Perceptions of Science in America
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scientific Communities in the Developing World Scientific Communities in the Developing World
Scientific Communities in the Developing World Scientific Communities in the Developing World Edited by jacques Caillard V.V. Krishna Roland Waast Sage Publications New Delhiflhousand Oaks/London Copyright @) Jacques Gaillard, V.V. Krishna and Roland Waast, 1997. All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage or retrieval system, without permission in writing from the publisher. First published in 1997 by Sage Publications India Pvt Ltd M-32, Greater Kailash Market I New Delhi 110 048 Sage Publications Inc Sage Publications Ltd 2455 Teller Road 6 Bonhill Street Thousand Oaks, California 91320 London EC2A 4PU Published by Tejeshwar Singh for Sage Publications India Pvt Ltd, phototypeset by Pagewell Photosetters, Pondicherry and printed at Chaman Enterprises, Delhi. Library of Congress Cataloging-in-Publication Data Scientific communities in the developing world I edited by Jacques Gaillard, V.V. Krishna, Roland Waast. p. cm. Includes bibliographical references and index. 1. Science-Developing countries--History. 2. Science-Social aspect- Developing countries--History. I. Gaillard, Jacques, 1951- . 11. Krishna, V.V. 111. Waast, Roland, 1940- . Q127.2.S44 306.4'5'091724--dc20 1996 9617807 ISBN: 81-7036565-1 (India-hb) &8039-9330-7 (US-hb) Sage Production Editor: Sumitra Srinivasan Contents List of Tables List of Figures Preface 1. Introduction: Scientific Communities in the Developing World Jacques Gaillard, V.V. Krishna and Roland Waast Part 1: Scientific Communities in Africa 2. Sisyphus or the Scientific Communities of Algeria Ali El Kenz and Roland Waast 3. -
The Role of Social Context in the Production of Scientific Knowledge
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work 5-2015 The Role of Social Context in the Production of Scientific Knowledge Kristen Lynn Beard [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Part of the Philosophy of Science Commons Recommended Citation Beard, Kristen Lynn, "The Role of Social Context in the Production of Scientific nowledgeK " (2015). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/1852 This Dissertation/Thesis is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. The Role of Social Context in the Production of Scientific Knowledge Kristen Lynn Beard The University of Tennessee, Knoxville Chancellor’s Honors Program Department of Philosophy Undergraduate Thesis Submitted December 8, 2014 Thesis Advisor: Dr. Nora Berenstain Beard 1 Model 1: The Influence of Social Context on the Scientific Method Beard 2 Introduction: Scientific Knowledge as Both Social and Rational A person may believe that a certain theory is true and explain that he does so, for instance, because it is the best explanation he has of the facts or because it gives him the most satisfying world picture. This does not make him irrational, but I take it to be part of empiricism to disdain such reasons. -
Bringing Science and Scientists to Life in Post-Secondary Science Education
Sci & Educ DOI 10.1007/s11191-010-9310-7 The Story Behind the Science: Bringing Science and Scientists to Life in Post-Secondary Science Education Michael P. Clough Ó Springer Science+Business Media B.V. 2010 Abstract With funding from the United States National Science Foundation, 30 histor- ical short stories designed to teach science content and draw students’ attention to the nature of science (NOS) have been created for post-secondary introductory astronomy, biology, chemistry, geology, and physics courses. The project rationale, story development and structure, and freely available stories at the project website are presented. 1 Introduction The phrase ‘‘nature of science’’ (NOS) has been used for some time, particularly in the science education community, in referring to what science is, how science works, the epistemological and ontological foundations underlying science, the culture of science, and how society both influences and reacts to scientific activities (Clough 2006). Accurately understanding the NOS is crucial for science literacy (AAAS 1989; Matthews 1994; McComas and Olson 1998; NRC 1996) and can perhaps play an important role in enticing students to further their science education. Matthews (1994), McComas et al. (1998) and others have argued that knowledge of scientists and how science works will enhance students’ understanding of science as a human endeavor; increase interest in science and science classes; improve student learning of science content; and promote better social decision-making. Morris Shamos (1995) claimed that understanding the NOS is the most important component of scientific literacy because that knowledge, accurate or not, is what citizens use when assessing public issues involving science and technology. -
