Compressibility and Thermal Expansion of Garnets with Compositions Typical of Inclusions in Diamonds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How to Identify Rocks and Minerals
How to Identify Rocks and Minerals fluorite calcite epidote quartz gypsum pyrite copper fluorite galena By Jan C. Rasmussen (Revised from a booklet by Susan Celestian) 2012 Donations for reproduction from: Freeport McMoRan Copper & Gold Foundation Friends of the Arizona Mining & Mineral Museum Wickenburg Gem & Mineral Society www.janrasmussen.com ii NUMERICAL LIST OF ROCKS & MINERALS IN KIT See final pages of book for color photographs of rocks and minerals. MINERALS: IGNEOUS ROCKS: 1 Talc 2 Gypsum 50 Apache Tear 3 Calcite 51 Basalt 4 Fluorite 52 Pumice 5 Apatite* 53 Perlite 6 Orthoclase (feldspar group) 54 Obsidian 7 Quartz 55 Tuff 8 Topaz* 56 Rhyolite 9 Corundum* 57 Granite 10 Diamond* 11 Chrysocolla (blue) 12 Azurite (dark blue) METAMORPHIC ROCKS: 13 Quartz, var. chalcedony 14 Chalcopyrite (brassy) 60 Quartzite* 15 Barite 61 Schist 16 Galena (metallic) 62 Marble 17 Hematite 63 Slate* 18 Garnet 64 Gneiss 19 Magnetite 65 Metaconglomerate* 20 Serpentine 66 Phyllite 21 Malachite (green) (20) (Serpentinite)* 22 Muscovite (mica group) 23 Bornite (peacock tarnish) 24 Halite (table salt) SEDIMENTARY ROCKS: 25 Cuprite 26 Limonite (Goethite) 70 Sandstone 27 Pyrite (brassy) 71 Limestone 28 Peridot 72 Travertine (onyx) 29 Gold* 73 Conglomerate 30 Copper (refined) 74 Breccia 31 Glauberite pseudomorph 75 Shale 32 Sulfur 76 Silicified Wood 33 Quartz, var. rose (Quartz, var. chert) 34 Quartz, var. amethyst 77 Coal 35 Hornblende* 78 Diatomite 36 Tourmaline* 37 Graphite* 38 Sphalerite* *= not generally in kits. Minerals numbered 39 Biotite* 8-10, 25, 29, 35-40 are listed for information 40 Dolomite* only. www.janrasmussen.com iii ALPHABETICAL LIST OF ROCKS & MINERALS IN KIT See final pages of book for color photographs of rocks and minerals. -
Download PDF About Minerals Sorted by Mineral Name
MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky. -
ECONOMIC GEOLOGY RESEARCH INSTITUTE HUGH ALLSOPP LABORATORY University of the Witwatersrand Johannesburg
ECONOMIC GEOLOGY RESEARCH INSTITUTE HUGH ALLSOPP LABORATORY University of the Witwatersrand Johannesburg CHROMITITES OF THE BUSHVELD COMPLEX- PROCESS OF FORMATION AND PGE ENRICHMENT J.A. KINNAIRD, F.J. KRUGER, P.A.M. NEX and R.G. CAWTHORN INFORMATION CIRCULAR No. 369 UNIVERSITY OF THE WITWATERSRAND JOHANNESBURG CHROMITITES OF THE BUSHVELD COMPLEX – PROCESSES OF FORMATION AND PGE ENRICHMENT by J. A. KINNAIRD, F. J. KRUGER, P.A. M. NEX AND R.G. CAWTHORN (Department of Geology, School of Geosciences, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, Johannesburg, South Africa) ECONOMIC GEOLOGY RESEARCH INSTITUTE INFORMATION CIRCULAR No. 369 December, 2002 CHROMITITES OF THE BUSHVELD COMPLEX – PROCESSES OF FORMATION AND PGE ENRICHMENT ABSTRACT The mafic layered suite of the 2.05 Ga old Bushveld Complex hosts a number of substantial PGE-bearing chromitite layers, including the UG2, within the Critical Zone, together with thin chromitite stringers of the platinum-bearing Merensky Reef. Until 1982, only the Merensky Reef was mined for platinum although it has long been known that chromitites also host platinum group minerals. Three groups of chromitites occur: a Lower Group of up to seven major layers hosted in feldspathic pyroxenite; a Middle Group with four layers hosted by feldspathic pyroxenite or norite; and an Upper Group usually of two chromitite packages, hosted in pyroxenite, norite or anorthosite. There is a systematic chemical variation from bottom to top chromitite layers, in terms of Cr : Fe ratios and the abundance and proportion of PGE’s. Although all the chromitites are enriched in PGE’s relative to the host rocks, the Upper Group 2 layer (UG2) shows the highest concentration. -
Compilation of Reported Sapphire Occurrences in Montana
Report of Investigation 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg 2015 Cover photo by Richard Berg. Sapphires (very pale green and colorless) concentrated by panning. The small red grains are garnets, commonly found with sapphires in western Montana, and the black sand is mainly magnetite. Compilation of Reported Sapphire Occurrences, RI 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg Montana Bureau of Mines and Geology MBMG Report of Investigation 23 2015 i Compilation of Reported Sapphire Occurrences, RI 23 TABLE OF CONTENTS Introduction ............................................................................................................................1 Descriptions of Occurrences ..................................................................................................7 Selected Bibliography of Articles on Montana Sapphires ................................................... 75 General Montana ............................................................................................................75 Yogo ................................................................................................................................ 75 Southwestern Montana Alluvial Deposits........................................................................ 76 Specifi cally Rock Creek sapphire district ........................................................................ 76 Specifi cally Dry Cottonwood Creek deposit and the Butte area .................................... -
