University of Nevada, Reno Characterization of the Genes

Total Page:16

File Type:pdf, Size:1020Kb

University of Nevada, Reno Characterization of the Genes University of Nevada, Reno Characterization of the Genes Essential for Mouse Spermatogenesis A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cellular and Molecular Pharmacology and Physiology by Qiuxia Wu Dr. Wei Yan/Dissertation Advisor May, 2012 THE GRADUATE SCHOOL We recommend that the dissertation prepared under our supervision by Qiuxia Wu entitled Characterization of the Genes Essential for Mouse Spermatogenesis be accepted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Dr. Wei Yan, Advisor Dr. Seungil Ro, Committee Member Dr. Grant W. Hennig, Committee Member Dr. Sean M. Ward, Committee Member Dr. Claus Tittiger, Graduate School Representative Marsha H. Read, Ph. D., Associate Dean, Graduate School May, 2012 i Abstract Spermatogenesis is a complex process that starts with the proliferation of differentiated spermatogonia through mitotic division. Primary spermatocytes produced from differentiated spermatogonia enter the prolonged prophase of meiosis during which DNA is exchanged by homologous recombination. Primary spermatocytes undergo two meiotic divisions to form haploid spermatids. Haploid spermatids differentiate through the elongation phase and eventually form mature spermatozoa through dramatic morphological changes termed spermiogenesis, during which: 1) the Golgi apparatus forms the acrosome, 2) nuclear chromatin undergoes compaction and condensation, 3) sperm tail is formed and 4) the excess cytoplasm of spermatid is eliminated. Given the complexity of spermatogenesis, the normal development of male germ cells is controlled by both protein-coding genes and small non-coding RNAs. Because of the lack of in vitro models, mouse models are currently the most powerful tools used to study these processes. KLHL10 (Kelch-like 10) is a spermatid-specific protein, which belongs to a BTB (Brica-brac, Tramtrack, and Broad-Complex)-Kelch protein superfamily. Haploinsufficiency of Klhl10 causes male infertility and prevents the genetic transmission of both mutant and wild-type alleles in mice. Therefore, a transgenic rescue strategy was used to overcome the haploinsufficiency of Klhl10 and knockout (KO) mice were generated for studying the function of Klhl10 during spermatogenesis. Klhl10 KO testes exhibited disrupted spermatogenesis, characterized by severe depletion of germ cells, degeneration of spermatids and reduction in the number of late spermatids. In ii Klhl10 KO testes, spermatid differentiation was arrested in elongating stage at step 9. Comparison of protein profiles between control and KO testes revealed that many mitochondrial proteins were up-regulated in Klhl10 KO testes. In addition, COX IV (mitochondrion marker) staining showed enhanced mitochondria signal in KLHL10 depleted germ cells. Our results indicate that KLHL10 might be involved in regulating mitochondrial protein turnover during late spermiogenesis. The BTB domain of KLHL10 was reported to directly interact with CUL3 (an ubiquitin E3 ligase), suggesting KLHL10 is involved in the ubiquitination pathway to regulate protein turnover. Using yeast two-hybrid, we screened an adult mouse testis library to identify testicular proteins that can interact with KLHL10 and spermatogenesis- associated proteins 3 (SPATA3) and 6 (SPATA6) were two proteins identified. In vitro co-immunoprecipitation assay revealed that KLHL10 interacts with both SPATA3 and SPATA6 through the Kelch domain, a substrate-recruiting domain in most of the CUL3- BTB/Kelch E3 ligase complexes. Therefore, an in vivo ubiquitination assay was performed to examine whether KLHL10 can recruit SPATA3 or SPATA6 for ubiquitination. We found the ubiquitination level of SPATA3, but not SPATA6, was significantly increased upon overexpression of KLHL10, suggesting SPATA3 is a substrate of CUL3-KLHL10 E3 ligase. Our data suggests CUL3-KLHL10 complex is a spermatid-specific ubiquitin E3 ligase that involved in removal of proteins during late spermiogenesis. Hils1 is another spermatid-specific gene, which encodes a linker histone H1-like protein. The expression of HILS1 overlaps with the expression of transition nuclear proteins (TNP1 and TNP2). While Hils1-/- males were fertile and Tnp1-/- males were iii subfertile, the double KO (Hils1-/-Tnp1-/-) mice