Global Survey of Cell Death Mechanisms Reveals Metabolic Regulation of Ferroptosis

Total Page:16

File Type:pdf, Size:1020Kb

Global Survey of Cell Death Mechanisms Reveals Metabolic Regulation of Ferroptosis Global Survey of Cell Death Mechanisms Reveals Metabolic Regulation of GPX4-Dependent Ferroptosis Kenichi Shimada Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2015 ©2015 Kenichi Shimada All rights reserved ABSTRACT Global Survey of Cell Death Mechanisms Reveals Metabolic Regulation of Ferroptosis Kenichi Shimada Cells die not merely as a consequence of catastrophic failure of homeostasis but when programmed cell death is activated. The existence of non-apoptotic modes of regulated cell death is increasingly appreciated. However, the full extent and diversity of these alternative cell death mechanisms remains uncharted. In this thesis, we developed a systematic framework to discover and characterize lethal compounds that induce distinct cell death phenotypes. In the first part, we investigated the landscape of pharmacologically-accessible non-apoptotic cell death mechanisms. This effort resulted in the discovery of a novel ferroptosis inducer, FIN56. The rest of my work focused on characterizing the mechanism of action of FIN56. Technologies used here should be generally applicable for the systematic study of various cell death mechanisms. First, to globally survey pharmacologically-accessible cell death mechanisms, we used 3,169 uncharacterized lethal compounds as cell death probes. We found that 451 compounds (14%) were lethal without activating caspase activity. 56 most potent and structurally diverse compounds were more closely studied using the 'modulatory profiling' approach, which involves examining changes in potency of lethal compounds by co-treatment with chemical modulators. We discovered that caspase-independent lethals induced three types of regulated non-apoptotic cell death: metal ion-dependent cell death, necrostatin-1-dependent cell death, and ferroptosis, a regulated form of iron-dependent oxidative cell death. With further structural optimization, we discovered a specific ferroptosis inducer, FIN56. Ferroptosis is induced when the lipid repair enzyme glutathione peroxide 4 (GPX4) is inhibited or inactivated by depletion of glutathione. We found that, in contrast, FIN56 induced ferroptosis through decreasing the abundance of GPX4. Second, we developed a technology that identifies proteins responsible for cell death mechanisms of interest utilizing chemical library screening. The technology consists of three steps: (i) binding targets of each molecule in the chemical library were predicted using Similarity Ensemble Approach, a chemoinformatic ligand-based target prediction algorithm; (ii) the chemical library was screened for enhancers/suppressors of the cell death; (iii) incorporating the screening data into the prediction to make the prediction more reliable. This approach, termed ‘Target Enrichment Analysis’, resulted in the discovery of two features of FIN56-induced ferroptosis: calcium ion influx and activation of lipoxygenases, enzymes that peroxidize fatty acids. Inhibiting either of them suppressed FIN56-induced ferroptosis. Third, we tried to capture metabolic changes induced upon FIN56 treatment that were relevant to the mechanism of action of FIN56 and identify protein targets of FIN56 using chemoproteomics. Metabolomic profiling experiments discovered that non-steroidogenic intermediates in the mevalonate pathway regulated cellular sensitivity to FIN56-induced ferroptosis. Although none of the proteins identified through target identification effort has yet been fully confirmed as responsible for induction of ferroptosis triggered by FIN56, we found through the analysis that inhibition of squalene synthase, an enzyme in the mevalonate pathway, suppressed FIN56-induced ferroptosis consistently. Finally, to define biomarkers that predict sensitivity to ferroptosis inducers including FIN56, we investigated the molecular determinants of sensitivity in the NCI60 panel and identified nicotinamide adenine dinucleotide phosphate (NADPH) levels as a global predictor of sensitivity to ferroptosis. These studies demonstrate that sensitivity to ferroptosis is regulated by metabolic pathways, suggesting that it may be a relevant form of cell death in cases of dysregulated metabolism. This systematic approach using a combination of modulatory profiling and cell line selectivity analysis is an effective means to explore, discover and characterize cellular phenotypes induced by unknown small molecules. Table of Contents List of Figures and Tables ............................................................................................................... iv List of Abbreviations ....................................................................................................................... vi Acknowledgements ........................................................................................................................ vii Dedication ..................................................................................................................................... viii Chapter 1. Introduction .................................................................................................................... 1 1.1: Studying cell death ............................................................................................................... 1 Transition of the criteria – from morphology to biochemistry .................................................... 1 ‘Regulated’ vs ‘Programmed’ vs ‘Accidental’ ............................................................................ 2 Apoptosis .................................................................................................................................. 