19730014050.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

19730014050.Pdf - " " / ' . ' ' " . ; ' '>- · " ' . " >"":>, ' : .... ~'~':ff-;~-"S~,.~-'. 'iLls::c~,~ ~ V ?, ~ ' ..... ~,,' N.' /.~ " -'; .... ~.,- '-,.XZ_: ~ ~ ....~ ,. .. ~,~ /~ 'J.X~:-' :CC. ~ ~\\<%~w ? ', "" , {/~"' ~.~' .4~, /~.~, .,1, .~/' ~<~. _ . '.\ .' --~ ~ ~ • ~ ~ ' ~ ' -' ~':'% -~-~-- ',~/'z.~'~"i -- - .. i ~.?,/ ..... r~-v.~ .,. .~',-~.~..~.~ .-, ....... ...... --~ ~.... ~-4:. -~i:'~> V .::*-:[~ ::~ ,:~,' ~ ,, - n. -, ....... - . -~-~ ~ :%_~ '~x ~..-~ ~. k:~---~.~::- -' .~ ~,,,L~, _ . ..< ..............., :,. >: O? . :.~... ,,~>...,-: . .<::~:,:C.~/;?; ~:. .. , : w-:. ~:.~,~ ~_, ?: %:,,_~. ..~ t.,. ~ · . .~' _ / _- .,~: ~ ~...~.~. , ~.,~.. - "'~' ~ '"~-~ ""' '" ~+'~-'- ~'- "~ ""' """~ -+,~' ' .. ~:~t~. _. ,,x~ ~ ~ '..'"~, ~-~ ) :": T~ .,:~.' ~" ~ ,x / ~' -'" '~ ~ '~.~ - ~' ~Iz2' ' > ~V' ~.:..jz V- ' ~- ,,', ' -.'~' ' ~-~... ,~J~..' ,~ . ,7 ,. ~ ~.,~.. , ,_.. , .,:, ·. , ,.~ t .... :,~ 5~;Z ~-' ' I~ '~.,,,~,4w'~"~x~~ ~ ~"-~?z. ."<'- -- ~-..'T~.I._Q~_.W'£>,,-41-~: '.-~':< '%T'Z-~'~'- ,~ ~" .Z: ' "7 ~ _, ' , :":~-'~ ~,'x~:z¢ . ~x'.5.-. ... ~.. 'o'.---,~'._: '~-'tt ,~ -"~ ~;c~-? ', 4~/_':.% (- ~,-<-: u:';.... ~. ' ~ %. 'x _, . ~ t~ , t ~:. _ \ ..... i~ /,>( %. .~. .. -' -> - , - ~- , . t...,---~=x-- Z~ , , · ~. .~,:...~. '~ ',-.~." v; , /:'. ~...--,-' · · w.v'.v ~:~..,- .~, ~, '~' .1~5-~ ,' ~ . ~ ~ :'~,-.Q.~.~..7'~ ~ /}~ , ..... ~, ~...< ,-.':~. ~, ,'-~, '; ,~ ~ ~.~r : j,~..,./ ~'.V,~.' .. ~ '~ '.t.~, F ° " ? "~,>~'\'%:' ':- C2~f ,i~',%2 ~";-'~'~ZS:~* ,q~.~ '-'X:~',4"'-:"'" -/IC C"-~'"~-,~ '/'e',-~ W'. .... ¢, L.. ,. - ..:. '-t -,' ' j-t,..t. 14~- Kevjsea, ~-u .° -, -~/.; L~4',overslon.l. - ':*::,°' ;' .>~%'? *~.[/'~',. .'.--L~:-':,. -LGn,~. "'~ ' -/~ . /. .,)( i,~,l ~{~' z,' ~ -~ '-~-.:-,,-C-..,~ , ,-~ -[?'<~ , -. ' b~-~5...,-. - %-,': ;.' ,_~* v- /( . .-. "~,~ '.., · - >,~:'-',.,. .- ~.-.-' % -/,.~ 5 ",'.. - '"-q: .'-~T;'.;<.'V% '--",' '- :,' ~-~..' :~ >--/~- ~. '-:~ 'o<. .- , .'~5 '4- ' .~t,): I~,/'-,.'. 3x F.- . .',. ',-,> ,' -d'~'" *~' "-f.--:-',e ,".~.. :.-P?~.~ '5:/. ' .X:,..~,-7--'/' "~'~ .~ ~ t-'_:>'.m-' ': _ 'r. ~ ' ': -v,~~ .*-,Y' I--'-'<'~'?- /X , {C-,~.'-~.%,, "~.'(."-~ ~- ~.._~'.p,~'~ ~-::-~ ,),':~ ',>~ L-~., S-.'/ --~.':-~4' -.-2'- f~ ~"' '. 7, ~% ['fl:;~'~"- '-_~.;,,-,.-,, ' .... ' "' '"~.... ' ...... '~-~:---"' '" '~": -'-'.:-.~-<- .,..-,,..'~7~, m~'.'.~ . )~..., ~ ,- . ,..~?' '/ '~"~-- -~-. ,.~_:., ./-.~> ~. .... ~", ~,, "' ~_ '" .,.~.,.,~ .. ;~..t.. ,:.~ .... , .~.. ~ ~-~., .......~. ~(.~~,~ ............. ~.. ,... .~- .~., ,_ , :~,,.,.~.~,/,,. 2> '-~, .... ..... ......... , . ,.~.~. ;~.