we generated were completely infertile. Electron microscopy revealed severe nuclear condensation defect in both late spermatids and epididymal sperm of Hils1-/-Tnp1-/- mice. The number of epididymal sperm was highly reduced and most sperm had abnormal morphologies with head-bent-back as predominant defect in Hils1-/-Tnp1-/- mice. Double KO sperm also had a greater susceptibility of DNA to denaturation and elevated levels of protamine 2 precursors. Injection of mutant cauda epididymal sperm into intact oocyte showed normal fertilization rates, however, most zygotes didn’t develop beyond the 2-cell stage. Single cell PCR revealed that the mRNA expression profile was altered in 2PN and 2-cell mutant embryos compared to WT, suggesting the disruption of paternal nuclear condensation can cause abnormal embryo development at pre-implantation stage. In addition to gene functional study using universal KO mouse models, we also used conditional KO mouse models to study the functions of small RNAs during spermatogenesis. microRNAs (miRNAs) are produced from short hairpin structures by the cleavages of DROSHA, a RNase III enzyme, in the nucleus and DICER, another RNase III enzyme, in the cytoplasm. endo-siRNAs are distinguished from miRNAs in that endo-siRNAs are processed from naturally occurring long dsRNAs and the biogenesis of endo-siRNAs is DROSHA-independent but DICER-dependent. To investigate the role of miRNA and/or endo-siRNA in spermatogenesis, we generated Drosha or Dicer conditional knockout (cKO) mouse lines using Cre-loxP strategy to specifically delete Drosha or Dicer in spermatogenic cells in postnatal testes. Although both Drosha and Dicer cKO males are infertile, Drosha cKO testes appeared to display more severe spermatogenic disruptions than Dicer cKO testes. Microarray analyses iv revealed transcriptomic differences between Drosha and Dicer-null pachytene spermatocytes or round spermatids. Although levels of sex-linked mRNAs were mildly elevated, meiotic sex chromosome inactivation appeared to have occurred normally in both Drosha and Dicer cKO cells. Our data demonstrate that gene regulation mediated by small RNAs is required for the normal development of male germ cells and male fertility. Overall, we demonstrated that both protein-coding genes and small RNAs play roles in regulation of male germ cell development. Investigations using mouse models help us gain deeper understanding of the fundamentals of reproductive biology, which will ultimately benefit the human health. v Acknowledgements I would like to thank my dissertation advisor Dr. Wei Yan for accepting me to his research group and guiding me on my research. His instruction, support and encouragement make this dissertation possible. Sincere appreciation goes to my committee members Dr. Seungil Ro, Dr. Grant W. Hennig, Dr. Sean M. Ward and Dr. Claus Tittiger for their directions on my graduate progression and critical review of my qualifier proposal and this dissertation. I thank the previous and current members of Yan lab for their generous help and contributions to the project. I want to thank my friends in Reno for traveling with us, tasting gourmet food with us and having fun time with us. Special thanks goes to Shouhua Wang's family for their help and care. I would like to thank my parents Mr. Zhangxin Wu and Mrs. Xueqin Wu who were always supporting me and encouraging me with their best wishes. Finally I would like to thank my husband, Rui Song. He was always there supporting me and stood by me through good times and bad. vi Table of Contents Abstract………………………………………………………………………………….....i Acknowledgements………………………………………………………………………..v Table of Contents…………………………………………………………………………vi List of Tables……………………………………………………………………………..ix List of Figures…………………………………………………………………………......x List of Abbreviations……………………………………………………………………xiii Chapter 1: Introduction………………………………………………………………...….1 Human infertility and mouse spermatogenesis……………………………………1 Knockout strategies………………………………………………………………..3 Spermatogenesis studied by knockout mice: protein-coding genes………………5 Spermatogenesis studied by knockout mice: small non-coding RNAs…………...8 Translation to clinical practice and directions for the future……………………...9 Chapter 2: Lack of Klhl10, a spermatid-specific gene, causes male infertility………….20 Abstract…………………………………………………………………………..20 Keywords……………………………………………………………………...