Mineral Chemistry and Genetic Implications of Garnet from the São João Del Rei Pegmatitic Province, Minas Gerais, Brazil

Total Page:16

File Type:pdf, Size:1020Kb

Mineral Chemistry and Genetic Implications of Garnet from the São João Del Rei Pegmatitic Province, Minas Gerais, Brazil SILEIR RA A D B E E G D E A O D L E O I G C I A O ARTICLE BJGEO S https://doi.org/10.1590/2317-4889202120190136 Brazilian Journal of Geology D ESDE 1946 Mineral chemistry and genetic implications of garnet from the São João del Rei Pegmatitic Province, Minas Gerais, Brazil Sarah Siqueira da Cruz Guimarães Sousa1,2* , Ciro Alexandre Ávila1,2,3 , Reiner Neumann3,4 , Fabiano Richard Leite Faulstich2,3 , Felipe Emerson André Alves1 , Taís Proença Cidade3,4 , Victor Hugo Riboura Menezes da Silva1 Abstract The pegmatites of the São João del Rei Pegmatitic Province are related to the Siderian protoliths of the Cassiterita and Resende Costa or- thogneisses and to the Ritápolis metagranitoid of Ryacian age. Chemical analysis of garnet from twelve pegmatites reveal two different types of grains, which were found in the same pegmatitic body in six of these samples. One garnet type has almandine-spessartine composition (Sps11.7-58.8Alm36.8-86.5Prp0.1-4.1Grs0.0-1.4Adr0.0-2.6), grains with orange and pink tones, and scarce mineral inclusions. These garnet grains may have been formed at the magmatic stage of pegmatite crystallization. The composition of these grains plot exclusively on the Alm-Sps axis at the Prp+Grs+Adr+Uvr × Alm × Sps diagram, as expected from garnet crystallized in pegmatites, and an expansion of the field associated to pegmatites is proposed. The second type has a distinct chemical composition (Sps26.9-84.8Alm3.6-40.0Prp0.0-10.4Grs9.3-45.6Adr0.1-3.4), displaying en- richment in Ca. This Ca-enriched garnet has irregular shaped colourless grains and abundant mineral inclusions. These grains may have been formed by Ca-metasomatism during the late-stage crystallization of the pegmatites. KEYWORDS: almandine-spessartine; Ca-enriched garnet; pegmatite; Ca-metasomatism. INTRODUCTION Garnet is a common accessory mineral in igneous and The garnet supergroup includes all isostructural minerals metamorphic rocks (Vennum and Meyer 1979, Baldwin and represented by the general chemical formula {X3} [Y2] (Z3) Φ12, von Knorring 1983, Harrison 1988, Whitworth and Feely where X, Y, and Z stand for the 12-fold, 8-fold and 4-fold coor- 1994, Gulbin and Glazov 2013), whose composition may dination sites, respectively, while Φ is filled with anions such as vary according to the pressure and temperature conditions O2-, OH- or F-. This supergroup has been subdivided into five that they underwent (Green 1977, Deer et al. 1992). In peg- groups (henritermierite, bitikleite, schorlomite, berzeliite, and matites, garnet crystals are predominantly spessartine-rich garnet) based on symmetry and total charge at the Z site (Grew with subordinate almandine (London 2008). The relation et al. 2013). The isometric garnet group, with a total charge at between Fe and Mn contents is a useful indicator of frac- Z of 12 (occupied by Si4+), have the X-site occupied preferably tionation trends in pegmatites and varies in relation to the by Fe2+, Mn2+, Mg2+, Ca2+ and the Y site by Fe3+, Al3+, and Cr3+ depth of crystallization and position within individual zoned (Fig. 1). According to these occupancies, the endmembers bodies (Baldwin and von Knorring 1983, Černý et al. 1985, pyrope (Mg2+, Al3+), grossular (Ca2+, Al3+), spessartine (Mn2+, Sokolov and Khlestov 1989). Spessartine-rich garnet is mostly Al3+), almandine (Fe2+, Al3+), uvarovite (Ca2+, Cr3+), and andra- found in evolved pegmatites of the LCT family (Li-Cs-Ta), dite (Ca2+, Fe3+) can be formed (Grew et al. 2013). while almandine-rich component is common in granites and less evolved pegmatites (Baldwin and von Knorring 1983, London 2008). Although being an unusual composi- 1Programa de Pós-Graduação em Geologia, Universidade Federal do Rio de tion for pegmatites, garnet with enrichment in Ca have been Janeiro – Rio de Janeiro (RJ), Brazil. E-mails: [email protected], avila@ reported worldwide (Novák et al. 2013, Burival and Novák mn.ufrj.br, [email protected], [email protected] 2018, Tindle et al. 2005, Pieczka et al. 2019), but until now, 2Departamento de Geologia e Paleontologia, Museu Nacional, Universidade Federal do Rio de Janeiro – Rio de Janeiro (RJ), Brazil. garnet with this composition has not been described in the E-mail: [email protected] São João del Rei Pegmatitic Province. 3Programa de Pós-Graduação em Geociências, Museu Nacional, Except for the pegmatites exploited at the Volta Grande Universidade Federal do Rio de Janeiro – Rio de Janeiro (RJ), Brazil. Mine, which are fresh, all pegmatites mapped are deeply weath- E-mails: [email protected], [email protected] ered, and the resistant accessory minerals are remains of the 4Centro de Tecnologia Mineral – Rio de Janeiro (RJ), Brazil. original mineralogy. The main goal of this work is to report *Corresponding author. the occurrence of garnet grains of typical chemical compo- © 2020 The authors. This is an open access article distributed sition (Alm-Sps) and garnet grains with enrichment of Ca in under the terms of the Creative Commons license. different weathered pegmatitic bodies of the São João del Rei 1 Braz. J. Geol. (2021), 51(1): e20190136 Pegmatitic Province. The chemical composition of these gar- volcanic-subvolcanic components, and is delimited to the north net types is used here to understand the conditions of forma- by the Lenheiro shear zone, to the east by the rocks associated tion of these grains and, subsequently, to establish a relation with the Mantiqueira Complex, and to the South it is covered with the petrogenesis of the pegmatites. by the meso- to neoproterozoic successions (Ávila et al. 2014). The pegmatites from the São João del Rei Pegmatitic Province are limited to the North block, occur spatially associated with GEOLOGICAL CONTEXT OF THE SÃO the Cassiterita, Resende Costa and Ritápolis arcs, and were JOÃO DEL REI PEGMATITIC PROVINCE genetically related to the plutons of these arcs (Tab. 1). The São João del Rei Pegmatitic Province is a swarm of The Cassiterita Arc was formed during the Siderian and is pegmatitic bodies with variable thicknesses and diverse min- represented by the Cassiterita Orthogneiss and coeval rocks, eralogy, where part is mineralized in Sn-Nb-Ta (Pereira et al. which present high Na2O and low K2O contents (Barbosa 2004). This province occupies an area of approximately 2,700 et al. 2019). The pegmatites associated to the Cassiterita km2, located at the southern border of the São Francisco Craton, Orthogneiss are 2,489 ± 10 Ma old (Tab. 1), and miner- within the Mineiro Belt in Southeastern Brazil (Fig. 2). alized in xenotime, monazite, and