Polyketide Synthases in Cannabis Sativa L Flores-Sanchez, I.J

Total Page:16

File Type:pdf, Size:1020Kb

Polyketide Synthases in Cannabis Sativa L Flores-Sanchez, I.J Polyketide synthases in Cannabis sativa L Flores-Sanchez, I.J. Citation Flores-Sanchez, I. J. (2008, October 29). Polyketide synthases in Cannabis sativa L. Retrieved from https://hdl.handle.net/1887/13206 Version: Corrected Publisher’s Version Licence agreement concerning inclusion of doctoral thesis in the License: Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/13206 Note: To cite this publication please use the final published version (if applicable). Polyketide synthases in Cannabis sativa L. Isvett Josefina Flores Sanchez Isvett Josefina Flores Sanchez Polyketide synthases in Cannabis sativa L. ISBN 978-90-9023446-5 Printed by PrintPartners Ipskamp B.V., Amsterdam, The Netherlands Cover photographs: Cannabis sativa, “Skunk” pistillate floral clusters (1, 4, 10, 14); “Skunk” leaf (2, 7); “Skunk” young leaves (9); “Skunk” seed and calyx (3, 18); “Kompolti” flowers (6, 11, 13, 16); “Skunk” seeded calyxes (8); “Kompolti” leaves (5, 12, 15); “Kompolti” staminate floral clusters (19); “Skunk” seeds (17); “Kompolti” seeds (21); “Skunk” and “Kompolti” seeds (20); “Kompolti” pistillate floral clusters (22). Photograph: Isvett J. Flores-Sanchez Polyketide Synthases in Cannabis sativa L. Proefschrift Ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. P. F. van der Heijden, volgens besluit van het College voor Promoties te verdedigen op woensdag 29 october 2008 klokke 11.15 uur door Isvett Josefina Flores Sanchez Geboren te Pachuca de Soto, Hidalgo, Mexico in 1971 Promotiecommissie Promotor Prof. dr. R. Verpoorte Co-promotor Dr. H. J. M. Linthorst Referent Prof. dr. O. Kayser (University of Groningen) Overige leden Prof. dr. P. J. J. Hooykaas Prof. dr. C. A. M. J. J. van den Hondel Dr. Frank van der Kooy Contents Chapter I Introduction to secondary metabolism in cannabis 1 Chapter II Plant Polyketide Synthases 29 Chapter III Polyketide synthase activities and biosynthesis of cannabinoids and flavonoids in Cannabis sativa L. plants 43 Chapter IV In silicio expression analysis of a PKS gene isolated from Cannabis sativa L. 73 Chapter V Elicitation studies in cell suspension cultures of Cannabis sativa L. 93 Concluding remarks and perspectives 121 Summary 123 Samenvatting 125 References 127 Acknowledgements 167 Curriculum vitae 168 List of publications 169 Chapter I Introduction to secondary metabolism in cannabis Isvett J. Flores Sanchez • Robert Verpoorte Pharmacognosy Department, Institute of Biology, Gorlaeus Laboratories, Leiden University Leiden, The Netherlands Published in Phytochem Rev (2008) 7:615-639 Abstract: Cannabis sativa L. is an annual dioecious plant from Central Asia. Cannabinoids, flavonoids, stilbenoids, terpenoids, alkaloids and lignans are some of the secondary metabolites present in C. sativa. Earlier reviews focused on isolation and identification of more than 480 chemical compounds; this review deals with the biosynthesis of the secondary metabolites present in this plant. Cannabinoid biosynthesis and some closely related pathways that involve the same precursors are discussed. 1 Introduction I.1 Cannabis plant Cannabis is an annual plant, which belongs to the family Cannabaceae. There are only 2 genera in this family: Cannabis and Humulus. While in Humulus only one species is recognized, namely lupulus, in Cannabis different opinions support the concepts for a mono or poly species genus. Linnaeus (1753) considered only one species, sativa, however, McPartland et al. (2002) described 4 species, sativa, indica, ruderalis and afghanica; and Hillig (2005) proposed 7 putative taxa, ruderalis, sativa ssp. sativa, sativa ssp. spontanea, indica ssp. kafiristanica, indica ssp. indica, indica ssp. afghanica and indica ssp. chinensis. Nevertheless, the tendency in literature is to refer to all types of cannabis as Cannabis sativa L. with a variety name indicating the characteristics of the plant. The cultivation of this plant, native from Central Asia, and its use has been spread all over the world by man since thousands of years as a source of food, energy, fiber and medicinal or narcotic preparations (Jiang et al., 2006; Russo, 2004; Wills, 1998). Cannabis is a dioecious plant, i.e. it bears male and female flowers on separate plants. The male plant bears