3 Necroptosis ............................................................................................................................... 4 Ferroptosis ................................................................................................................................ 4 1.2: Molecular profiling of cellular status with omics technologies .............................................. 5 Genomics and Transcriptomics ................................................................................................ 5 Proteomics/RPPA ..................................................................................................................... 6 Metabolomics ........................................................................................................................... 6 Single cell analysis ................................................................................................................... 7 1.3: Stratifying cell death signaling .............................................................................................. 8 Genetic modulation ................................................................................................................... 8 Pharmacological modulation .................................................................................................... 9 Large pharmacology projects ................................................................................................. 10 1.4: Structure of this thesis ........................................................................................................ 11 Chapter 2. Modulatory Profiling .................................................................................................... 12 i 2.1: Abstract ............................................................................................................................. 12 2.2: Introduction ......................................................................................................................... 12 2.3: Results ................................................................................................................................ 13 Discovery of caspases-3/7-independent-lethal compounds ................................................... 13 Identification of lethal compounds that induce specific cell death mechanisms ..................... 18 Characterization of novel ferroptosis inducers ....................................................................... 26 Characterization of FIN56-induced ferroptosis ....................................................................... 32 2.4: Discussion .......................................................................................................................... 35 2.5: Materials and Methods ....................................................................................................... 36 Chapter 3. Target Enrichment Analysis ........................................................................................ 43 3.1: Abstract .............................................................................................................................. 43 3.2: Introduction ......................................................................................................................... 43 3.3: Results ................................................................................................................................ 44 Prediction of proteins involved in the mechanism of action of CIL56 using Target Enrichment Analysis .................................................................................................................................. 44 Functional validation – involvement of calcium (II) influx and lipoxygenases in FIN56-induced ferroptosis ..............................................................................................................................
Recommended publications
  • Necroptosis in Intestinal Inflammation and Cancer
    biomolecules Review Necroptosis in Intestinal Inflammation and Cancer: New Concepts and Therapeutic Perspectives Anna Negroni 1,* , Eleonora Colantoni 2, Salvatore Cucchiara 2 and Laura Stronati 3 1 Division of Health Protection Technologies, ENEA, 00123 Rome, Italy 2 Maternal Infantile and Urological Sciences Department, Sapienza, University of Rome, 00161 Rome, Italy; [email protected] (E.C.); [email protected] (S.C.) 3 Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-06-3048-3623 Received: 3 September 2020; Accepted: 8 October 2020; Published: 10 October 2020 Abstract: Necroptosis is a caspases-independent programmed cell death displaying intermediate features between necrosis and apoptosis. Albeit some physiological roles during embryonic development such tissue homeostasis and innate immune response are documented, necroptosis is mainly considered a pro-inflammatory cell death. Key actors of necroptosis are the receptor-interacting-protein-kinases, RIPK1 and RIPK3, and their target, the mixed-lineage-kinase-domain-like protein, MLKL. The intestinal epithelium has one of the highest rates of cellular turnover in a process that is tightly regulated. Altered necroptosis at the intestinal epithelium leads to uncontrolled microbial translocation and deleterious inflammation. Indeed, necroptosis plays a role in many disease conditions and inhibiting necroptosis is currently considered a promising therapeutic strategy. In this review, we focus on the molecular mechanisms of necroptosis as well as its involvement in human diseases. We also discuss the present developing therapies that target necroptosis machinery. Keywords: programmed cell death; inflammation; cancer; intestinal diseases; inhibitors 1. Introduction Cell death is crucial during the development and maintenance of tissue homeostasis in multicellular organisms.
