COVID-19 Pandemic and the Fool's Errand of Pseudoscience-Based Decision-Making COVID-19 Pandemic and the Fool's Errand of Ps

Total Page:16

File Type:pdf, Size:1020Kb

COVID-19 Pandemic and the Fool's Errand of Pseudoscience-Based Decision-Making COVID-19 Pandemic and the Fool's Errand of Ps TIO CA N A DU N COVID-19 Pandemic and the Fool’s Errand of E D 9 A 1 C - Pseudoscience-Based Decision-Making T D I I O V N O C Science is a very successful and reliable enterprise for denial or inappropriate skepticism — rejecting or creating understanding the natural world. Without science and the doubt about science in order to fabricate an illusion that a technology that stems from science, human population scientific controversy exists. Both forms result in and life-expectancy would be a fraction of what it is now. uncertainty about and resistance to reliable scientific Tombstones in cemeteries provide testimony of how knowledge and consensus. This leads to doubting the prevalent childhood and early adult deaths were prior to community of authentic experts and a hesitancy to act advancements in science. Ironically, the success of appropriately to very real problems. Most disconcerting is science and technology blinds many people to the realities the purposeful promotion of pseudoscience for personal, of life and death in the not-to-distant past. Those who economic, and/or ideological reasons. The COVID-19 faced the ravages of disease, common ailments, pandemic illustrates how pseudoscience promotes poor inhospitable weather, and other devastating realities of life decision-making that places all of society at risk, and how would be shocked at the advances that we now take for the navigation of information and identification of granted. They would likely be equally perplexed at the trustworthy expertise are crucial for better decision- significant and growing distrust of advances in science making. that have mitigated the suffering they had to endure. ! Distrust of science and increasing adherence to Strategies of those spreading pseudoscience pseudoscientific claims follow, in part, from how far include: 1) appeals to the public via media rather science has progressed. Suspicions increase because of than through expert peer-review; 2) “cherry the advanced study often required to comprehend many picking” reports and data to support claims that scientific ideas and their justification. Few citizens or are at odds with the full body of scientific policymakers have the requisite background to evidence and the consensus view; and 3) understand and judge scientific claims. Even scientists are challenging science using inconsistent so specialized that they can only speak authoritatively in arguments2 (i.e., using unreasonable standards their own field of expertise. But citizens and policymakers to challenge well-supported scientific claims can and must understand how to judge who are the while at the same time putting forward weak authentic scientific experts, and then respect that evidence for a pseudoscientific claim). expertise in personal and societal decision-making. Accurately identifying the community of authentic experts to trust in decision-making is crucial because the misuse A clear example of deliberate pseudoscience promotion is and misrepresentation of science is a long-standing and the tobacco industry's doubt campaign during the growing threat to personal and societal well-being. twentieth century regarding smoking that has resulted in an estimated 100 million deaths. Early efforts employed Distinguishing science from pseudoscience can be persuasive advertising with images of doctors and difficult for two reasons. First, while a strength of science is researchers to encourage smokers to determine for its ability to revisit and possibly revise ideas about the themselves whether cigarettes cause throat irritation natural world, non-experts may wrongly see changing (Figure 1). This tactic inappropriately conveyed that 1 scientific knowledge as fleeting and unreliable . Second, personal experience and scientific research were equally pseudoscientific claims often sound scientific, invoke reliable. By the mid-1950's, converging evidence from some aspects of authentic science, and wrongly promote clinical observations, epidemiology, animal experts, and doubt when scientific knowledge is modified. chemical analyses established a clear link between Pseudoscience takes two broad forms: (1) Pseudoscience smoking and lung cancer. The tobacco industry, idea promotion — encouraging ideas that are anticipating the economic threat to their industry, changed unsubstantiated or at odds with ideas that the community their pseudoscience approaches to cast doubt on the link of experts maintain are best supported; and (2) Science between smoking and cancer. Rather than attack science COVID-19 Pandemic and the Fool’s Errand of Pseudoscience-Based Decision-Making 1 www.storybehindthescience.org FIGURE 1 cancer was based on “animal studies” Cigarette advertisements appearing in 1947 and 1951 and “merely statistical7.” The tobacco industry further exploited the public's lack of science expertise by promoting inappropriately skeptical questions that were already well understood by the scientific community, thus creating a false narrative of scientific controversy. 