…21 Introduction………………………………………………………………………22 Materials and Methods………………………...………………………………....25 Results………...................………………………………...…………….……….28 Disccusion………...................…………………………………………………...33 References………...................…………………………………………………...45 Chanpter 3: KLHL10 targets SPATA3 for ubiquitination by a CUL3-based E3 ligase during mouse spermiogenesis………...................………………………………..............48 vii Abstract……...................………………………………………………………...48 Keywords………...................……………………………………………………49 Introduction………...................……………………………………………….....50 Materials and Methods………..........…………………………………………….53 Results………...................……………………………………………………….57 Discussion………...................…………………………………………………...61 References………...................…………………………………………………...68 Chapter 4: Genetic
Recommended publications
  • Skeletal Phenotype of Mandibuloacral Dysplasia Associated with Mutations in ZMPSTE24
    Bone 47 (2010) 591–597 Contents lists available at ScienceDirect Bone journal homepage: www.elsevier.com/locate/bone Skeletal phenotype of mandibuloacral dysplasia associated with mutations in ZMPSTE24 Vicki J. Cunningham a,⁎, Maria Rosaria D'Apice b, Norma Licata c, Giuseppe Novelli b,d, Tim Cundy e a Child Health Centre, Northland District Health Board, New Zealand b Department of Biopathology and Diagnostic Imaging, Tor Vergata University, Rome, Italy c IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy d Ospedale San Pietro Fatebenefratelli, Rome, Italy e Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, New Zealand article info abstract Article history: Mandibuloacral dysplasia (MAD) is a rare recessively inherited premature aging disease characterized by Received 29 March 2010 skeletal and metabolic anomalies. It is part of the spectrum of diseases called laminopathies and results from Revised 3 June 2010 mutations in genes regulating the synthesis of the nuclear laminar protein, lamin A. Homozygous or Accepted 5 June 2010 compound heterozygous mutations in the LMNA gene, which encodes both the precursor protein prelamin A Available online 13 June 2010 and lamin C, are the commonest cause of MAD type A. In a few cases of MAD type B, mutations have been fi Edited by: S. Ralston identi ed in the ZMPSTE24 gene encoding a zinc metalloproteinase important in the post-translational modification of lamin A. Here we describe a new case of MAD resulting from compound heterozygote Keywords: mutations in ZMPSTE24 (p.N256S/p.Y70fs). The patient had typical skeletal changes of MAD, but in addition a Mandibuloacral dysplasia number of unusual skeletal features including neonatal tooth eruption, amorphous calcific deposits, ZMPSTE24 submetaphyseal erosions, vertebral beaking, severe cortical osteoporosis and delayed fracture healing.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Role of Zmpste24 in Prelamin a Maturation. Douglas Paul Corrigan East Tennessee State University
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2005 Role of Zmpste24 in Prelamin A Maturation. Douglas Paul Corrigan East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Medical Sciences Commons Recommended Citation Corrigan, Douglas Paul, "Role of Zmpste24 in Prelamin A Maturation." (2005). Electronic Theses and Dissertations. Paper 1046. https://dc.etsu.edu/etd/1046 This Dissertation - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Role of Zmpste24 in Prelamin A Maturation A dissertation presented to the faculty of the Department of Biochemistry and Molecular Biology East Tennessee State University In partial fulfillment of the requirements for the degree Doctor of Philosophy in Biomedical Sciences by Douglas P. Corrigan August 2005 Antonio E. Rusinol, Chair Ranjan N. Chakraborty Michael S. Sinensky Douglas P. Thewke M. Stephen Trent Keywords: Zmpste24, Prelamin A, endoproteolysis, prenylation, farnesylation ABSTRACT Role of Zmpste24 in Prelamin A Maturation by Douglas P. Corrigan The nuclear lamins form a karyoskeleton providing structural rigidity to the nucleus. One member of the lamin family, lamin A, is first synthesized as a 74 kDa precursor, prelamin A. Following the endopeptidase and methylation reactions which occur after farnesylation of the CAAX-box cysteine, there is a second endoproteolysis that occurs 15 amino acids upstream from the C-terminal farnesylated cysteine residue.