>~ ~ ,>.c .... .~.~,.,.,.>~.,.,,:.~ < ' . ~: .--,,~,~ .: ,> ,,~.,~..,. · L'. ~>--' .. · ., .: .*. -~.~.~..~ , z.. ' ~ . --. ~ .. - , . : ~ ,. ~.' q~' .~ ~ ,.~ - ._ . .. .. ,:.~ ~';.~;f%..... -.. ,~ _., - ~'.,, -.......... , .'~ .,.%..... ~,.-,., ,~ -..,-,.¢. ......... .. ...._. ~.~~ ~'r , ~~-~v_. .- ...... , ~,~. i',~.... ~'-'~ 't '}~, -' ,:. , ..... ~ . ~, . - -. ~ ----- ', ....., '~;,;~"r '{~'~>,r,'~ ::'"' ir-,..~_; ~c¢~:, '~-q- ',.' t~-" ~"'--~.' 'J '~.,':~,-' ' .7--, ~.-,o,. '(i' ; .' ~ >5;:.:-.,-'--'~,,..,.,.,~,,~,-,..~,.;..~.,-.,,,.-...-.:~,.. .--z:~ -,'~,'~ .".,..0 ~, /. ,7<.:~ :' x" -> .C}~i '-,~' ,. ~ - ~.*...t .~ , ' . ,~.~.~.,7~ '-5. ( -2"'"* /" ' - ~ 'L"q . ' -~. '., . .. · . o,. ,<'~-. j' ' ' -' 7'' ,. -'~ , . ' : ' ....! -5.'"-! -v '- >>,:--:,. ~ .~-~_~_ '. 5;::. ::~<..~,': (NASA-T~-X-65939) THE GEOLOGIC EVOLUTION N73-22777/'":.' OF T.E MOON (NASA): 67 p HC $5.50 ,, %;_~ fi~-,~ CSCL .03.B ~,.~ ,,~_ ;.",;:. , .....~ ?' Unclas ':' :. "i i :~-".\ .,' d>l , __ .~ G3/30 ..697~5 >.:.~. ........ _. , · , .....:-~ .....~.,¢. ,- ~ ....- . .~-~..., ,6~'w-'~. ~ .,:' . -.-,--, . 5.',,- .~. ., .- ,: ., ~ . , ., ,, . · ......~,, ..... , ,..'5/.~: ~ ......... _ [.'~. ~'>~. ( '~-? ' ..... ,- . ,..:~--=-- ~' ' " ~'~'-. ' -. ,-",~'~- ..... T-~ .,-:',~ '-~' ...., OJ-" ,~ /,,~'.~. '~'0, ~,.'., ' . ' '' ..... ,c ~;'.~;.. ; . , _,: C y.~' !' :' ' ' ' ":~I-. * -'"'k - ~ .... L ~'-' * ' '-> ":, '. , )- ".", -'....r.. , ./~,.. ,c..[~..~- ~' ~,oP../,x. .'6;;,, . ,-' "~,~I -~ ;=- -' .' ,, ,-q: , ?'. fG'-.+' t-.'<.:'ox.-.~ --.--__< .7" .-'.;.5-~., , ~ . .'-~--.Xc-' ". - 4'-.- ;' ~,.u--~.,r',~_ .'x:',\ ,~.~.~-.? ~., :..:.~j~Q-',~' .- '~- --h!"[ 'l .:~./? L >. '- --~ ,-.;~ , ,) ~ _ ~j, ,, :. ~. x~, ,,,-~...,,~,:.-., .',-A-4;' .' _ /, ~\~¢zx.,*' x: '~"F;','~-%~- -~--~'~. ~2"3. ~,,:x TM ' -" ' " f' / '"",~': ' . ,--' ~ ~' ' ' ' 7',"--" ' '~: '~- L ' , '-, '/ cP'/ . '-, -.. ) "- - t'~ ' :'"~' '"~ ~. ,~,-:~ . ~ ·. -......... ~ -*~ '/,, U~,IUU~K- ,~;~-.... ~~ ', ~'~' . '( I~/.1,~'- '-b,_,, \~dP:~,.._~..~%~.~w--~c~. -r .... ' ~.~ -- ...."- '" , ,,~-.~ .:~ .-"-v~ --'.~/~ , -"- ~.~ ":- ~ ' ;3._ ' % "t . x-- - *-3F ,' -. x' _~t .5-.e. ~-~ '.. .~ <, j ' .' ? .2 .3.' >~5 , -' .- ,',. ~ '"C-~''.~--:.*- ~ ~ ¼ '-'.,'< . ~' "V'%,",,~ > ' ;,2'/ / "~/-.>','R' ~','' .-~ ,..' f' ~,-', ' ~ ~-.'),..,~,- '-~.:'/-'-':O'>.h?-~ -:..~.,' ;~ \ n/~ £ ~-"'U' z, G, ":' '>:% ~-:, ;'f:% L'_".'Z5,.- ~" ':~ · ,.... q . -~\~f~:, - ./~ ._.- · -,-a, :~.~ j/ >" .- , ~, .... ', '~ ;:>" . ~ ...'0~' J \.<~ .. } . '1 ' '.'~ ' ,'? ,,'%1 x ,-.~_~ >.. /'.;~ , .~'../..~-.:.~?. ' :':: ~-'. -).~'~.~'~ ~. ,.'~ 7~.'~-K~ ~ ~2 DARDSPACEE'!3 ~'~ ..... "::" ~'~-'~,:/'-%-c.'