microlite while cassiter- The Mineiro Belt corresponds to the junction of four mag- ite, gahnite, and columbite group minerals have not been matic arcs, designated as Cassiterita, Resende Costa, Serrinha, reported (Faulstich 2016). and Ritápolis (Araújo et al. 2019). The Cassiterita, Resende The Resende Costa Arc evolved during the Siderian and Costa, and Serrinha arcs are mantle-derived, with restricted includes the Restinga de Baixo and Congonhas-Itaverava presence of crustal material and assembled by collisional pro- metavolcano-sedimentary sequences, as well as the Resende cesses (Ávila et al. 2010, Ávila et al. 2014, Barbosa et al. 2015, Costa and Lagoa Dourada suites. The rocks of these suites vary Teixeira et al. 2015, Cardoso et al. 2019). These arcs are delim- from tonalitic to granodioritic in composition and exhibit high ited by extensive structural magnetic lineaments and the final Na2O content (Teixeira et al. 2015). The pegmatites associated assembly, including the predominantly crustal Ritápolis Arc, with the Resende Costa Orthogneiss have been dated by U-Pb was added to the Archean paleocontinent during the interval LA-ICPMS in zircon between 2,367 ± 64 and 2,291 ± 23 Ma between the end of the Rhyacian and the beginning of the (Tab. 1), and are mineralized in cassiterite, microlite, gahnite, Orosirian (Araújo et al. 2019). and columbite group minerals (Tab. 2), as well as a diagnostic Nb-Ta-Ti phases intergrowth (Cidade 2019). The Serrinha Arc, evolved during the Rhyacian, has sub- MINEIRO BELT ARCS AND ITS PEGMATITES volcanic-volcanic components, and includes the São Sebastião The Mineiro Belt was subdivided into North and South da Vitória metagabbro, Serrinha and Tiradentes suites and the blocks (Ávila 2000, Ávila et al. 2014), which are separated by Estação de Tiradentes metasedimentary sequence (Ávila et al. a large crustal structure, designated as Lenheiro shear zone 2014). The Nazareno metavolcano-sedimentary sequence (Fig. 2). The North block includes the Cassiterita, Resende occurs associated to these units, represented by amphibolites, Costa, and Ritápolis arcs. It is delimited by the Congonhas- metaultramafic, and metasedimentary rocks (Ávilaet al . 2012). Itaverava shear zone to the east, the Lenheiro shear zone to the Intrusive pegmatites are very scarce in these rocks. south, and Jeceaba-Bom Sucesso lineament to the north (Ávila The Ritápolis Arc is the youngest one, it evolved during et al. 2010, Seixas et al. 2012, Teixeira et al. 2015, Araújo et al. the Rhyacian and is represented by orthogneisses with dioritic 2019). The South block bears only the Serrinha Arc with its to granitic compositions, metadiorites, and metagranitoids. Figure 1. Garnet structure projected along (001) with the element’s occupancy for each atomic site (Grew et al. 2013). 2 Braz. J. Geol. (2021), 51(1): e20190136 These bodies are calc-alkaline and range from metalumi- MATERIALS AND METHODS nous to peraluminous (Ávila 2000, Barbosa et al. 2015, Cardoso et al. 2019). The pegmatitic bodies are mineralized Sampling and preparation in cassiterite, columbite group minerals, pyrochlore super- Approximately 20 kg of saprolitic material was sampled group minerals, xenotime, gahnite, and monazite (Tab. 2) from each pegmatite intrusive into different host rocks (Fig. 3) with U-Pb LA-ICPMS age in zircon between 2,129 ± 33 and manually preprocessed in local streams.