How Science Works
PB 1 How science works The Scientific Method is traditionally presented in the first chapter of science text- books as a simple recipe for performing scientific investigations. Though many use- ful points are embodied in this method, it can easily be misinterpreted as linear and “cookbook”: pull a problem off the shelf, throw in an observation, mix in a few ques- tions, sprinkle on a hypothesis, put the whole mixture into a 350° experiment—and voila, 50 minutes later you’ll be pulling a conclusion out of the oven! That might work if science were like Hamburger Helper®, but science is complex and cannot be re- duced to a single, prepackaged recipe. The linear, stepwise representation of the process of science is simplified, but it does get at least one thing right. It captures the core logic of science: testing ideas with evidence. However, this version of the scientific method is so simplified and rigid that it fails to accurately portray how real science works. It more accurately describes how science is summarized after the fact—in textbooks and journal articles—than how sci- ence is actually done. The simplified, linear scientific method implies that scientific studies follow an unvarying, linear recipe. But in reality, in their work, scientists engage in many different activities in many different sequences. Scientific investigations often involve repeating the same steps many times to account for new information and ideas. The simplified, linear scientific method implies that science is done by individual scientists working through these steps in isolation. But in reality, science depends on interactions within the scientific community. -
Climate Change: How Do We Know We're Not Wrong? Naomi Oreskes
Changing Planet: Past, Present, Future Lecture 4 – Climate Change: How Do We Know We’re Not Wrong? Naomi Oreskes, PhD 1. Start of Lecture Four (0:16) [ANNOUNCER:] From the Howard Hughes Medical Institute...The 2012 Holiday Lectures on Science. This year's lectures: "Changing Planet: Past, Present, Future," will be given by Dr. Andrew Knoll, Professor of Organismic and Evolutionary Biology at Harvard University; Dr. Naomi Oreskes, Professor of History and Science Studies at the University of California, San Diego; and Dr. Daniel Schrag, Professor of Earth and Planetary Sciences at Harvard University. The fourth lecture is titled: Climate Change: How Do We Know We're Not Wrong? And now, a brief video to introduce our lecturer Dr. Naomi Oreskes. 2. Profile of Dr. Naomi Oreskes (1:14) [DR. ORESKES:] One thing that's really important for all people to understand is that the whole notion of certainty is mistaken, and it's something that climate skeptics and deniers and the opponents of evolution really exploit. Many of us think that scientific knowledge is certain, so therefore if someone comes along and points out the uncertainties in a certain scientific body of knowledge, we think that undermines the science, we think that means that there's a problem in the science, and so part of my message is to say that that view of science is incorrect, that the reality of science is that it's always uncertain because if we're actually doing research, it means that we're asking questions, and if we're asking questions, then by definition we're asking questions about things we don't already know about, so uncertainty is part of the lifeblood of science, it's something we need to embrace and realize it's a good thing, not a bad thing. -
PDF Download Starting with Science Strategies for Introducing Young Children to Inquiry 1St Edition Ebook
STARTING WITH SCIENCE STRATEGIES FOR INTRODUCING YOUNG CHILDREN TO INQUIRY 1ST EDITION PDF, EPUB, EBOOK Marcia Talhelm Edson | 9781571108074 | | | | | Starting with Science Strategies for Introducing Young Children to Inquiry 1st edition PDF Book The presentation of the material is as good as the material utilizing star trek analogies, ancient wisdom and literature and so much more. Using Multivariate Statistics. Michael Gramling examines the impact of policy on practice in early childhood education. Part of a series on. Schauble and colleagues , for example, found that fifth grade students designed better experiments after instruction about the purpose of experimentation. For example, some suggest that learning about NoS enables children to understand the tentative and developmental NoS and science as a human activity, which makes science more interesting for children to learn Abd-El-Khalick a ; Driver et al. Research on teaching and learning of nature of science. The authors begin with theory in a cultural context as a foundation. What makes professional development effective? Frequently, the term NoS is utilised when considering matters about science. This book is a documentary account of a young intern who worked in the Reggio system in Italy and how she brought this pedagogy home to her school in St. Taking Science to School answers such questions as:. The content of the inquiries in science in the professional development programme was based on the different strands of the primary science curriculum, namely Living Things, Energy and Forces, Materials and Environmental Awareness and Care DES Exit interview. Begin to address the necessity of understanding other usually peer positions before they can discuss or comment on those positions. -