staminate flowers and the female plant pistillate flowers which eventually develop into the fruit and achenes (seeds). The sole function of male plants is to pollinate the females. Generally, the male plants commence flowering slightly before the females. During a few weeks the males produce abundant anthers that split open, enabling passing air currents to transfer the released pollen to the pistillate flowers. Soon after pollination, male plants wither and die, leaving the females maximum space, nutrients and water to produce a healthy crop of viable seeds. As result of special breeding, monoecious plants bearing both male and female flowers arose frequently in varieties developed for fiber production. The pistillate flowers consist of an ovary surrounded by a calyx with 2 pistils which trap passing pollen (Clarke, 1981; Raman, 1998). Each calyx is covered with glandular hairs (glandular trichomes), a highly specialized secretory tissue (Werker, 2000). In cannabis, these glandular trichomes are also present on bracts, leaves and on the underside of the anther lobes from male flowers (Mahlberg et al., 1984). 2 Introduction I.2 Secondary metabolites of Cannabis The phytochemistry in cannabis is very complex; more than 480 compounds have been identified (ElSohly and Slade, 2005) representing different chemical classes. Some belong to primary metabolism, e.g. amino acids, fatty acids and steroids, while cannabinoids, flavonoids, stilbenoids, terpenoids, lignans and alkaloids represent secondary metabolites. The concentrations of these compounds depend on tissue type, age, variety, growth conditions (nutrition, humidity and light levels), harvest time and storage conditions (Keller et al., 2001; Kushima et al., 1980; Roos et al., 1996). The production of cannabinoids increases in plants under stress (Pate, 1999). Ecological interactions have also been reported (McPartland et al., 2000). Feeding studies in grasshoppers indicated that minimum amounts of cannabinoids are stored in their exoskeletons, being excreted in their frass (Rothschild et al., 1977); although a neurotoxic activity was reported in midge larvaes using cannabis leaf extracts (Roy and Dutta, 2003). I.2.1 Cannabinoids This group represents the most studied compounds from cannabis. The term cannabinoid is given to the terpenophenolic compounds with 22 carbons (or 21 carbons for neutral form) of which 70 cannabinoids have been found so far and which can be divided into 10 main structural types (Figure 1). All other compounds that do not fit into the main types are grouped as miscellaneous (Figure 2). The neutral compounds are formed by decarboxylation of the unstable corresponding acids. Although decarboxylation occurs in the living plant, it increases during storage after harvesting, especially at elevated temperatures (Mechoulam and Ben-Shabat, 1999). Both forms are also further degraded into secondary products by the effects of temperature, light (Lewis and Turner, 1978) and auto-oxidation (Razdan et al., 1972). 3 Introduction OH R'O OH R" R2 OH R OH R2 R2 R O 5 R3 O R3 O R3 OR R3 5 Cannabigerol (CBG) type Cannabichromene (CBC) type Cannabitriol (CBT) type Cannabidiol (CBD) type R2: H or COOH R2: H or COOH R3: C3 or C5 side chain R2: H or COOH R3: C3 or C5 side chain R3: C3 or C5 R: H or OH R3: C1, C3, C4 or C5 side chain R5: H or CH3 R’: H or CBDA-C5 ester = , S-configuration R5: H or CH3 R”: H, OH or OEt = , R-configuration OH H H OH H H R2 O OH R2 H O R3 R3 OH R3 Cannabicyclol (CBL) type R4 OH R2: H or COOH Cannabielsoin (CBE) type Cannabinodiol (CBND) type R3: C3 or C5 side chain R2: H or COOH R3: C3 or C5 side chain R3: C3 or C5 R4: COOH or H H OH OR1 R2 R2 H H OH R2 O R3 O R3 H R4 Cannabinol (CBN) type O Δ9-Tetrahydrocannabinol (Δ9-THC) type R1: H or CH R2 or R4: H or COOH 3 Δ8-Tetrahydrocannabinol (Δ8-THC) type R2: H or COOH R3: C1, C3, C4 or C5 side chain R2: H or COOH R3: C1, C2, C3, C4 or C5 side chain R4: COOH or H Figure 1. Cannabinoid structural types. In cannabis, the most prevalent compounds are Δ9-THC acid, CBD acid and CBN acid, followed by CBG acid, CBC acid and CBND acid, while the others are minor compounds. Based on the absolute concentration of Δ9-THC (Δ9-THC+ Δ9-THC acid) and CBD (CBD + CBD acid) obtained via HPLC or GC analyses, the plants are classified as follows: Drug type (chemotype I), the concentration of Δ9-THC is more than 2% and CBD concentration is less 0.5%; Fiber type (chemotype III), the Δ9-THC concentration is less than 0.3% and the concentration of CBD is more than 0.5%; Intermediate type (chemotype II), the concentrations of both are similar, usually more than 0.5% for each; and Propyl isomer/C3 type (chemotype IV), which can be differentiated by the dominant key cannabinoids Δ9-tetrahydrocannabivarinic acid (Δ9-THCVA) and Δ9-tetrahydrocannabivarin (Δ9-THCV), while also containing considerable amounts of Δ9-THC (Brenneisen and ElSohly, 1988; Fournier et al., 1987; Lehmann and Brenneisen, 1995). 