    [Show full text]
  • Expression of Genes Encoding Acetyl-Coa Carboxylase, Biotin Synthase, and Acetyl-Coa Generating Enzymes in Arabidopsis Thaliana Jinshan Ke Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1997 Expression of genes encoding acetyl-CoA carboxylase, biotin synthase, and acetyl-CoA generating enzymes in Arabidopsis thaliana Jinshan Ke Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons, and the Molecular Biology Commons Recommended Citation Ke, Jinshan, "Expression of genes encoding acetyl-CoA carboxylase, biotin synthase, and acetyl-CoA generating enzymes in Arabidopsis thaliana " (1997). Retrospective Theses and Dissertations. 11996. https://lib.dr.iastate.edu/rtd/11996 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fi"om the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely aflfect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • REGULATION of METABOLISM by the ONCOPROTEIN C-MYC by Lia
    REGULATION OF METABOLISM BY THE ONCOPROTEIN C-MYC by Lia Rae Edmunds Biochemistry, Washington and Jefferson College, 2008 Submitted to the Graduate Faculty of Molecular Genetics and Developmental Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH MOLECULAR GENETICS AND DEVELOPMENTAL BIOLOGY This dissertation was presented by Lia Rae Edmunds It was defended on November, 2015 and approved by Eric S. Goetzman, Ph.D., Medical Genetics Robert M. O’Doherty, Ph.D., Endocrinology Bennet Van Houten, Ph.D., Molecular Genetics and Developmental Biology Dissertation Advisor: Edward V. Prochownik, M.D., Ph.D., Pediatric Hematology/Oncology ii Copyright © by Lia Rae Edmunds 2015 iii REGULATION OF METABOLISM BY THE ONCOPROTEIN C-MYC Lia Rae Edmunds, Ph.D. University of Pittsburgh, 2015 c-Myc (hereafter Myc), a transcription factor that regulates a variety of cellular functions including growth and differentiation, is deregulated in many different types of cancers. Myc regulates the Warburg effect and oncogenic biosynthesis, but also many aspects of metabolism, believed to be a pivotal point of transformation. Myc is known to control glycolysis and glutaminolysis but little is known about the interplay between glucose, amino acid, and fatty acid oxidation. We hypothesize Myc integrates glucose, amino acid, and fatty acid utilization for energy, and either loss- or gain-of-function will disrupt metabolic homeostasis. Loss of Myc in rat fibroblasts elicits a severe energy deficit, including diminished acetyl-coA levels, to which they respond by enhancing FAO and lipid uptake and storage. Using an in vivo model, we found murine hepatocytes respond to Myc ablation with a milder phenotype.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Rol De La Vía Autofágica-Lisosomal En La Muerte Celular Inducida Por Manganeso En Células Gliales
    Tesis Doctoral Rol de la vía autofágica-lisosomal en la muerte celular inducida por manganeso en células gliales Gorojod, Roxana Mayra 2014-07-17 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Gorojod, Roxana Mayra. (2014-07-17). Rol de la vía autofágica-lisosomal en la muerte celular inducida por manganeso en células gliales. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Gorojod, Roxana Mayra. "Rol de la vía autofágica-lisosomal en la muerte celular inducida por manganeso en células gliales". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2014-07-17. Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de Química Biológica Rol de la vía autofágica- lisosomal en la muerte celular inducida por manganeso en células gliales Tesis doctoral para optar al título de Doctor de la Universidad de Buenos Aires en el área de Química Biológica Lic. Roxana Mayra Gorojod Director de tesis: Dra.