..4=.':'. ' GENTER:'; - :.~' '- X:.>C :~W.~..~.'-, .-~'. ,:: ~:' .,:'7: ? -.': ::..::,,:C,:,:--; · ,-',.>.-'." .... ;:~ :.'(' ,.:~.<':: :' ' · %. :'.~:--~'~,,. !~; ; ~ ~ .... " ~ "-r ; ' :: >' '~ / ~ , ',>'~.71.::;k' L -.-4_-::2':"- / ) "~' ~ ~ ' ,-,--.. 'Y ' / . ,, - - '. - · '. ~_ .,, .~-.I,*Rubl:,shed,'~oornbl-j, ,,.,./.-~.--.-.,_ _:~. -- ~,.:t(,,.:>:., .;.,. ~- t,,, ":,~.~-"%. , ~'-'-,'<2 p':125-1.6~-.~".: ~.,. ~ ""~' -.. ' .... ,--- ~, ' 6f Geo 'oa'~,;:"M'ar~l.i/'19Z2:-,.V -80.:No 4"~,,~-%' .'~ .. .... <:,. ~1~ ',- ./- ;:-:" ,.,,_. ':/,~.' :--->_',,. ,. '..'~ ~r,'~, .,. v. '5 ;' .~ ).'i:' '~..}. -./'-,; ~,_- ', ,.v-..;' ,,--.,:u/".o-' ~-3' ,>V~4... .., . .. .- ~ -'-: *~ ..... · < / ~ - , %~. ~ , -, ~ .~. - ,.r '~_ , ~ T.L_ ~.~ ,/ . , ' -- /...N~C.... -..~ I,.., -- ,. ', .. ,. / .' , '.- / '~, ,- ~ -~ --.'. ....' .... ' ...~L' , . , \ '. ,., ~-~-.~-'/~> ,,_52. .-. - ~>." . "-:x.~:. .... .,.~,.-:,.'-.I ' : :~'- ~ ' ~,. ,- - ~, ~ r ,~/· ,~ :,' ..',, ,~ v. ' . ~<'-~ :{.:~}~- :: ,,.~> ' '~'.'~. .'.- ..... : -,~:'x-. ..... .~.~.,', , .'.,,:.~:z'; - ".-~. ' .-~-',~ --~_..r"*'X..-,.-:', ~':~ ,'~> : :~''-04.' ~- ~"~' '~ .- X~''~>~ r, ,.' - -,'-~:,':'--<,. '~.*-":',~- '. T\ , 'A~ ~ "~~./,. :.'. .,, t..- ', .-v- ~ , :" , .".... '..>.~' %'.-~::-- : 0;., \--~.' ,.. ~ '. ?~r '- ....~ '~'.' ~,) I.. .< ~.'-... , ....-~ ' .'~ :~- -~.-.-', -', ' THE GEOLOGIC EVOLUTION OF THE MOON* (Revised Version) Paul D. Lowman, Jr. Goddard Space Flight Center October, 1971 GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland *Published, Journal of Geology, March, 1972, V. 80, No. 2, p. 125-166. \ . PRECEDING PAGE BLANK NOT FILMED THE GEOLOGIC EVOLUTION OF THE MOON (Revised Version) Paul D. Lowman, Jr. Goddard Space Flight Center Greenbelt, Maryland A/ ABSTRACT This paper is a synthesis of pre- and post-Apollo 11 studies to produce an out- line of the moon's geologic evolution from three lines of evidence: (1) relative ages of lunar landforms and rock types, (2) absolute ages of returned lunar sam- ples, and (3) petrography, chemistry, and isotopic ratios of lunar rocks and soils. It is assumed that the ray craters, circular mare basins, and most in- termediate circular landforms are primarily of impact origin, although many other landforms are volcanic or of hybrid origin. The moon's evolution is di- vided into four main stages, each including several distinct but overlapping events or processes: Stage I (4.7 billion years ago) - Origin of moon by unknown means, followed immediately by heating of outer 500km to at least 10000 C; Stage II (4.6 to 3.7 b.y. before present) - First