4 Introduction O O OH O O O R3 O Cannabichromanone Cannabicoumaronone R3: C3 or C5 side chain O O OH O O 10-oxo-Δ6a(10a)-Tetrahydrocannabinol (OTHC) Cannabicitran O OH OH OH O R3 Cannabiglendol Δ7-Isotetrahydrocannabinol R3: C3 or C5 Figure 2. Miscellaneous cannabinoids.
Recommended publications
  • Impact of Pesticide Use on Health in Developing Countries
    Impact of pesticide use on health in developing countries Proceedings of a symposium held in Ottawa, Canada, 1 7-20 September 1990 IDRC CRDI International Development Research Centre Centre de recherches pour le devetoppement international 1 March 1993 Dear Reader/Librarian, IDRC is a public corporation created by the Canadian parliament in 1970 to help developing countries find viable solutions to their problems through research. At the 1992 Earth Summit, IDRC's mandate was broadened to emphasize sustainable development issues. As part of IDRC's strengthened commitment to global action and harüony, we are pleased to send you a complimentary copy of our most recent publication: The impact of pesticide use on health in developing countries (March 1993, 352 pages, 0-88936-560-1, $17.95). The first part of this book presents a brief survey of the global situation and the results of twelve epidemiological studies carried out by researchers from Africa, Latin America, Asia and the Middle East. These focus on poisonings resulting from organophosphates, herbicides, and pyrethroids. The second part illustrates the role of the process of development, production, spraying techniques and legislation in protecting the health of workers. A discussion of the benefits and modalities of access to pertinent information for the prevention of pesticide poisonings is provided in the third section. Finally, in the fourth section, consideration is given to the advantages and disadvantages of certain alternatives to the use of synthetic pesticides in agriculture and public health, such as botanical pesticides and integrated pest management strategies. We hope this book is a valuable addition to your collection.
    [Show full text]
  • Health Effects Support Document for Perfluorooctanoic Acid (PFOA)
    United States Office of Water EPA 822-R-16-003 Environmental Protection Mail Code 4304T May 2016 Agency Health Effects Support Document for Perfluorooctanoic Acid (PFOA) Perfluorooctanoic Acid – May 2016 i Health Effects Support Document for Perfluorooctanoic Acid (PFOA) U.S. Environmental Protection Agency Office of Water (4304T) Health and Ecological Criteria Division Washington, DC 20460 EPA Document Number: 822-R-16-003 May 2016 Perfluorooctanoic Acid – May 2016 ii BACKGROUND The Safe Drinking Water Act (SDWA), as amended in 1996, requires the Administrator of the U.S. Environmental Protection Agency (EPA) to periodically publish a list of unregulated chemical contaminants known or anticipated to occur in public water systems and that may require regulation under SDWA. The SDWA also requires the Agency to make regulatory determinations on at least five contaminants on the Contaminant Candidate List (CCL) every 5 years. For each contaminant on the CCL, before EPA makes a regulatory determination, the Agency needs to obtain sufficient data to conduct analyses on the extent to which the contaminant occurs and the risk it poses to populations via drinking water. Ultimately, this information will assist the Agency in determining the most appropriate course of action in relation to the contaminant (e.g., developing a regulation to control it in drinking water, developing guidance, or deciding not to regulate it). The PFOA health assessment was initiated by the Office of Water, Office of Science and Technology in 2009. The draft Health Effects Support Document for Perfluoroctanoic Acid (PFOA) was completed in 2013 and released for public comment in February 2014.