Contribution to the Mineralogy of Norway, No
Contribution to the mineralogy of Norway, No. 58 NORWE GIAN CHROM IAN UGRAND ITE-GAR NETS TORE PRESTVIK Prestvik, T.: Norwegian chromian ugrandite-garnets. Contribution to the miner alogy of Norway, No. 58. Norsk Geologisk Tidsskrift, Vol. 54, pp. 177-182. Oslo 1974. Chromian garnets from the Røros district and from the Oslo Region have been analysed chemically and were found to contain 61 and 44 % of the uvarovite molecule respectively. A new occurrence of chromian grossular is described from inclusions of the monzodiorite rocks in the Velfjorden area, Nordland. T. Prestvik, Geologisk institutt, Universitetet i Trondheim, 7034 Trondheim - NTH, Norway. Chromian garnets of the pyralspite solid-solution series occur in rocks which crystallized at high pressure. Such garnets have been described fr om peridotite in the Møre district (Hysingjord 1967, Carswell 1968). Uvarovite has been fo und only in two localities in Norway (Neumann 1959). The uvarovite fr om Rødtjern mine in the ultramafic rocks of Feragen of the Røros district has been known for a relatively long time, and good samples were found in the collections at both Mineralogisk-geologisk museum at Universitetet i Oslo and at Geologisk institutt at Universitetet i Trondheim. The uvarovite fr om Rødtjern has previously been analysed (Aars-Andersen 1907) and was then fo und to have a very high chromium content. Uvarovite from this locality has also been reported by Falck-Muus sen. (1957). The uvarovite from Kalkovnen, Grua in the Oslo Region, has not yet been described. The only sample known from this locality occurs in the collections of Mineralogisk-geologisk museum in Oslo. -
Mineral Collecting Sites in North Carolina by W
.'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami nation, survey, and mapping of the geology, mineralogy, and topo graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa tional Series, Geologic Maps, and Special Publications. -
Optical Properties of Common Rock-Forming Minerals
AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref. -
Mineral Inclusions in Four Arkansas Diamonds: Their Nature And
AmericanMineralogist, Volume 64, pages 1059-1062, 1979 Mineral inclusionsin four Arkansas diamonds:their nature and significance NnNrBr.r.B S. PeNrareo. M. Geny NBwroN. Susnennyuoe V. GocINENI, CsnRr-ns E. MELTON Department of Chemistry, University of Georgia eNo A. A. GnnoINI Department of Geology, University of Georgia Athens,Georgia 30602 Abstract Totally-enclosed inclusions recovered from four Arkansas diamonds by burning in air at 820" C are identified by XRD and Eoex analysesas: (l) enstatite,olivine, pyrrhotite + pent- landite, (2) eclogitic garnet, (3) enstatite+ peridotitic garnet + chromite, olivine + pyrrho- tite, pyrrhotite, pentlandite,pyrite + pyrrhotite, pentlandite * a nickel sulfide,(4) diamond, enstatite,magnetite. This is the first report of nickel sulfide in diamond. A review of in- clusionsfound in Arkansasdiamonds showsa similarity with those from world-wide local- ities, and indicatesa global consistencyin diamond-formingenvironments. Introduction opaque and transparent totally-enclosedinclusions were apparentunder binocular microscopeexamina- impermeable, Since diamonds are relatively inert, tion. The 0.45 ct. stone was colorlessand of elon- pre- and hard, inclusions therein are about as well gated rounded shapewith a highly polished surface. pro- served as they could possibly be. Their study Four inclusions were detected.The 0.50 ct. crystal wherein vides entghtment about the environment was a colorlessrounded tetrahexahedronwith a diamondsformed. cleavageplane on one sideand containedtransparent A considerable literature exists on diamond in- and opaque inclusions. The 0.62 ct. diamond was Afri- clusions,but most of it dealswith diamondsof also colorlessand of rounded tetrahexahedralform. can, Siberian, and South American origin (e.9., Severalrelatively large flat opaque inclusions ("car- Meyer and Tsai, 1976;Mitchell and Giardtni,1977; bon spots") were observed.All the diamonds were Orlov, 1977).ln all, about thirty minerals have been free ofdetectable surfacecleavage cracks. -
A PROPOSED NEW CLASSIFICATION for GEM-QUALITY GARNETS by Carol M