    [Show full text]
  • Expression Profiling of KLF4
    Expression Profiling of KLF4 AJCR0000006 Supplemental Data Figure S1. Snapshot of enriched gene sets identified by GSEA in Klf4-null MEFs. Figure S2. Snapshot of enriched gene sets identified by GSEA in wild type MEFs. 98 Am J Cancer Res 2011;1(1):85-97 Table S1: Functional Annotation Clustering of Genes Up-Regulated in Klf4 -Null MEFs ILLUMINA_ID Gene Symbol Gene Name (Description) P -value Fold-Change Cell Cycle 8.00E-03 ILMN_1217331 Mcm6 MINICHROMOSOME MAINTENANCE DEFICIENT 6 40.36 ILMN_2723931 E2f6 E2F TRANSCRIPTION FACTOR 6 26.8 ILMN_2724570 Mapk12 MITOGEN-ACTIVATED PROTEIN KINASE 12 22.19 ILMN_1218470 Cdk2 CYCLIN-DEPENDENT KINASE 2 9.32 ILMN_1234909 Tipin TIMELESS INTERACTING PROTEIN 5.3 ILMN_1212692 Mapk13 SAPK/ERK/KINASE 4 4.96 ILMN_2666690 Cul7 CULLIN 7 2.23 ILMN_2681776 Mapk6 MITOGEN ACTIVATED PROTEIN KINASE 4 2.11 ILMN_2652909 Ddit3 DNA-DAMAGE INDUCIBLE TRANSCRIPT 3 2.07 ILMN_2742152 Gadd45a GROWTH ARREST AND DNA-DAMAGE-INDUCIBLE 45 ALPHA 1.92 ILMN_1212787 Pttg1 PITUITARY TUMOR-TRANSFORMING 1 1.8 ILMN_1216721 Cdk5 CYCLIN-DEPENDENT KINASE 5 1.78 ILMN_1227009 Gas2l1 GROWTH ARREST-SPECIFIC 2 LIKE 1 1.74 ILMN_2663009 Rassf5 RAS ASSOCIATION (RALGDS/AF-6) DOMAIN FAMILY 5 1.64 ILMN_1220454 Anapc13 ANAPHASE PROMOTING COMPLEX SUBUNIT 13 1.61 ILMN_1216213 Incenp INNER CENTROMERE PROTEIN 1.56 ILMN_1256301 Rcc2 REGULATOR OF CHROMOSOME CONDENSATION 2 1.53 Extracellular Matrix 5.80E-06 ILMN_2735184 Col18a1 PROCOLLAGEN, TYPE XVIII, ALPHA 1 51.5 ILMN_1223997 Crtap CARTILAGE ASSOCIATED PROTEIN 32.74 ILMN_2753809 Mmp3 MATRIX METALLOPEPTIDASE
    [Show full text]
  • Expression of Genes Encoding Acetyl-Coa Carboxylase, Biotin Synthase, and Acetyl-Coa Generating Enzymes in Arabidopsis Thaliana Jinshan Ke Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1997 Expression of genes encoding acetyl-CoA carboxylase, biotin synthase, and acetyl-CoA generating enzymes in Arabidopsis thaliana Jinshan Ke Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons, and the Molecular Biology Commons Recommended Citation Ke, Jinshan, "Expression of genes encoding acetyl-CoA carboxylase, biotin synthase, and acetyl-CoA generating enzymes in Arabidopsis thaliana " (1997). Retrospective Theses and Dissertations. 11996. https://lib.dr.iastate.edu/rtd/11996 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fi"om the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely aflfect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • ZMPSTE24 Is Associated with Elevated Inflammation and Progerin Mrna
    cells Article ZMPSTE24 Is Associated with Elevated Inflammation and Progerin mRNA 1, 1, 1 2 Moritz Messner y, Santhosh Kumar Ghadge y, Thomas Maurer , Michael Graber , Simon Staggl 1, Sarah Christine Maier 3, Gerhard Pölzl 1 and Marc-Michael Zaruba 1,* 1 Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; [email protected] (M.M.); [email protected] (S.K.G.); [email protected] (T.M.); [email protected] (S.S.); [email protected] (G.P.) 2 Department of Thoracic & Cardiac Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria; [email protected] 3 Department of Medical Statistics, Informatics and Health Economics, Medical University Innsbruck, 6020 Innsbruck, Austria; [email protected] * Correspondence: [email protected]; Tel.: +0043-512-504-25621 Moritz Messner and Santhosh Kumar Ghadge contributed equally to this manuscript. y Received: 30 March 2020; Accepted: 27 August 2020; Published: 28 August 2020 