Recommended publications
  • How to Identify Rocks and Minerals
    How to Identify Rocks and Minerals fluorite calcite epidote quartz gypsum pyrite copper fluorite galena By Jan C. Rasmussen (Revised from a booklet by Susan Celestian) 2012 Donations for reproduction from: Freeport McMoRan Copper & Gold Foundation Friends of the Arizona Mining & Mineral Museum Wickenburg Gem & Mineral Society www.janrasmussen.com ii NUMERICAL LIST OF ROCKS & MINERALS IN KIT See final pages of book for color photographs of rocks and minerals. MINERALS: IGNEOUS ROCKS: 1 Talc 2 Gypsum 50 Apache Tear 3 Calcite 51 Basalt 4 Fluorite 52 Pumice 5 Apatite* 53 Perlite 6 Orthoclase (feldspar group) 54 Obsidian 7 Quartz 55 Tuff 8 Topaz* 56 Rhyolite 9 Corundum* 57 Granite 10 Diamond* 11 Chrysocolla (blue) 12 Azurite (dark blue) METAMORPHIC ROCKS: 13 Quartz, var. chalcedony 14 Chalcopyrite (brassy) 60 Quartzite* 15 Barite 61 Schist 16 Galena (metallic) 62 Marble 17 Hematite 63 Slate* 18 Garnet 64 Gneiss 19 Magnetite 65 Metaconglomerate* 20 Serpentine 66 Phyllite 21 Malachite (green) (20) (Serpentinite)* 22 Muscovite (mica group) 23 Bornite (peacock tarnish) 24 Halite (table salt) SEDIMENTARY ROCKS: 25 Cuprite 26 Limonite (Goethite) 70 Sandstone 27 Pyrite (brassy) 71 Limestone 28 Peridot 72 Travertine (onyx) 29 Gold* 73 Conglomerate 30 Copper (refined) 74 Breccia 31 Glauberite pseudomorph 75 Shale 32 Sulfur 76 Silicified Wood 33 Quartz, var. rose (Quartz, var. chert) 34 Quartz, var. amethyst 77 Coal 35 Hornblende* 78 Diatomite 36 Tourmaline* 37 Graphite* 38 Sphalerite* *= not generally in kits. Minerals numbered 39 Biotite* 8-10, 25, 29, 35-40 are listed for information 40 Dolomite* only. www.janrasmussen.com iii ALPHABETICAL LIST OF ROCKS & MINERALS IN KIT See final pages of book for color photographs of rocks and minerals.
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Geology Club Mineral: Collecting Trip
    Geology Club: Mineral Collecting Trip (10 October 2009) Trip Notes by Charles Merguerian STOP 1 – Grossular Garnet Locality, West Redding, Connecticut. [UTM Coordinates: 630.71E / 4575.38N, Bethel quadrangle]. Covering roughly 60 acres of land, this enigmatic massive fine-grained grossularite garnet + diopside rock in West Redding has made many mineral collectors and geologists take notice. Walk up the steep slope east of Simpaug Turnpike to see highly fractured, massive cinnamon-colored grossular garnet rock, part of a 0.6-km wide heart-shaped mass found at the faulted contact between the Stockbridge Marble (OCs) and injected muscovitic schist of the Rowe Schist member (OCr) of the Hartland Formation (Figure 1). According to Rodgers et al. (1985), we are very near Cameron’s Line (red and black line in Figure 1). Figure 1 – Geologic map of the area surrounding Stop 1 showing the Proterozoic gneissic rocks (Yg) and Cambrian Dalton Schist (Cd) to the west, the Stockbridge Marble (OCs), Cameron’s Line (CL in red), the injected schistose rocks of the Rowe Formation (OCr), and an Ordovician granitoid (Og) that may be responsible for this unusual Ca++-enriched skarn deposit. Note the NW-trending high-angle brittle faults that cut the region. (Adapted from Rodgers et al. 1985.) Two knolls at this locality are almost entirely composed of grossularite garnet (var. essonite) and lesser clinopyroxene. Mostly the garnet occurs alone with minor quartz and localized quartz veining has been observed. Chemical analysis of the garnet (SiO2 = 39.10%, CaO = 34.85%, Al2O3 = 19.61%, and total FeO+Fe2O3 = 5.44%), are quite similar to published analyses of grossular garnet, including the phenomenal grossular garnet crystals from Morelos, Mexico.