“Hard-Won” Consensus Brent Ranalli
Ranalli • Climate SCienCe, ChaRaCteR, and the “haRd-Won” ConSenSuS Brent Ranalli Climate Science, Character, and the “Hard-Won” Consensus ABSTRACT: What makes a consensus among scientists credible and convincing? This paper introduces the notion of a “hard-won” consensus and uses examples from recent debates over climate change science to show that this heuristic stan- dard for evaluating the quality of a consensus is widely shared. The extent to which a consensus is “hard won” can be understood to depend on the personal qualities of the participating experts; the article demonstrates the continuing util- ity of the norms of modern science introduced by Robert K. Merton by showing that individuals on both sides of the climate science debate rely intuitively on Mertonian ideas—interpreted in terms of character—to frame their arguments. INTRodUCTIoN he late Michael Crichton, science fiction writer and climate con- trarian, once remarked: “Whenever you hear the consensus of Tscientists agrees on something or other, reach for your wallet, because you’re being had. In science consensus is irrelevant. What is relevant is reproducible results” (Crichton 2003). Reproducibility of results and other methodological criteria are indeed the proper basis for scientific judgments. But Crichton is wrong to say that consensus is irrel- evant. Consensus among scientists serves to certify facts for the lay public.1 Those on the periphery of the scientific enterprise (i.e., policy makers and the public), who don’t have the time or the expertise or the equipment to check results for themselves, necessarily rely on the testimony of those at the center. -
Sacred Rhetorical Invention in the String Theory Movement
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public. -
The Consensus on Anthropogenic Global Warming Matters
BSTXXX10.1177/0270467617707079Bulletin of Science, Technology & SocietyPowell 707079research-article2017 Article Bulletin of Science, Technology & Society 2016, Vol. 36(3) 157 –163 The Consensus on Anthropogenic © The Author(s) 2017 Reprints and permissions: sagepub.com/journalsPermissions.nav Global Warming Matters DOI:https://doi.org/10.1177/0270467617707079 10.1177/0270467617707079 journals.sagepub.com/home/bst James Lawrence Powell1 Abstract Skuce et al., responding to Powell, title their article, “Does It Matter if the Consensus on Anthropogenic Global Warming Is 97% or 99.99%?” I argue that the extent of the consensus does matter, most of all because scholars have shown that the stronger the public believe the consensus to be, the more they support the action on global warming that human society so desperately needs. Moreover, anyone who knows that scientists once thought that the continents are fixed in place, or that the craters of the Moon are volcanic, or that the Earth cannot be more than 100 million years old, understands that a small minority has sometimes turned out to be right. But it is hard to think of a case in the modern era in which scientists have been virtually unanimous and wrong. Moreover, as I show, the consensus among publishing scientists is demonstrably not 97%. Instead, five surveys of the peer-reviewed literature from 1991 to 2015 combine to 54,195 articles with an average consensus of 99.94%. Keywords global warming, climate change, consensus, peer review, history of science Introduction Consensus Skuce et al. (2016, henceforth S16), responding to Powell What does consensus in science mean and how can it best be (2016), ask, “Does it matter if the consensus on anthropo- measured? The Oxford English Dictionary (2016) defines genic global warming is 97% or 99.99%?” consensus as “Agreement in opinion; the collective unani- Of course it matters. -
Total Scicomm: a Strategy for Communicating Open Science
