Fluoride-Salt Cooled High Temperature Reactors (FHR) Raluca O. Scarlat Nuclear Engineering, UW Madison
[email protected] | HEATandMASS.ep.wisc.edu Engineering Physics Colloquium UW Madison 21 April 2015 FOR PUBLIC DISTRIBUTION Outline 1. Overview of FHR technology 2. Tritium management in the FHR 3. Tritium transport in the salt-graphite system 4. Salt freezing and overcooling transients 5. Future work Raluca Scarlat | HEATandMASS.ep.wisc.edu 2 FHRs: Solid Fuel, Salt Cooled Reactors Liquid fluoride salt coolants Coated particle fuel Excellent heat transfer (TRISO Fuel) Transparent, clean fluoride salt Boiling point ~1400ºC Reacts very slowly in air No energy source to pressurize containment But high freezing temperature (459oC) And industrial safety required for Be FHRs have uniquely large fuel thermal margin Raluca Scarlat | HEATandMASS.ep.wisc.edu 3 900 MWth 400 MWth PB-FHR PBMR Nuclear Air-Brayton Combined Cycle (NACC) Fluoride Salt Coolants Were Conventional combined cycle gas Developed plants achieve efficiencies of 50-60% for the Aircraft Nuclear Propulsion Program ! Aircraft Reactor Experiment, 1954 Nuclear Air-Brayton Combined Cycle (NACC) Modified GE 7FA Turbine for Co-fired NACC Base-load power: 42% efficiency (100 MWe) Gas co-firing: 66% efficiency (242 MWe) FHR Physical Plant Arrangement Coiled Tube Air Heaters (CTAHs) P.V. Gilli et al., “Radial Flow Heat Exchanger,” U.S. Patent Number 3712370, Filing date: Sept. 22, 1970, Issue date: 1973 PB-FHR Mark 1 Core Design Andreades, C., Cisneros, A. T., Choi, J. K., Chong, A. Y. K., Fratoni, M., Hong, S., … Peterson, P. F. (2014). Technical Description of the “Mark 1” Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactor (PB-FHR) Power Plant.