    [Show full text]
  • Expression of Genes Encoding Acetyl-Coa Carboxylase, Biotin Synthase, and Acetyl-Coa Generating Enzymes in Arabidopsis Thaliana Jinshan Ke Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1997 Expression of genes encoding acetyl-CoA carboxylase, biotin synthase, and acetyl-CoA generating enzymes in Arabidopsis thaliana Jinshan Ke Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons, and the Molecular Biology Commons Recommended Citation Ke, Jinshan, "Expression of genes encoding acetyl-CoA carboxylase, biotin synthase, and acetyl-CoA generating enzymes in Arabidopsis thaliana " (1997). Retrospective Theses and Dissertations. 11996. https://lib.dr.iastate.edu/rtd/11996 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fi"om the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely aflfect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Yu Fukuda University of Tennessee Health Science Center
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2008 ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Yu Fukuda University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Chemicals and Drugs Commons, and the Medical Sciences Commons Recommended Citation Fukuda, Yu , "ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters" (2008). Theses and Dissertations (ETD). Paper 345. http://dx.doi.org/10.21007/etd.cghs.2008.0100. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Interdisciplinary Program Research Advisor John D. Schuetz, Ph.D. Committee Linda Hendershot, Ph.D. James I. Morgan, Ph.D. Anjaparavanda P. Naren, Ph.D. Jie Zheng, Ph.D. DOI 10.21007/etd.cghs.2008.0100 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/345 ABCB6 IS A PORPHYRIN TRANSPORTER WITH A NOVEL TRAFFICKING SIGNAL THAT
    [Show full text]
  • Supplementary File 2A Revised
    Supplementary file 2A. Differentially expressed genes in aldosteronomas compared to all other samples, ranked according to statistical significance. Missing values were not allowed in aldosteronomas, but to a maximum of five in the other samples. Acc UGCluster Name Symbol log Fold Change P - Value Adj. P-Value B R99527 Hs.8162 Hypothetical protein MGC39372 MGC39372 2,17 6,3E-09 5,1E-05 10,2 AA398335 Hs.10414 Kelch domain containing 8A KLHDC8A 2,26 1,2E-08 5,1E-05 9,56 AA441933 Hs.519075 Leiomodin 1 (smooth muscle) LMOD1 2,33 1,3E-08 5,1E-05 9,54 AA630120 Hs.78781 Vascular endothelial growth factor B VEGFB 1,24 1,1E-07 2,9E-04 7,59 R07846 Data not found 3,71 1,2E-07 2,9E-04 7,49 W92795 Hs.434386 Hypothetical protein LOC201229 LOC201229 1,55 2,0E-07 4,0E-04 7,03 AA454564 Hs.323396 Family with sequence similarity 54, member B FAM54B 1,25 3,0E-07 5,2E-04 6,65 AA775249 Hs.513633 G protein-coupled receptor 56 GPR56 -1,63 4,3E-07 6,4E-04 6,33 AA012822 Hs.713814 Oxysterol bining protein OSBP 1,35 5,3E-07 7,1E-04 6,14 R45592 Hs.655271 Regulating synaptic membrane exocytosis 2 RIMS2 2,51 5,9E-07 7,1E-04 6,04 AA282936 Hs.240 M-phase phosphoprotein 1 MPHOSPH -1,40 8,1E-07 8,9E-04 5,74 N34945 Hs.234898 Acetyl-Coenzyme A carboxylase beta ACACB 0,87 9,7E-07 9,8E-04 5,58 R07322 Hs.464137 Acyl-Coenzyme A oxidase 1, palmitoyl ACOX1 0,82 1,3E-06 1,2E-03 5,35 R77144 Hs.488835 Transmembrane protein 120A TMEM120A 1,55 1,7E-06 1,4E-03 5,07 H68542 Hs.420009 Transcribed locus 1,07 1,7E-06 1,4E-03 5,06 AA410184 Hs.696454 PBX/knotted 1 homeobox 2 PKNOX2 1,78 2,0E-06
    [Show full text]
  • REGULATION of METABOLISM by the ONCOPROTEIN C-MYC by Lia
    REGULATION OF METABOLISM BY THE ONCOPROTEIN C-MYC by Lia Rae Edmunds Biochemistry, Washington and Jefferson College, 2008 Submitted to the Graduate Faculty of Molecular Genetics and Developmental Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH MOLECULAR GENETICS AND DEVELOPMENTAL BIOLOGY This dissertation was presented by Lia Rae Edmunds It was defended on November, 2015 and approved by Eric S. Goetzman, Ph.D., Medical Genetics Robert M. O’Doherty, Ph.D., Endocrinology Bennet Van Houten, Ph.D., Molecular Genetics and Developmental Biology Dissertation Advisor: Edward V. Prochownik, M.D., Ph.D., Pediatric Hematology/Oncology ii Copyright © by Lia Rae Edmunds 2015 iii REGULATION OF METABOLISM BY THE ONCOPROTEIN C-MYC Lia Rae Edmunds, Ph.D. University of Pittsburgh, 2015 c-Myc (hereafter Myc), a transcription factor that regulates a variety of cellular functions including growth and