    [Show full text]
  • ECONOMIC GEOLOGY RESEARCH INSTITUTE HUGH ALLSOPP LABORATORY University of the Witwatersrand Johannesburg
    ECONOMIC GEOLOGY RESEARCH INSTITUTE HUGH ALLSOPP LABORATORY University of the Witwatersrand Johannesburg CHROMITITES OF THE BUSHVELD COMPLEX- PROCESS OF FORMATION AND PGE ENRICHMENT J.A. KINNAIRD, F.J. KRUGER, P.A.M. NEX and R.G. CAWTHORN INFORMATION CIRCULAR No. 369 UNIVERSITY OF THE WITWATERSRAND JOHANNESBURG CHROMITITES OF THE BUSHVELD COMPLEX – PROCESSES OF FORMATION AND PGE ENRICHMENT by J. A. KINNAIRD, F. J. KRUGER, P.A. M. NEX AND R.G. CAWTHORN (Department of Geology, School of Geosciences, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, Johannesburg, South Africa) ECONOMIC GEOLOGY RESEARCH INSTITUTE INFORMATION CIRCULAR No. 369 December, 2002 CHROMITITES OF THE BUSHVELD COMPLEX – PROCESSES OF FORMATION AND PGE ENRICHMENT ABSTRACT The mafic layered suite of the 2.05 Ga old Bushveld Complex hosts a number of substantial PGE-bearing chromitite layers, including the UG2, within the Critical Zone, together with thin chromitite stringers of the platinum-bearing Merensky Reef. Until 1982, only the Merensky Reef was mined for platinum although it has long been known that chromitites also host platinum group minerals. Three groups of chromitites occur: a Lower Group of up to seven major layers hosted in feldspathic pyroxenite; a Middle Group with four layers hosted by feldspathic pyroxenite or norite; and an Upper Group usually of two chromitite packages, hosted in pyroxenite, norite or anorthosite. There is a systematic chemical variation from bottom to top chromitite layers, in terms of Cr : Fe ratios and the abundance and proportion of PGE’s. Although all the chromitites are enriched in PGE’s relative to the host rocks, the Upper Group 2 layer (UG2) shows the highest concentration.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • BOLETIM EPIDEMIOLÓGICO COVID-19: Doença Causada Pelo Coronavírus – 19
    BOLETIM EPIDEMIOLÓGICO COVID-19: Doença causada pelo coronavírus – 19 quarta-feira, 5 de maio de 2021 CENÁRIO EM MINAS GERAIS - COVID-19 CORONAVÍRUS Total de Casos Confirmados Casos em Acompanhamento Casos Recuperados Óbitos Confirmados 1.387.809 73.932 1.279.040 34.837 Fonte: Painel COVID-19 MG/Sala de Situação/SubVS/SES/MG. Dados parciais, sujeitos a alterações. TOTAL DE CASOS CONFIRMADOS: soma dos casos confirmados que não evoluíram para óbito e dos óbitos confirmados por COVID-19. CASOS RECUPERADOS: casos confirmados de COVID-19 que receberam alta hospitalar e/ou cumpriram isolamento domiciliar de 10 dias E estão há 72h assintomáticos (sem a utilização de medicamentos sintomáticos) E sem intercorrências. CASOS EM ACOMPANHAMENTO: casos confirmados de COVID-19 que não evoluíram para óbito, cuja condição clínica permanece sendo acompanhada ou aguarda atualização pelos municípios. ÓBITOS CONFIRMADOS: óbitos confirmados para COVID-19. Nº de Casos Confirmados nas Últimas 24h Nº de Óbitos Confirmados nas Últimas 24h 9.264 441 Observação: o “número de casos e óbitos confirmados nas últimas 24h” pode não retratar a ocorrência de novos casos no período, mas o total de casos notificados à SES/MG nas últimas 24h. / PERFIL EPIDEMIOLÓGICO DOS CASOS CONFIRMADOS DE COVID-19 QUE NÃO EVOLUÍRAM PARA ÓBITO, MG, 2020 Quantidade de Casos por Sexo Apresenta Fator de Risco (Comorbidade*) Quantidade de casos por Faixa Etária SIM 7% NÃO 7% <1ANO 0,7% MASCULINO Média de Idade dos Casos 48% 1 A 9 ANOS 2,4% Confirmados: 42 anos 10 A 19 ANOS 5,5% 20 A 29 ANOS 17,8% 30 A 39 ANOS 22,5% 40 A 49 ANOS 18,9% FEMININO 50 A 59 ANOS 14,7% 52% NÃO INFORMADO 86% 60 ANOS OU MAIS 17,3% *Dados parciais, aguardando atualização dos municípios.