A PROPOSED NEW CLASSIFICATION FOR GEM-QUALITY GARNETS By Carol M. Stockton and D. Vincent Manson Existing methods of classifying garnets ver the past two decades, the discovery of new types have proved to be inadequate to deal with 0 of garnets in East Africa has led to a realization that some new types of garnets discovered garnet classification systems based on the early work of recently. A new classification system based gemologists such as B. W. Anderson are no longer entirely on the chemical analysis of more than 500 satisfactory. This article proposes a new system of classifi- gem garnets is proposed for use in gemology. cation, derived from chemical data on a large collection of Chemical, optical, and physical data for a transparent gem-quality garnets, that requires only representative collection of 202 transparent gemquality stones are summarized. Eight determination of refractive index, color, and spectral fea- garnet species arc defined-gross~~lar, tures to classify a given garnet. Thus, the jeweler- andradite, pyrope, pyrope-almandine, gemologist familiar with standard gem-testing techniques almandine~almandine-spessartine, can readily and correctly characterize virtually any garnet spessartine, and pyrope-spessartine-and he or she may encounter, and place it within one of eight methods of identification are described. rigorously defined gem species: grossular, andradite, Properties that can be determined with pyrope, pyrope-almandine, almandine, almandine-spes- standard gem-testing equipment sartine, spessartine, and pyrope-spessartine. Several varie- (specifically, refractive index, color, and tal categories (e.g., tsavorite, chrome pyrope, rhodolite, absorption spectrum) can be used to and malaia*) are also defined. -
Minerals Found in Michigan Listed by County
Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee, -
And Almandine-Rich Garnets to 11 Gpa by Brillouin Scattering
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, B10210, doi:10.1029/2004JB003081, 2004 Single-crystal elasticity of grossular- and almandine-rich garnets to 11 GPa by Brillouin scattering Fuming Jiang, Sergio Speziale, and Thomas S. Duffy Department of Geosciences, Princeton University, Princeton, New Jersey, USA Received 11 March 2004; revised 23 June 2004; accepted 2 August 2004; published 28 October 2004. [1] The high-pressure elasticity of grossular-rich Grs87And9Pyp2Alm2 and almandine- rich Alm72Pyp20Sps3Grs3And2 natural garnet single crystals were determined by Brillouin scattering to 11 GPa in a diamond anvil cell. The experiments were carried out using a 16:3:1 methanol-ethanol water mixture as pressure medium. The aggregate moduli as well as their pressure derivatives were obtained by fitting the data to Eulerian finite strain equations. The inversion yields KS0 = 165.0 ± 0.9 GPa, G0 = 104.2 ± 0.3 GPa, (@KS/@P)T0 = 3.8 ± 0.2, and (@G/@P)0 = 1.1 ± 0.1 for the grossular-rich composition and KS0 = 174.9 ± 1.6 GPa, G0 = 95.6 ± 0.5 GPa, (@KS/@P)T0 = 4.7 ± 0.3, and (@G/@P)0 = 1.4 ± 0.1 for the almandine-rich garnet. Both individual and aggregate elastic moduli of the two garnets define nearly linear modulus pressure trends. The elastic anisotropy of the garnets increases weakly in magnitude with compression. Isothermal compression curves derived from our results are generally consistent with static compression data under hydrostatic conditions, and the effects of nonhydrostaticity on previous diffraction data can be identified. The pressure derivatives obtained here are generally lower than those reported in high-pressure polycrystalline ultrasonic elasticity studies. -
Victorian Almandine Garnet Pendant, PT-3044 Pearls Dance Around An
Victorian Almandine Garnet Pendant, PT-3044 Pearls dance around an oval cabochon cut almondine garnet in this vintage pendant with tassels. 15k yellow gold tassels drip from this vintage jewelry piece like a shimmering comet shooting through the sky. Lending to this celestial theme is an oval cabochon almandine garnet that is topped with a diamond-studded star. The seven rose and old mine cut diamonds that accent the star total 0.11 carats. Twenty-seven spherical natural half pearls gleam around the Victorian garnet like a crescent moon. This vintage pendant is circa 1870 Item # pt3044 Metal 15k yellow gold Circa 1870 Weight in grams 12.93 Period or Style Victorian Special characteristics This hand wrought Victorian pendant features rose and mine cut diamonds which are bead set in a star shaped plate applied atop the garnet. The bail is set with 3 pearls. Thirteen tassels hang from the base. At one time a locket of hair was held in place on the back. Condition Very Good Diamond cut or shape rose Diamond carat weight 0.03 Diamond mm measurements 1.4 Diamond color G to H Diamond clarity VS2 to I1 Diamond # of stones 6 Diamond2 cut or shape old mine cut Diamond2 carat weight 0.08 Diamond2 mm measurements 2.7 Diamond2 color I Diamond2 clarity SI1 Diamond2 # of stones 1 Gemstone name Almandite Garnet Gemstone cut or shape oval cabachon Gemstone mm measurements 20.3 x 14.9 Gemstone type Type II Gemstone clarity SI2 Gemstone hue very slightly orange red Gemstone tone 6-Medium Dark Gemstone saturation 5-Strong Gemstone # of stones 1 Gemstone other