Abstract: Lamins are important filaments forming the inner nuclear membrane. Lamin A is processed by zinc metalloproteinase (ZMPSTE24). Failure to cleave a truncated form of prelamin A—also called progerin—causes Hutchinson–Gilford progeria syndrome a well-known premature aging disease. Minor levels of progerin are readily expressed in the blood of healthy individuals due to alternative splicing. Previously, we found an association of increased progerin mRNA with overweight and chronic inflammation (hs-CRP). Here, we aimed to elucidate correlations of ZMPSTE24, lamin A/C and progerin with the inflammatory marker hs-CRP.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • REGULATION of METABOLISM by the ONCOPROTEIN C-MYC by Lia
    REGULATION OF METABOLISM BY THE ONCOPROTEIN C-MYC by Lia Rae Edmunds Biochemistry, Washington and Jefferson College, 2008 Submitted to the Graduate Faculty of Molecular Genetics and Developmental Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH MOLECULAR GENETICS AND DEVELOPMENTAL BIOLOGY This dissertation was presented by Lia Rae Edmunds It was defended on November, 2015 and approved by Eric S. Goetzman, Ph.D., Medical Genetics Robert M. O’Doherty, Ph.D., Endocrinology Bennet Van Houten, Ph.D., Molecular Genetics and Developmental Biology Dissertation Advisor: Edward V. Prochownik, M.D., Ph.D., Pediatric Hematology/Oncology ii Copyright © by Lia Rae Edmunds 2015 iii REGULATION OF METABOLISM BY THE ONCOPROTEIN C-MYC Lia Rae Edmunds, Ph.D. University of Pittsburgh, 2015 c-Myc (hereafter Myc), a transcription factor that regulates a variety of cellular functions including growth and differentiation, is deregulated in many different types of cancers. Myc regulates the Warburg effect and oncogenic biosynthesis, but also many aspects of metabolism, believed to be a pivotal point of transformation. Myc is known to control glycolysis and glutaminolysis but little is known about the interplay between glucose, amino acid, and fatty acid oxidation. We hypothesize Myc integrates glucose, amino acid, and fatty acid utilization for energy, and either loss- or gain-of-function will disrupt metabolic homeostasis. Loss of Myc in rat fibroblasts elicits a severe energy deficit, including diminished acetyl-coA levels, to which they respond by enhancing FAO and lipid uptake and storage. Using an in vivo model, we found murine hepatocytes respond to Myc ablation with a milder phenotype.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Rol De La Vía Autofágica-Lisosomal En La Muerte Celular Inducida Por Manganeso En Células Gliales
    Tesis Doctoral Rol de la vía autofágica-lisosomal en la muerte celular inducida por manganeso en células gliales Gorojod, Roxana Mayra 2014-07-17 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Gorojod, Roxana Mayra. (2014-07-17). Rol de la vía autofágica-lisosomal en la muerte celular inducida por manganeso en células gliales. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Gorojod, Roxana Mayra. "Rol de la vía autofágica-lisosomal en la muerte celular inducida por manganeso en células gliales". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2014-07-17. Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de Química Biológica Rol de la vía autofágica- lisosomal en la muerte celular inducida por manganeso en células gliales Tesis doctoral para optar al título de Doctor de la Universidad de Buenos Aires en el área de Química Biológica Lic. Roxana Mayra Gorojod Director de tesis: Dra.