differentiation, is deregulated in many different types of cancers. Myc regulates the Warburg effect and oncogenic biosynthesis, but also many aspects of metabolism, believed to be a pivotal point of transformation. Myc is known to control glycolysis and glutaminolysis but little is known about the interplay between glucose, amino acid, and fatty acid oxidation. We hypothesize Myc integrates glucose, amino acid, and fatty acid utilization for energy, and either loss- or gain-of-function will disrupt metabolic homeostasis. Loss of Myc in rat fibroblasts elicits a severe energy deficit, including diminished acetyl-coA levels, to which they respond by enhancing FAO and lipid uptake and storage. Using an in vivo model, we found murine hepatocytes respond to Myc ablation with a milder phenotype.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Molecular Architectures of Benzoic Acid-Specific Type III Polyketide Synthases
    research papers Molecular architectures of benzoic acid-specific type III polyketide synthases ISSN 2059-7983 Charles Stewart Jr,a,b* Kate Woods,a Greg Macias,a Andrew C. Allan,c,d Roger P. Hellensc,e and Joseph P. Noela aHoward Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA, bMacromolecular Received 11 July 2017 X-ray Crystallography Facility, Office of Biotechnology, Iowa State University, 0202 Molecular Biology Building, 2437 c Accepted 17 November 2017 Pammel Drive, Ames, IA 50011, USA, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand, dSchool of Biological Sciences, University of Auckland, Auckland, New Zealand, and eQueensland University of Technology, Brisbane, Queensland 4001, Australia. *Correspondence e-mail: [email protected] Edited by A. Berghuis, McGill University, Canada Biphenyl synthase and benzophenone synthase constitute an evolutionarily distinct clade of type III polyketide synthases (PKSs) that use benzoic acid- Keywords: chalcone synthase; biphenyl derived substrates to produce defense metabolites in plants. The use of benzoyl- synthase; benzophenone synthase; polyketide CoA as an endogenous substrate is unusual for type III PKSs. Moreover, synthase; thiolase; benzoyl-CoA. sequence analyses indicate that the residues responsible for the functional diversification of type III PKSs are mutated in benzoic acid-specific type III PDB references: benzophenone synthase, 5uco; chalcone synthase, 5uc5; biphenyl synthase, PKSs. In order to gain a better understanding of structure–function relationships 5w8q; biphenyl synthase, complex with within the type III PKS family, the crystal structures of biphenyl synthase from benzoyl-CoA, 5wc4 Malus  domestica and benzophenone synthase from Hypericum androsaemum were compared with the structure of an archetypal type III PKS: chalcone Supporting information: this article has synthase from Malus  domestica.
    [Show full text]
  • Gmmyb176 Interactome and Regulation of Isoflavonoid Biosynthesis in Soybean
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 6-28-2017 12:00 AM GmMYB176 Interactome and Regulation of Isoflavonoid Biosynthesis in Soybean Arun Kumaran Anguraj Vadivel The University of Western Ontario Supervisor Dr. Sangeeta Dhaubhadel The University of Western Ontario Joint Supervisor Dr. Mark Bernards The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Arun Kumaran Anguraj Vadivel 2017 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Molecular Biology Commons, and the Plant Biology Commons Recommended Citation Anguraj Vadivel, Arun Kumaran, "GmMYB176 Interactome and Regulation of Isoflavonoid Biosynthesis in Soybean" (2017). Electronic Thesis and Dissertation Repository. 4639. https://ir.lib.uwo.ca/etd/4639 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i Abstract MYB transcription factors are one of the largest transcription factor families characterized in plants. They are classified into four types: R1 MYB, R2R3 MYB, R3 MYB and R4 MYB. GmMYB176 is an R1MYB transcription factor that regulates Chalcone synthase (CHS8) gene expression and isoflavonoid biosynthesis in soybean. Silencing of GmMYB176 suppressed the expression of the GmCHS8 gene and reduced the accumulation of isoflavonoids in soybean hairy roots. However, overexpression of GmMYB176 does not alter either GmCHS8 gene expression or isoflavonoid levels suggesting that GmMYB176 alone is not sufficient for GmCHS8 gene regulation.