    [Show full text]
  • Trabalho De Conclusão De Curso
    UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS DEPARTAMENTO DE GEOLOGIA TRABALHO DE CONCLUSÃO DE CURSO ASPECTOS GEOLÓGICOS E METALOGENÉTICOS AO LONGO DO LINEAMENTO CONGONHAS-ITAVERAVA, CINTURÃO MINEIRO Matheus Gonçalves Teixeira MONOGRAFIA no 348 Ouro Preto, dezembro de 2019 ASPECTOS GEOLÓGICOS E METALOGENÉTICOS AO LONGO DO LINEAMENTO CONGONHAS-ITAVERAVA, CINTURÃO MINEIRO i ii FUNDAÇÃO UNIVERSIDADE FEDERAL DE OURO PRETO Reitora Prof.ª Dr.ª Cláudia Aparecida Marliére de Lima Vice-Reitor Prof. Dr. Hermínio Arias Nalini Júnior Pró-Reitora de Graduação Prof.ª Dr.ª Tânia Rossi Garbin ESCOLA DE MINAS Diretor Prof. Dr. Issamu Endo Vice-Diretor Prof. Dr. Hernani Mota de Lima DEPARTAMENTO DE GEOLOGIA Chefe Prof. MSc. Edison Tazava iii iv MONOGRAFIA Nº 348 ASPECTOS GEOLÓGICOS E METALOGENÉTICOS AO LONGO DO LINEAMENTO CONGONHAS-ITAVERAVA, CINTURÃO MINEIRO Matheus Gonçalves Teixeira Orientador Prof. Dr. Gustavo Henrique Coelho de Melo Co-Orientador MSc. Marcelo Souza Marinho Monografia do Trabalho de Conclusão de curso apresentado ao Departamento de Geologia da Escola de Minas da Universidade Federal de Ouro Preto como requisito parcial para avaliação da disciplina Trabalho de Conclusão de Curso – TCC 402, ano 2019/2. OURO PRETO 2019 v SISBIN - SISTEMA DE BIBLIOTECAS E INFORMAÇÃO T266a Teixeira, Matheus Gonçalves . Aspectos geológicos e metalogenéticos ao longo do lineamento Congonhas- Itaverava, Cinturão Mineiro. [manuscrito] / Matheus Gonçalves Teixeira. - 2020. 60 f.: il.: color., tab.. Orientador: Prof. Dr. Gustavo Henrique Coelho de Melo. Coorientador: Prof. Me. Marcelo de Souza Marinho. Monografia (Bacharelado). Universidade Federal de Ouro Preto. Escola de Minas. 1. Petrografia. 2. Metalogênese. 3. Alteração hidrotermal. I. Marinho, Marcelo de Souza. II. Melo, Gustavo Henrique Coelho de.
    [Show full text]
  • Maine the Way Life Should Be. Mineral Collecting
    MAINE The Way Life Should Be. Mineral Collecting The Maine Publicity Bureau, Inc. Quarries You May Visit # 1 Topsham: The Fisher Quarry is located off Route 24 in Topsham. This locale is best known for crystals of topaz, green microlite, and dark blue tourmaline. It has also produced other minerals such as beryl, uraninite and cassiterite. #2 Machiasport: At an area known as Jasper Beach there is an abundance of vari-colored jasper and/or rhyolite specimens. Located on Route 92. #3 Buckfield: The Bennett Quarry, located between Buckfield and Paris Hill, has produced fine specimens of blue and pink beryl including some gem material. It is also known for crystals of quartz, green tourmaline and rare minerals. #4 Casco: The Chute Prospect is best known for vesuvianite. It is located east of Route 302-35. Crystals of “cinnamon” garnet, quartz and pyrite are also found here. #5 Georgetown: The Consolidated Feldspar Quarry has produced excel­ lent specimens of gem citrine quartz, tourmaline and spodumene. Rose Quartz, cookeite and garnet are also found. #6 Paris: Mount Mica is world famous for tourmaline and this gem material was discovered here in 1821. This is one of the most likely places for a collector to find tourmaline. Mount Mica has produced a host of other minerals including beryl, cookeite, black tourmaline, colum- bite, lepidolite and garnet. (Currently being mined) #7 Greenwood: The Tamminen Quarry and the Harvard Quarry, both located near Route 219, have produced an interesting variety of miner­ als. The Tamminen Quarry is best known for pseudo-cubic quartz crystals, montmorillonite, spodumene and garnet.