publications Communication Total SciComm: A Strategy for Communicating Open Science Manh-Toan Ho * , Manh-Tung Ho and Quan-Hoang Vuong Centre for Interdisciplinary Social Research, Phenikaa University, Hanoi 100803, Vietnam; [email protected] (M.-T.H.); [email protected] (Q.-H.V.) * Correspondence: [email protected] Abstract: This paper seeks to introduce a strategy of science communication: Total SciComm or all-out science communication. We proposed that to maximize the outreach and impact, scientists should use different media to communicate different aspects of science, from core ideas to methods. The paper uses an example of a debate surrounding a now-retracted article in the Nature journal, in which open data, preprints, social media, and blogs are being used for a meaningful scientific conversation. The case embodied the central idea of Total SciComm: the scientific community employs every medium to communicate scientific ideas and engages all scientists in the process. Keywords: preprints; open science; science communication; social media; Total SciComm 1. Introduction Growing skepticism towards scientific findings makes capturing attention from the public an urgent and serious issue for scientists. The attention will help raise the scien- Citation: Ho, M.-T.; Ho, M.-T.; tists’ profiles and provide scientists a channel to communicate through scientific ideas. Vuong, Q.-H. Total SciComm: A On YouTube, and a new form of radio—podcast—the rise of the Intellectual Dark Web Strategy for Communicating Open group is a prominent example of an effort for good and effective science communication [1]. Science. Publications 2021, 9, 31. -
Scientific Consensus in Policy and the Media
An Exercise in Scientific Integrity: Scientific Consensus in Policy and the Media I. The Importance of Scientific Consensus Science is a collaborative effort; over time, the ideas of many scientists are synthesized, modified, clarified, and sometimes discarded altogether as our understanding improves. Thus, science can be viewed as a method of reaching a consensus about the ways in which the world works. 1. From what you know about the scientific method, the peer review process, and the development of scientific theories, what does it mean when a scientific consensus emerges in a given field? 2. When science can have an impact on issues such as public health, environmental sustainability, and areas in which people have ethical or religious concerns (e.g., evolution, cloning), how should the existence of a scientific consensus affect the development of policy? 3. How should policy makers react to a scientific consensus that is politically or economically inconvenient? II. Skepticism Toward Scientific Consensus There are two unfortunate obstacles to an accurate public understanding of scientific consensus and its importance. First is a tendency to exaggerate the number of times scientific consensus has been overturned. This comes, in part, from the excitement of scientists, the public, and the media to new and untested ideas. When these attention- grabbing ideas prove mistaken or exaggerated during subsequent scientific review, this can give the impression that science has “failed.” There are certainly times when scientific consensus has been overturned, but such instances are rare. 4. How should policy makers react to cutting-edge science? Are there situations where policy decisions should be made before a scientific consensus has been reached, or should governments wait until the science is very clear? 5. -
Understanding and Trusting Science
Understanding and Trusting Science MATTHEW H. SLATER, JOANNA K. HUXSTER, JULIA E. BRESTICKER (forthcoming in the Journal for the General Philosophy of Science) Science communication via testimony requires a certain level of trust. But in the context of ideologically-entangled scientific issues, trust is in short supply — particularly when the issues are politically “entangled”. In such cases, cultural values are better predictors than scientific literacy for whether agents trust the publicly-directed claims of the scientific community. In this paper, we argue that a common way of thinking about scientific literacy — as knowledge of particular scientific facts or concepts — ought to give way to a second-order understanding of science as a process as a more important notion for the public’s trust of science. 1. Introduction The state of scientific literacy in America and in other developed nations has been an issue of concern for many decades now (Miller 1983, 2004; Bodmer 1985; OECD 2007). More recently, a palpable anti-science sentiment has become more prominent (McCright and Dunlap 2011; Kahan 2015). This is reflected, in part, by the fact that large portions of the public remain intransigent with respect to their dismissal of policy-relevant science, such as that concerning the risks of anthropogenic climate change (Leiserowitz et al. 2016). Given the amount of attention that scientific education and communication have received in the intervening decades, these facts may seem a little surprising. Why have we failed to bring about better outcomes? A number of plausible explanations could be cited, from the persistence of problematic models of science communication to the increasing prominence of well-funded anti-science groups (Dunlap and McCright 2010, 2011; Brulle 2014).