differentiation to form highland crust, by eruption of high-alumina basaltic magma and minor quantities of dif- ferentiation products such as anorthosite and felsite; infall of small circum- terrestrial bodies to form old highland craters; formation of circular mare ba- sins by infall of large circum-terrestrial bodies; formation of Archimedes-type craters; highland vulcanism; Stage III (3.7 to 3.2 b.y. before present) - Second differentiation of moon, by generation and eruption of iron-rich basaltic magmas to form maria; Stage IV (3.2b.y. ago to present) - Sporadic impacts by asteroid belt meteoroids and comet nuclei to form ray craters; local vulcanism and gas venting from deep sources; minor faulting; continual slow landscape degradation by small impacts and other agents. The moon now appears relatively cold and rigid to depths of about 500 kilometers. Major unsolved problems include the composition and origin of the highland crust, the role of vulcanism in formation of ray craters, the nature of the lunar interior, the cause of assymetric mare distribution, and the relation of the moon to the earth. Preceding page blank iii...... PRECEDING PAGE BLANK NOT FED CONTENTS Page INTRODUCTION ................ ..... · · · · · · · 1 EVIDENCE BEARING ON THE MOON'S EVOLUTION 2 ORIGIN OF LUNAR LANDFORMS ......... EVOLUTION OF THE MOON. ........... .7 ........ 14...... Stage I (4.7-4. 6 billion years ago) ...... ........ 20...... 7 Stage II (4. 6 to 3.7 billion years ago) ..... 14 ........ 22...... Stage III (3.7 to 3.2 billion years ago) .... 20 Stage IV (3.2 billion years ago to the present) . .~~~~22 SUMMARY ................... .... .~~~~25.......... 25 ACKNOWLEDGEMENTS ............. .... .~~~~26.......... 26 REFERENCES ................. .... .~~~~27.......... 27 ILLUSTRATIONS Figure Page
Recommended publications
  • Festskrift Til Harald Føsker Ellen Ekhaugen, Egil Larsen Og Fredrik Sjøli (Red.)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NORA - Norwegian Open Research Archives Festskrift til Harald Føsker Ellen Ekhaugen, Egil Larsen og Fredrik Sjøli (red.) Kriminalomsorgens utdanningssenter, april 2014 1 Utgitt av Kriminalomsorgens utdanningssenter KRUS, 2014. Manusbearbeidelse og layout: Ottar Evensen og Maja Sørnes, KRUS Alle fotografier er gjengitt med artikkelforfatternes samtykke. ISBN trykket: 978-82-8257-033-6 ISBN pdf: 978-82-8257-034-3 Trykket hos 07-gruppen 2 Harald Føsker født 24. mai 1944 på Hamar Foto: Sturlason 3 BIDRAGSYTERE Balder, Jørgen – fhv uddannelseschef, KUC, Danmark Brucker, Hans-Jørgen – direktør, KRUS Five, Suzanne – seniorrådgiver, Kriminalomsorgsdirektoratet (KDI) Fridhov, Inger Marie – seniorrådgiver, Justisdepartementet Gislason, Gudmundur – fengselsdirektør/skoleleder, Island Hammerlin, Yngve – forsker, KRUS Hornslien, Anders - venn Johnsen, Berit – forskningsleder, KRUS Kornienko, Gennadij – generaldirektør, Den føderale russiske kriminalomsorgstjeneste Kristoffersen, Ragnar – forsker, KRUS Kvernvik Nilsen, Arne fengselsleder, Kriminalomsorgen Region Sør Larsen, Egil dekan, KRUS Lund-Isaksen, Erik – fhv. ekspedisjonssjef Nor, Susanne – HR direktør, Kriminalomsorgsdirektoratet (KDI) Orban, Franck – forsker, KRUS Porporino, Frank – Ph.D. Board Member ICPA Rentzmann, William – fhv. generaldirektør Kriminalforsorgen i Danmark Råen, Tore – friomsorgsleder i Nordtrøndelag Storberget, Knut – stortingsrepresentant og tidl. justisminister Vollan, Marianne
    [Show full text]
  • LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned
    Space Sci Rev DOI 10.1007/s11214-011-9759-y LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned Jennifer L. Heldmann · Anthony Colaprete · Diane H. Wooden · Robert F. Ackermann · David D. Acton · Peter R. Backus · Vanessa Bailey · Jesse G. Ball · William C. Barott · Samantha K. Blair · Marc W. Buie · Shawn Callahan · Nancy J. Chanover · Young-Jun Choi · Al Conrad · Dolores M. Coulson · Kirk B. Crawford · Russell DeHart · Imke de Pater · Michael Disanti · James R. Forster · Reiko Furusho · Tetsuharu Fuse · Tom Geballe · J. Duane Gibson · David Goldstein · Stephen A. Gregory · David J. Gutierrez · Ryan T. Hamilton · Taiga Hamura · David E. Harker · Gerry R. Harp · Junichi Haruyama · Morag Hastie · Yutaka Hayano · Phillip Hinz · Peng K. Hong · Steven P. James · Toshihiko Kadono · Hideyo Kawakita · Michael S. Kelley · Daryl L. Kim · Kosuke Kurosawa · Duk-Hang Lee · Michael Long · Paul G. Lucey · Keith Marach · Anthony C. Matulonis · Richard M. McDermid · Russet McMillan · Charles Miller · Hong-Kyu Moon · Ryosuke Nakamura · Hirotomo Noda · Natsuko Okamura · Lawrence Ong · Dallan Porter · Jeffery J. Puschell · John T. Rayner · J. Jedadiah Rembold · Katherine C. Roth · Richard J. Rudy · Ray W. Russell · Eileen V. Ryan · William H. Ryan · Tomohiko Sekiguchi · Yasuhito Sekine · Mark A. Skinner · Mitsuru Sôma · Andrew W. Stephens · Alex Storrs · Robert M. Suggs · Seiji Sugita · Eon-Chang Sung · Naruhisa Takatoh · Jill C. Tarter · Scott M. Taylor · Hiroshi Terada · Chadwick J. Trujillo · Vidhya Vaitheeswaran · Faith Vilas · Brian D. Walls · Jun-ihi Watanabe · William J. Welch · Charles E. Woodward · Hong-Suh Yim · Eliot F. Young Received: 9 October 2010 / Accepted: 8 February 2011 © The Author(s) 2011.