    [Show full text]
  • Progress in the Production of Medicinally Important Secondary
    Progress in the production of medicinally important secondary metabolites in recombinant microorganisms or plants-Progress in alkaloid biosynthesis Michael Wink, Holger Schäfer To cite this version: Michael Wink, Holger Schäfer. Progress in the production of medicinally important secondary metabo- lites in recombinant microorganisms or plants-Progress in alkaloid biosynthesis. Biotechnology Jour- nal, Wiley-VCH Verlag, 2009, 4 (12), pp.1684. 10.1002/biot.200900229. hal-00540529 HAL Id: hal-00540529 https://hal.archives-ouvertes.fr/hal-00540529 Submitted on 27 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biotechnology Journal Progress in the production of medicinally important secondary metabolites in recombinant microorganisms or plants-Progress in alkaloid biosynthesis For Peer Review Journal: Biotechnology Journal Manuscript ID: biot.200900229.R1 Wiley - Manuscript type: Review Date Submitted by the 28-Oct-2009 Author: Complete List of Authors: Wink, Michael; Heidelberg University, Institute for Pharmacy and Molecular Biotechnology
    [Show full text]
  • The Central Role of Acetyl-Coa in Plant Metabolism, As Examined Through Studies of ATP Citrate Lyase and the Bio1 Mutant of Arabidopsis Elizabeth K
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2004 The central role of acetyl-CoA in plant metabolism, as examined through studies of ATP citrate lyase and the bio1 mutant of Arabidopsis Elizabeth K. Winters Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Genetics Commons, Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Winters, Elizabeth K., "The ec ntral role of acetyl-CoA in plant metabolism, as examined through studies of ATP citrate lyase and the bio1 mutant of Arabidopsis " (2004). Retrospective Theses and Dissertations. 1203. https://lib.dr.iastate.edu/rtd/1203 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The central role of acetyl-CoA in plant metabolism, as examined through studies of ATP citrate lyase and the biol mutant of Arabidopsis by Elizabeth K. Winters A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele, Co-major Professor Basil J. Nikolau, Co-major Professor Thomas Baum James T. Colbert David J. Oliver Mark Westgate Iowa State University Ames, Iowa 2004 UMI Number: 3158378 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Regulation of Caspase-8 Activity at the Crossroads of Pro-Inflammation
    International Journal of Molecular Sciences Review Regulation of Caspase-8 Activity at the Crossroads of Pro-Inflammation and Anti-Inflammation Jun-Hyuk Han 1, Jooho Park 1,2, Tae-Bong Kang 1,3,* and Kwang-Ho Lee 1,3 1 Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; [email protected] (J.-H.H.); [email protected] (J.P.); [email protected] (K.-H.L.) 2 Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27487, Korea 3 Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27487, Korea * Correspondence: [email protected]; Tel.: +82-43-840-3904 Abstract: Caspase-8 has been classified as an apoptotic caspase, and its initial definition was an initiator of extrinsic cell death. During the past decade, the concept of caspase-8 functioning has been changed by findings of its additional roles in diverse biological processes. Although caspase-8 was not originally thought to be involved in the inflammation process, many recent works have determined that caspase-8 plays an important role in the regulatory functions of inflammatory processes. In this review, we describe the recent advances in knowledge regarding the manner in which caspase-8 modulates the inflammatory responses concerning inflammasome activation, cell death, and cytokine induction. Keywords: caspase-8; inflammasome; inflammation; necroptosis; pyroptosis; apoptosis Citation: Han, J.-H.; Park, J.; Kang, T.-B.; Lee, K.-H. Regulation of Caspase-8 Activity at the Crossroads 1. Introduction of Pro-Inflammation and Anti-Inflammation. Int. J. Mol. Sci. Mammalian caspases have classically been divided into inflammatory and apoptotic 2021, 22, 3318.