    [Show full text]
  • Progress in the Production of Medicinally Important Secondary
    Progress in the production of medicinally important secondary metabolites in recombinant microorganisms or plants-Progress in alkaloid biosynthesis Michael Wink, Holger Schäfer To cite this version: Michael Wink, Holger Schäfer. Progress in the production of medicinally important secondary metabo- lites in recombinant microorganisms or plants-Progress in alkaloid biosynthesis. Biotechnology Jour- nal, Wiley-VCH Verlag, 2009, 4 (12), pp.1684. 10.1002/biot.200900229. hal-00540529 HAL Id: hal-00540529 https://hal.archives-ouvertes.fr/hal-00540529 Submitted on 27 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biotechnology Journal Progress in the production of medicinally important secondary metabolites in recombinant microorganisms or plants-Progress in alkaloid biosynthesis For Peer Review Journal: Biotechnology Journal Manuscript ID: biot.200900229.R1 Wiley - Manuscript type: Review Date Submitted by the 28-Oct-2009 Author: Complete List of Authors: Wink, Michael; Heidelberg University, Institute for Pharmacy and Molecular Biotechnology
    [Show full text]
  • CENTOGENE's Severe and Early Onset Disorder Gene List
    CENTOGENE’s severe and early onset disorder gene list USED IN PRENATAL WES ANALYSIS AND IDENTIFICATION OF “PATHOGENIC” AND “LIKELY PATHOGENIC” CENTOMD® VARIANTS IN NGS PRODUCTS The following gene list shows all genes assessed in prenatal WES tests or analysed for P/LP CentoMD® variants in NGS products after April 1st, 2020. For searching a single gene coverage, just use the search on www.centoportal.com AAAS, AARS1, AARS2, ABAT, ABCA12, ABCA3, ABCB11, ABCB4, ABCB7, ABCC6, ABCC8, ABCC9, ABCD1, ABCD4, ABHD12, ABHD5, ACACA, ACAD9, ACADM, ACADS, ACADVL, ACAN, ACAT1, ACE, ACO2, ACOX1, ACP5, ACSL4, ACTA1, ACTA2, ACTB, ACTG1, ACTL6B, ACTN2, ACVR2B, ACVRL1, ACY1, ADA, ADAM17, ADAMTS2, ADAMTSL2, ADAR, ADARB1, ADAT3, ADCY5, ADGRG1, ADGRG6, ADGRV1, ADK, ADNP, ADPRHL2, ADSL, AFF2, AFG3L2, AGA, AGK, AGL, AGPAT2, AGPS, AGRN, AGT, AGTPBP1, AGTR1, AGXT, AHCY, AHDC1, AHI1, AIFM1, AIMP1, AIPL1, AIRE, AK2, AKR1D1, AKT1, AKT2, AKT3, ALAD, ALDH18A1, ALDH1A3, ALDH3A2, ALDH4A1, ALDH5A1, ALDH6A1, ALDH7A1, ALDOA, ALDOB, ALG1, ALG11, ALG12, ALG13, ALG14, ALG2, ALG3, ALG6, ALG8, ALG9, ALMS1, ALOX12B, ALPL, ALS2, ALX3, ALX4, AMACR, AMER1, AMN, AMPD1, AMPD2, AMT, ANK2, ANK3, ANKH, ANKRD11, ANKS6, ANO10, ANO5, ANOS1, ANTXR1, ANTXR2, AP1B1, AP1S1, AP1S2, AP3B1, AP3B2, AP4B1, AP4E1, AP4M1, AP4S1, APC2, APTX, AR, ARCN1, ARFGEF2, ARG1, ARHGAP31, ARHGDIA, ARHGEF9, ARID1A, ARID1B, ARID2, ARL13B, ARL3, ARL6, ARL6IP1, ARMC4, ARMC9, ARSA, ARSB, ARSL, ARV1, ARX, ASAH1, ASCC1, ASH1L, ASL, ASNS, ASPA, ASPH, ASPM, ASS1, ASXL1, ASXL2, ASXL3, ATAD3A, ATCAY, ATIC, ATL1, ATM, ATOH7,
    [Show full text]