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Planetary Surfaces
    Chapter 4 PLANETARY SURFACES 4.1 The Absence of Bedrock A striking and obvious observation is that at full Moon, the lunar surface is bright from limb to limb, with only limited darkening toward the edges. Since this effect is not consistent with the intensity of light reflected from a smooth sphere, pre-Apollo observers concluded that the upper surface was porous on a centimeter scale and had the properties of dust. The thickness of the dust layer was a critical question for landing on the surface. The general view was that a layer a few meters thick of rubble and dust from the meteorite bombardment covered the surface. Alternative views called for kilometer thicknesses of fine dust, filling the maria. The unmanned missions, notably Surveyor, resolved questions about the nature and bearing strength of the surface. However, a somewhat surprising feature of the lunar surface was the completeness of the mantle or blanket of debris. Bedrock exposures are extremely rare, the occurrence in the wall of Hadley Rille (Fig. 6.6) being the only one which was observed closely during the Apollo missions. Fragments of rock excavated during meteorite impact are, of course, common, and provided both samples and evidence of co,mpetent rock layers at shallow levels in the mare basins. Freshly exposed surface material (e.g., bright rays from craters such as Tycho) darken with time due mainly to the production of glass during micro- meteorite impacts. Since some magnetic anomalies correlate with unusually bright regions, the solar wind bombardment (which is strongly deflected by the magnetic anomalies) may also be responsible for darkening the surface [I].
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • 8.5 X 13.5 Doublelines.P65
    Cambridge University Press 978-0-521-74128-6 - Exploring the Solar System with Binoculars: A Beginner’s Guide to the Sun, Moon, and Planets Stephen James O’Meara’s Index More information Index Adams, John Couch, 96 Carrington, Richard C., 15 degree of condensation (DC) of, Agesinax, 24 Carroll, Lewis, 60 111–112 Aionwantha (Hiawatha), 45 Ceres, 70, 99–101 estimating the brightness of, Airy, George Biddell, 50, 51, 55 discovery and history as a planet, 111–112 Alcock, George, 116 99–100 In–Out method, 111 Allen, Richard Hinckley, 136 general description of, 99, Modified–Out method, 111–112 Alphonsus VI (King of Portugal), 104 100–101 experience helps in observing, 112 Andersen, Hans Christian, 92 how to find, 101 flaring in brightness, 111 Arago, Francois, 59 Chaikin, Andrew, 54 how to locate and identify, 110 Araki, Genichi, 116 Challis, James, 50 in history, relating to, 103–108 Arend, Silvio, 115 Chambers, George F., 8, 19 King David, 103 Aristotle, 65 Cheshire Cat, 60 Melville’s Moby-Dick, 107–108 Arlt, Rainer, 132 Children of God (cult), 108 Napoleon, 106 Arrehenius, Svente, 78, 79 Chinese Catalogue (Biot’s), 131–132 Shakespeare’s Julius Caesar, 103–104 Arter, T. R., 131 Cicero (Roman emperor), 77 the broadside of the comets of Asteroid Belt, 101 City of God, The, 90 1680 and 1682, 104 brightest objects in, 101–102 Collins, Peter, 116 the death of Julius Caesar, 104 asteroids Cometographia, 103 the Middle Ages, 104 2003 EH1, 131 comets, 103–117 the Old Testament?, 103 3200 Phaeton, 142 1P (Halley), 103, 109, 114–115, the whaling ship
    [Show full text]
  • A La Torre Aaker Aalbers Aaldert Aarmour Aaron
    A LA TORRE ABDIE ABLEMAN ABRAMOWITCH AAKER ABE ABLES ABRAMOWITZ AALBERS ABEE ABLETSON ABRAMOWSKY AALDERT ABEEL ABLETT ABRAMS AARMOUR ABEELS ABLEY ABRAMSEN AARON ABEKE ABLI ABRAMSKI AARONS ABEKEN ABLITT ABRAMSON AARONSON ABEKING ABLOTT ABRAMZON AASEN ABEL ABNER ABRASHKIN ABAD ABELA ABNETT ABRELL ABADAM ABELE ABNEY ABREU ABADIE ABELER ABORDEAN ABREY ABALOS ABELES ABORDENE ABRIANI ABARCA ABELI ABOT ABRIL ABATE ABELIN ABOTS ABRLI ABB ABELL ABOTSON ABRUZZO ABBA ABELLA ABOTT ABSALOM ABBARCROMBIE ABELLE ABOTTS ABSALON ABBAS ABELLS ABOTTSON ABSHALON ABBAT ABELMAN ABRAHAM ABSHER ABBATE ABELS ABRAHAMER ABSHIRE ABBATIELLO ABELSON ABRAHAMI ABSOLEM ABBATT ABEMA ABRAHAMIAN ABSOLOM ABBAY ABEN ABRAHAMOF ABSOLON ABBAYE ABENDROTH ABRAHAMOFF ABSON ABBAYS ABER