    [Show full text]
  • Pedro Queiroz LEITE
    Anais II Encontro Nacional de Estudos da Imagem 12, 13 e 14 de maio de 2009 Londrina-PR IMAGEM PEREGRINA: A SOBREVIVÊNCIA DE UMA ESTAMPA ENTRE INS DO SÉCULO XVIII E MEADOS DO XIX. Leite, Pedro Queiroz1 - [email protected] Resumo: A circulação de estampas publicadas em livros e utilizadas como modelos pela pintura brasileira colonial, como um todo, e de Minas Gerais, em específico, é um fato bastante conhecido. Neste trabalho, procuraremos demonstrar como tal procedimento era capaz de extrapolar o século XVIII e ter se estendido já pelo XIX , como se pode verificar por uma estampa de um missal de 1860 e por uma pintura de forro dos anos de 1810-1820, localizada na Igreja Matriz de S. Antônio, em Itaverava, MG.Palavras-chave: missais; estampas; Igreja Matriz de S. Antônio de Itaverava, MG. Abstract: The circulation of etchings published in books and used as models for the Brazilian colonial painting as a whole, and of Minas Gerais, in particular, is a well known fact. In this work, we demonstrate how this procedure was able to extrapolate the eighteenth century and have been extended since the nineteenth, as shown by a picture of a missal of 1860 and a ceiling painting of the years of 1810-1820, located in the Mother Church of Santo Antônio, in Itaverava, MG. Keywords: missals; etchings; Mother Church of Santo Antônio of Itaverava, MG. O Trato das imagens Desde a precursora investigação promovida por Hannah Levy (LEVY, 1944: 7-66), voltada à influência das estampas contidas na célebre Bíblia de Demarne na pintura de Manuel da Costa Ataíde, vários estudiosos (BOHRER, 2005: 297-310; SANTIAGO, 2005: 385-400; dentre os que mais recentemente tem tratado do tema) se debruçaram sobre esta importante questão: identificar as estampas emuladas pelo artista marianense em sua obra, uma prática comum já no Renascimento (ARGAN, 2004: 16-21) que perdurou até o século XVIII.
    [Show full text]
  • Contribution to the Mineralogy of Norway, No
    Contribution to the mineralogy of Norway, No. 58 NORWE GIAN CHROM IAN UGRAND ITE-GAR NETS TORE PRESTVIK Prestvik, T.: Norwegian chromian ugrandite-garnets. Contribution to the miner­ alogy of Norway, No. 58. Norsk Geologisk Tidsskrift, Vol. 54, pp. 177-182. Oslo 1974. Chromian garnets from the Røros district and from the Oslo Region have been analysed chemically and were found to contain 61 and 44 % of the uvarovite molecule respectively. A new occurrence of chromian grossular is described from inclusions of the monzodiorite rocks in the Velfjorden area, Nordland. T. Prestvik, Geologisk institutt, Universitetet i Trondheim, 7034 Trondheim - NTH, Norway. Chromian garnets of the pyralspite solid-solution series occur in rocks which crystallized at high pressure. Such garnets have been described fr om peridotite in the Møre district (Hysingjord 1967, Carswell 1968). Uvarovite has been fo und only in two localities in Norway (Neumann 1959). The uvarovite fr om Rødtjern mine in the ultramafic rocks of Feragen of the Røros district has been known for a relatively long time, and good samples were found in the collections at both Mineralogisk-geologisk museum at Universitetet i Oslo and at Geologisk institutt at Universitetet i Trondheim. The uvarovite fr om Rødtjern has previously been analysed (Aars-Andersen 1907) and was then fo und to have a very high chromium content. Uvarovite from this locality has also been reported by Falck-Muus sen. (1957). The uvarovite from Kalkovnen, Grua in the Oslo Region, has not yet been described. The only sample known from this locality occurs in the collections of Mineralogisk-geologisk museum in Oslo.
