadj-Rabia13, Henning Hamm14, Rudolf Happle15, Imran Mushtaq16, Jean-Philippe Lacour10, Regula Waelchli5, Marion Wobser14, Pierre Vabres3,17,19, E. Elizabeth Patton2,19 and Veronica A. Kinsler1,5,19 Common birthmarks can be an indicator of underlying genetic disease but are often overlooked. Mongolian blue spots (dermal melanocytosis) are usually localized and transient, but they can be extensive, permanent, and associated with extracutaneous abnormalities. Co-occurrence with vascular birthmarks defines a subtype of phakomatosis pigmentovascularis, a group of syndromes associated with neurovascular, ophthalmological, overgrowth, and malignant complications. Here, we discover that extensive dermal melanocytosis and pha- komatosis pigmentovascularis are associated with activating mutations in GNA11 and GNAQ, genes that encode Ga subunits of heterotrimeric G proteins. The mutations were detected at very low levels in affected tissues but were undetectable in the blood, indicating that these conditions are postzygotic mosaic disorders. R183C Q209L In vitro expression of mutant GNA11 and GNA11 in human cell lines demonstrated activation of the downstream p38 MAPK signaling pathway and the p38, JNK, and ERK pathways, respectively. Transgenic R183C mosaic zebrafish models expressing mutant GNA11 under promoter mitfa developed extensive dermal melanocytosis recapitulating the human phenotype. Phakomatosis pigmentovascularis and extensive dermal melanocytosis are therefore diagnoses in the group of mosaic heterotrimeric G-protein disorders, joining McCune-Albright and Sturge-Weber syndromes. -
CHD7 Deficiency in ''Looper'', a New Mouse Model Of
CHD7 Deficiency in ‘‘Looper’’, a New Mouse Model of CHARGE Syndrome, Results in Ossicle Malformation, Otosclerosis and Hearing Impairment Jacqueline M. Ogier1, Marina R. Carpinelli1,2,3,4, Benedicta D. Arhatari7, R. C. Andrew Symons8, Benjamin T. Kile3,4,5, Rachel A. Burt1,2,3,5,6* 1 Murdoch Childrens Research Institute, Parkville, Victoria, Australia, 2 The HEARing Cooperative Research Centre, Parkville, Victoria, Australia, 3 Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia, 4 Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia, 5 Department of Genetics, University of Melbourne, Parkville, Victoria, Australia, 6 Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia, 7 ARC Centre of Excellence for Coherent X-ray Science, Department of Physics, La Trobe University, Bundoora, Victoria, Australia, 8 Department of Ophthalmology, Royal Melbourne Hospital, Parkville, Victoria, Australia Abstract CHARGE syndrome is a rare human disorder caused by mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7). Characteristics of CHARGE are varied and include developmental ear and hearing anomalies. Here we report a novel mouse model of CHD7 dysfunction, termed Looper. The Looper strain harbours a nonsense mutation (c.5690C.A, p.S1897X) within the Chd7 gene. Looper mice exhibit many of the clinical features of the human syndrome, consistent with previously reported CHARGE models, including growth retardation, facial asymmetry, vestibular defects, eye anomalies, hyperactivity, ossicle malformation, hearing loss and vestibular dysfunction. Looper mice display an otosclerosis- like fusion of the stapes footplate to the cochlear oval window and blepharoconjunctivitis but not coloboma. Looper mice are hyperactive and have vestibular dysfunction but do not display motor impairment.