ABRAHAMOV ABSTON ABBDIE ABERCROMBIE ABRAHAMOVITZ ABT ABBE ABERCROMBY ABRAHAMOWICZ ABTS ABBEKE ABERCRUMBIE ABRAHAMS ABURN ABBEL ABERCRUMBY ABRAHAMS ABY ABBELD ABERCRUMMY ABRAHAMSEN ABYRCRUMBIE ABBELL ABERDEAN ABRAHAMSOHN ABYRCRUMBY ABBELLS ABERDEEN ABRAHAMSON AC ABBELS ABERDEIN ABRAHAMSSON ACASTER ABBEMA ABERDENE ABRAHAMY ACCA ABBEN ABERG ABRAHM ACCARDI ABBERCROMBIE ABERLE ABRAHMOV ACCARDO ABBERCROMMIE ABERLI ABRAHMOVICI ACE ABBERCRUMBIE ABERLIN ABRAHMS ACERO ABBERDENE ABERNATHY ABRAHMSON ACESTER ABBERDINE ABERNETHY ABRAM ACETO ABBERLEY ABERT ABRAMCHIK ACEVEDO ABBETT ABEYTA ABRAMCIK ACEVES ABBEY ABHERCROMBIE ABRAMI ACHARD ABBIE ABHIRCROMBIE ABRAMIN ACHENBACH ABBING ABIRCOMBIE ABRAMINO ACHENSON ABBIRCROMBIE ABIRCROMBIE ABRAMO ACHERSON ABBIRCROMBY ABIRCROMBY ABRAMOF ACHESON ABBIRCRUMMY ABIRCROMMBIE ABRAMOFF
    [Show full text]
  • Testing Hypotheses for the Origin of Steep Slope of Lunar Size-Frequency Distribution for Small Craters
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector Earth Planets Space, 55, 39–51, 2003 Testing hypotheses for the origin of steep slope of lunar size-frequency distribution for small craters Noriyuki Namiki1 and Chikatoshi Honda2 1Department of Earth and Planetary Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan 2The Institute of Space and Astronautical Science, Yoshinodai 3-1-1, Sagamihara 229-8510, Japan (Received June 13, 2001; Revised June 24, 2002; Accepted January 6, 2003) The crater size-frequency distribution of lunar maria is characterized by the change in slope of the population between 0.3 and 4 km in crater diameter. The origin of the steep segment in the distribution is not well understood. Nonetheless, craters smaller than a few km in diameter are widely used to estimate the crater retention age for areas so small that the number of larger craters is statistically insufficient. Future missions to the moon, which will obtain high resolution images, will provide a new, large data set of small craters. Thus it is important to review current hypotheses for their distributions before future missions are launched. We examine previous and new arguments and data bearing on the admixture of endogenic and secondary craters, horizontal heterogeneity of the substratum, and the size-frequency distribution of the primary production function. The endogenic crater and heterogeneous substratum hypotheses are seen to have little evidence in their favor, and can be eliminated. The primary production hypothesis fails to explain a wide variation of the size-frequency distribution of Apollo panoramic photographs.
    [Show full text]
  • October 2006
    OCTOBER 2 0 0 6 �������������� http://www.universetoday.com �������������� TAMMY PLOTNER WITH JEFF BARBOUR 283 SUNDAY, OCTOBER 1 In 1897, the world’s largest refractor (40”) debuted at the University of Chica- go’s Yerkes Observatory. Also today in 1958, NASA was established by an act of Congress. More? In 1962, the 300-foot radio telescope of the National Ra- dio Astronomy Observatory (NRAO) went live at Green Bank, West Virginia. It held place as the world’s second largest radio scope until it collapsed in 1988. Tonight let’s visit with an old lunar favorite. Easily seen in binoculars, the hexagonal walled plain of Albategnius ap- pears near the terminator about one-third the way north of the south limb. Look north of Albategnius for even larger and more ancient Hipparchus giving an almost “figure 8” view in binoculars. Between Hipparchus and Albategnius to the east are mid-sized craters Halley and Hind. Note the curious ALBATEGNIUS AND HIPPARCHUS ON THE relationship between impact crater Klein on Albategnius’ southwestern wall and TERMINATOR CREDIT: ROGER WARNER that of crater Horrocks on the northeastern wall of Hipparchus. Now let’s power up and “crater hop”... Just northwest of Hipparchus’ wall are the beginnings of the Sinus Medii area. Look for the deep imprint of Seeliger - named for a Dutch astronomer. Due north of Hipparchus is Rhaeticus, and here’s where things really get interesting. If the terminator has progressed far enough, you might spot tiny Blagg and Bruce to its west, the rough location of the Surveyor 4 and Surveyor 6 landing area.