    [Show full text]
  • Final Si Management Report 10 06 10
    Sycamore Island Management Report Prepared by Applied Ecological Services Inc. 1110 East Hector Street Conshohocken PA, 19428 For Allegheny Land Trust 409 Broad Street, Suite 206A Sewickley, PA 15143 This report is made possible by the generous support from TABLE OF CONTENTS 1. OVERVIEW 2. EXECUTIVE SUMMARY 3. PROJECT PHILOSOPHY AND APPROACH 4. SITE CONTEXT ‐ p.1 4.1 Location ‐ p.1 4.1. Geology and the Shaping of the Allegheny River and Surrounding Watershed ‐ p.1 4.2. Soils, Topography, and Drainage ‐ p.2 4.3. Ecology ‐ p.2 4.4. Cultural History ‐ p.3 4.5. Impacts of a Regulated River ‐ p.5 5. NATURAL RESOURCES INVENTORY, ECOLOGICAL ASSESSMENT AND MANAGEMENT RECOMMENDATIONS 5.1. Natural Community Mapping, Vegetation and Seedbank Studies ‐ p.7 5.2. Aquatic Species Surveys ‐ Fishes, Mollusks, and Macroinvertebrates ‐ p. 33 5.3. Vertebrate Species Surveys ‐ Reptiles, Amphibians, and Mammals ‐ p. 42 5.4. Avian Species Surveys ‐ p.48 5.5. Threatened and Endangered Species Survey and Existing Studies Review ‐ p. 57 5.6. Invasive Vegetative Species Management ‐ p. 63 5.7. Geotechnical Investigation ‐ p.68 5.8. Bathymetry Survey ‐ p.75 5.9. Human Use and Impact Study ‐ p. 76 6. TEST AND DEMONSTRATIONN PLOT TREATMENT AND MONITORING PLAN ‐ p.78 7. RECOMMENDATIONS FOR PUBLIC EDUCATION AND VOLUNTEER STEWARDSHIP ACTIVITIES ‐ p.85 8. TRAIL AND INTERPRETIVE SIGNAGE PLANS ‐ p.92 9. MANAGEMENT AND PRIORTIZATION STRATEGY FOR CARRYING OUT RECOMMENDATIONS ‐ p.96 10. REFERENCES ‐ p.106 APPENDICES A. Maps B. Soil Series C. Quadrat Datas D. T & E Species Search E. Invasive Vegetation Cut Sheets F.
    [Show full text]
  • Rol De La Vía Autofágica-Lisosomal En La Muerte Celular Inducida Por Manganeso En Células Gliales
    Tesis Doctoral Rol de la vía autofágica-lisosomal en la muerte celular inducida por manganeso en células gliales Gorojod, Roxana Mayra 2014-07-17 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Gorojod, Roxana Mayra. (2014-07-17). Rol de la vía autofágica-lisosomal en la muerte celular inducida por manganeso en células gliales. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Gorojod, Roxana Mayra. "Rol de la vía autofágica-lisosomal en la muerte celular inducida por manganeso en células gliales". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2014-07-17. Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de Química Biológica Rol de la vía autofágica- lisosomal en la muerte celular inducida por manganeso en células gliales Tesis doctoral para optar al título de Doctor de la Universidad de Buenos Aires en el área de Química Biológica Lic. Roxana Mayra Gorojod Director de tesis: Dra.
    [Show full text]
  • WO 2011/123236 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 6 October 2011 (06.10.2011) WO 2011/123236 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A01N 43/04 (2006.01) A61K 31/70 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) Number: International Application CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US201 1/028305 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 14 March 201 1 (14.03.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/320,1 36 1 April 2010 (01 .04.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): BIO- GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, SPHERICS, INC. [US/US]; 6430 Rockledge Drive, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, #503, Westmoreland Building, Bethesda, Maryland TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 2081 7 (US).
    [Show full text]