    [Show full text]
  • Governo Do Estado De Minas Gerais
    GOVERNO DO ESTADO DE MINAS GERAIS 1 SECRETARIA DE ESTADO DA SAÚDE Minas: Aqui se constrói um país GOVERNO DO ESTADO DE MINAS GERAIS SECRETARIA DE ESTADO DA SAÚDE CONSELHO ESTADUAL DE SAÚDE COLEGIADO DE SECRETARIOS MUNICIPAIS DE SAÚDE DE MINAS GERAIS – COSEMS-MG PLANO DIRETOR DE REGIONALIZAÇÃO 2001 / 2004 REGIONALIZAÇÃO COM HIERARQUIZAÇÃO MINAS GERAIS – 2002 GOVERNO DO ESTADO DE MINAS GERAIS 2 SECRETARIA DE ESTADO DA SAÚDE Minas: Aqui se constrói um país GAL. CARLOS PATRÍCIO FREITAS PEREIRA SECRETÁRIO DE ESTADO DA SAÚDE DR. LUIS MÁRCIO ARAÚJO RAMOS SECRETÁRIO ADJUNTO DE SAÚDE DR. HÉLIO SALVADOR ARÊAS ASSESSOR TÉCNICO DRA. MARIA AUXILIADORA SALLES GONÇALVES SUPERINTENDENTE DE PLANEJAMENTO E COORDENAÇÃO DR. ADILSON ANTÔNIO DA SILVA STOLET SUPERINTENDENTE OPERACIONAL DE SAÚDE COMISSÃO DE ELABORAÇÃO DO PLANO DIRETOR DE REGIONALIZAÇÃO COORDENAÇÃO CENTRAL IVÊTA MALACHIAS DIRETORA DE PLANEJAMENTO DA SUPERINTENDENCIA DE PLANEJAMENTO E COORDENAÇÃO DRA. MYRIAM ARAÚJO COELHO TIBÚRCIO PRESIDENTE DO COLEGIADO DE SECRETARIOS MUNICIPAIS DE SAÚDE DE MINAS GERAIS PAULO TAVARES ASSESSOR TÉCNICO DA DIRETORIA DE REDES ASSISTENCIAIS DE SAÚDE DA SUPERINTENDENTE OPERACIONAL DE SAÚDE INSTITUIÇÕES PARTICIPANTES CONSELHO ESTADUAL DE SAÚDE REPRESENTAÇÃO DE CONSELHOS MUNICIPAIS DE SAÚDE DIRETORIAS REGIONAIS DE SAÚDE SECRETARIAS MUNICIPAIS DE SAÚDE GOVERNO DO ESTADO DE MINAS GERAIS 3 SECRETARIA DE ESTADO DA SAÚDE Minas: Aqui se constrói um país EQUIPE TÉCNICA RESPONSÁVEL MARIA AUXILIADORA DA SILVA PINTO ANA SIMÔA DE ALMEIDA MARCONI PEREIRA COSTA JOSE JOAQUIM ROCHA VIEIRA MILTON DE SIQUEIRA DRA. CATARINA DEMÉTRIO HELOISA JOSEFINA BUENO OSVALDO K. DE OLIVEIRA SURAIME PIMENTEL HÉLIO HAMILTON GOVERNO DO ESTADO DE MINAS GERAIS 4 SECRETARIA DE ESTADO DA SAÚDE Minas: Aqui se constrói um país SUMÁRIO 1.
    [Show full text]