    [Show full text]
  • Zeitschrift Für Naturforschung / C / 49 (1994)
    Band 49 c Zeitschrift für Naturforschung 1994 Contents Contents of Number 1/2 Induced Accumulation and Potential Antioxida­ tive Function of Rutin in Two Cultivars of Original Communications Nicotiana tabacum L. T h . S t e g e r -H a r t m a n n , U. K o c h , T h . D u n z , Kinobeon A, a Novel Red Pigment Produced in a n d E. W a g n e r 57 Safflower Tissue Culture Systems Purification, Characterization and N-Terminal Se­ S. W a k a y a m a , K . K u s a k a , T. K a n e h ir a , Y . quence of Phosphoserine Aminotransferase Y a m a d a , K. K a w a z u , and A. K o b a y a s h i 1 from the Green Alga Scenedesmus obliquus , Mutant C-2A' Volatile Constituents of Propolis M . S t o l z a n d D . D ö r n e m a n n 63 V . B a n k o v a , R . C h r is t o v , S. P o p o v , O . P u r e b , and G. B o c a r i 6 Proteolysis in Heterocyst-Forming Cyanobacteria: Characterization of a Further Enzyme with Serratiochelin, a New Catecholate Siderophore Trypsin-Like Specificity, and of a Prolyl Endo- from Serratia marcescens peptidase from Anabaena variabilis G. E h l e r t , K. T a r a z , and H. B udzikiewicz U.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Targeting Multiple Pro-Apoptotic Signaling Pathways with Curcumin in Prostate Cancer Cells
    RESEARCH ARTICLE Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells Mariela Rivera1, Yanilda Ramos1, Madeline RodrõÂguez-ValentõÂn1, Sheila Lo pez-Acevedo1, Luis A. Cubano1, Jin Zou2, Qiang Zhang3, Guangdi Wang3, Nawal M. Boukli1* 1 Department of Microbiology and Immunology, Biomedical Proteomics Facility, Universidad Central del Caribe School of Medicine, BayamoÂn, Puerto Rico, United States of America, 2 Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia, United States of America, a1111111111 3 Department of Chemistry, RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, a1111111111 Louisiana, United States of America a1111111111 a1111111111 * [email protected] a1111111111 Abstract Curcumin, an extract from the turmeric rhizome (Curcuma longa), is known to exhibit anti- OPEN ACCESS inflammatory, antioxidant, chemopreventive and antitumoral activities against aggressive Citation: Rivera M, Ramos Y, RodrõÂguez-ValentõÂn and recurrent cancers. Accumulative data indicate that curcumin may induce cancer cell M, LoÂpez-Acevedo S, Cubano LA, Zou J, et al. death. However, the detailed mechanism underlying its pro-apoptotic and anti-cancer (2017) Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells. effects remains to be elucidated. In the present study, we examined the signaling pathways PLoS ONE 12(6): e0179587. https://doi.org/ triggered by curcumin, specifically, the exact molecular mechanisms of curcumin-induced 10.1371/journal.pone.0179587 apoptosis in highly metastatic human prostate cancer cells. The effect of curcumin was eval- Editor: Aamir Ahmad, University of South Alabama uated using for the first time in prostate cancer, a gel-free shotgun quantitative proteomic Mitchell Cancer Institute, UNITED STATES analysis coupled with Tandem Mass Tag isobaric labeling-based-signaling networks.
    [Show full text]
  • University of Nevada, Reno Characterization of the Genes
    University of Nevada, Reno Characterization of the Genes Essential for Mouse Spermatogenesis A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cellular and Molecular Pharmacology and Physiology by Qiuxia Wu Dr. Wei Yan/Dissertation Advisor May, 2012 THE GRADUATE SCHOOL We recommend that the dissertation prepared under our supervision by Qiuxia Wu entitled Characterization of the Genes Essential for Mouse Spermatogenesis be accepted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Dr. Wei Yan, Advisor Dr. Seungil Ro, Committee Member Dr. Grant W. Hennig, Committee Member Dr. Sean M. Ward, Committee Member Dr. Claus Tittiger, Graduate School Representative Marsha H. Read, Ph. D., Associate Dean, Graduate School May, 2012 i Abstract Spermatogenesis is a complex process that starts with the proliferation of differentiated spermatogonia through mitotic division. Primary spermatocytes produced from differentiated spermatogonia enter the prolonged prophase of meiosis during which DNA is exchanged by homologous recombination. Primary spermatocytes undergo two meiotic divisions to form haploid spermatids. Haploid spermatids differentiate through the elongation phase and eventually form mature spermatozoa through dramatic morphological changes termed spermiogenesis, during which: 1) the Golgi apparatus forms the acrosome, 2) nuclear chromatin undergoes compaction and condensation, 3) sperm tail is formed and 4) the excess cytoplasm of spermatid is eliminated. Given the complexity of spermatogenesis, the normal development of male germ cells is controlled by both protein-coding genes and small non-coding RNAs. Because of the lack of in vitro models, mouse models are currently the most powerful tools used to study these processes.
    [Show full text]