    [Show full text]
  • Compositional and Mineralogical Characteristics of Archimedes Crater Region Using Chandrayaan – 1 M3 Data
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1040.pdf COMPOSITIONAL AND MINERALOGICAL CHARACTERISTICS OF ARCHIMEDES CRATER REGION USING CHANDRAYAAN – 1 M3 DATA. P. R. Kumaresan1 and J. Saravanavel2, 1Research Scholar, 2Assistant Professor, Department of Remote Sensing, Bharathidasan University, Tiruchirappalli-23, Tamil Nadu, India, email: [email protected], [email protected] Introduction: The Earth’s natural satellite the tometry corrected reflectance data captured during the moon is nearest celestial body appears brightest object OP1B optical period. in our night sky. Moon surfaces are composed of dark and light areas. The dark areas are called Maria which is made up of basaltic terrain and light areas are high- lands mostly made up of Anorthositic rocks. The moon surface is littered with craters, which are formed when meteors hit its surface. To understand the evolution, geological process of the moon it is important to study the surface composition and minerals present in crustal surface. In this regard, in our study, we have attempted to map the minerals and surface composition of Archi- medes crater region. Study area: Archimedes crater is a large impact crater located on the eastern edges of the Mare Imbri- um of near side moon (29.7° N, 4.0° W). The diameter of the crater is 83 km with smooth floor flooded (1) with mare basalt and lack of a central peak. The rim (2) has a significant outer rampart brightened with ejecta (3) and the some portion of a terraced inner wall. Ar- chimedes Crater is named for the Greek mathematician Archimedes, who made many mathematical discoveries in the 200 B.C [1, 2].
    [Show full text]
  • Curt Teich Postcard Archives Towns and Cities
    Curt Teich Postcard Archives Towns and Cities Alaska Aialik Bay Alaska Highway Alcan Highway Anchorage Arctic Auk Lake Cape Prince of Wales Castle Rock Chilkoot Pass Columbia Glacier Cook Inlet Copper River Cordova Curry Dawson Denali Denali National Park Eagle Fairbanks Five Finger Rapids Gastineau Channel Glacier Bay Glenn Highway Haines Harding Gateway Homer Hoonah Hurricane Gulch Inland Passage Inside Passage Isabel Pass Juneau Katmai National Monument Kenai Kenai Lake Kenai Peninsula Kenai River Kechikan Ketchikan Creek Kodiak Kodiak Island Kotzebue Lake Atlin Lake Bennett Latouche Lynn Canal Matanuska Valley McKinley Park Mendenhall Glacier Miles Canyon Montgomery Mount Blackburn Mount Dewey Mount McKinley Mount McKinley Park Mount O’Neal Mount Sanford Muir Glacier Nome North Slope Noyes Island Nushagak Opelika Palmer Petersburg Pribilof Island Resurrection Bay Richardson Highway Rocy Point St. Michael Sawtooth Mountain Sentinal Island Seward Sitka Sitka National Park Skagway Southeastern Alaska Stikine Rier Sulzer Summit Swift Current Taku Glacier Taku Inlet Taku Lodge Tanana Tanana River Tok Tunnel Mountain Valdez White Pass Whitehorse Wrangell Wrangell Narrow Yukon Yukon River General Views—no specific location Alabama Albany Albertville Alexander City Andalusia Anniston Ashford Athens Attalla Auburn Batesville Bessemer Birmingham Blue Lake Blue Springs Boaz Bobler’s Creek Boyles Brewton Bridgeport Camden Camp Hill Camp Rucker Carbon Hill Castleberry Centerville Centre Chapman Chattahoochee Valley Cheaha State Park Choctaw County
    [Show full text]