1. How do the smoking advertisements above use imagery and statements to i n f u s e d o u b t a n d u n - certainty among the public, while also endowing the consumer with a false sense that they have expertise like that of medical researchers and practitioners? http://tobacco.stanford.edu/tobacco_web/images/tobacco_ads/pseudoscience/single_case/large/case_01.jpg http://tobacco.stanford.edu/tobacco_web/images/tobacco_ads/pseudoscience/pseudoscience/large/pseudo_01.jpg directly, the tobacco industry sought to convince the public ! of its own scientific credibility while simultaneously Pseudoscience efforts may also include undermining the notion that scientific consensus existed 3 misuses of well-established scientific claims about the ill effects of smoking . For instance, they created to advance economic, ideological, and a Council for Tobacco Research, spending $300 million personal agendas. For instance, e-cigarette between 1954 and 1997 to manufacture doubt about the marketers wrongly convey that vaping is safe science on smoking and health invoked (Figure 2). This by emphasizing the well-established scientific included releasing scientifically sounding reports and conclusion regarding the adverse health recruiting doctors and scientists (many of which lacked consequences of smoking. relevant expertise) to promote those reports4,5,6. These pseudo-experts claimed that evidence linking smoking to Many examples exist illustrating how FIGURE 2 pseudoscience has caused widespread Cigarette advertisements in 1954 and 1959. Kent’s filter was made of doubt and detrimental public and crocidolite asbestos, which is considered the deadliest form of asbestos due to the small amounts that can cause mesothelioma. personal decision-making, including the 1918 Spanish Flu and the COVID-19 pandemics. The 1918 Spanish Flu began during the end of World War I. Crowded c a m p s a n d t r o o p m o v e m e n t s significantly contributed to the spread of the influenza strain8. The politics and cultural milieu during the war greatly exacerbated the effects of the 1918 Flu and fostered an environment conducive to pseudoscience promotion and questioning the severity of the pandemic. Censorship laws in Europe were increasingly utilized at that time to suppress news about the pandemic that might negatively impact national morale9. A strong sense of patriotism among http://tobacco.stanford.edu/tobacco_web/images/tobacco_ads/filter_safety_myths/protects_your_health/large/protects_14.jpg Americans and Europeans encouraged http://tobacco.stanford.edu/tobacco_web/images/tobacco_ads/pseudoscience/pseudoscience/large/pseudo_48.jpg citizens to remain supportive and 2 COVID-19 Pandemic and the Fool’s Errand of Pseudoscience-Based Decision-Making www.storybehindthescience.org consumed with the war effort to the point that expressing demic was over, social distancing measures were relaxed, concerns about the flu was discouraged. On September businesses and churches were reopened, and on the 21st 28, 1918 in Philadelphia, 200,000 citizens gathered for the the mask ordinance was repealed. The mask ordinance Liberty Loan Parade held to promote government war repeal was met with such public jubilation that people bonds, creating a fertile ground for the Spanish Flu to literally ripped off their masks in the streets and spread10. Within three days every city hospital was filled, celebrated. Unfortunately, thousands of new flu cases and approximately 12,000 people died of the flu in the occurred over the following weeks and a reinstatement of ensuing month. the mask ordinance was deliberated on December 4th by the Board of Health and pivotal community members. The As the pandemic progressed, pseudoscientific thinking San Francisco mask ordinance reinstatement proposal and remedies, including cigarettes (Figure 3) and snake oil was highly contentious, particularly given the upcoming elixirs gained traction11. At the same time, more holiday season, and met with resistance by those with scientifically grounded preventative measures were political and economic interests. This resistance to mask enacted in major cities. San Francisco wearing grew throughout the winter closed all schools, businesses, bars, FIGURE 3 of 1918 to spring of 1919 despite the and churches on October 18th and Example of pseudoscientific advertising San Francisco Board of Health and four days later passed an ordinance used during the 1918 Flu Pandemic the American Public Health Assoc- requiring masks consisting of at least iation declaring
Recommended publications
  • The Role of Participation in a Techno-Scientific Controversy
    PARTICIPATORY GOVERNANCE AND INSTITUTIONAL INNOVATION Participatory Governance and Institutional Innovation [PAGANINI] Contract No. CIT2-CT-2004-505791 . Deliverable Number 16 Work Package 6 _ GM Food THE ROLE OF PARTICIPATION IN A TECHNO-SCIENTIFIC CONTROVERSY Larry Reynolds and Bronislaw Szerszynski with Maria Kousis and Yannis Volakakis 6th EU Framework Programme for Research and Technology Participatory Governance and Institutional Innovation [PAGANINI] Contract No. CIT2-CT-2004-505791 . Deliverable Number 16 WORK PACKAGE 6 _ GM FOOD THE ROLE OF PARTICIPATION IN A TECHNO-SCIENTIFIC CONTROVERSY Larry Reynolds and Bronislaw Szerszynski with Maria Kousis and Yannis Volakakis 1 The Paganini Project Focussing on selected key areas of the 6th EU Framework Programme for Research and Technology, PAGANINI investigates the ways in which participatory practices contribute to problem solving in a number of highly contentious fields of EU governance. PAGANINI looks at a particular dynamic cluster of policy areas concerned with what we call “the politics of life”: medicine, health, food, energy, and environment. Under “politics of life” we refer to dimensions of life that are only to a limited extent under human control - or where the public has good reasons to suspect that there are serious limitations to socio-political control and steering. At the same time, “politics of life” areas are strongly connected to normative, moral and value-based factors, such as a sense of responsibility towards the non-human nature, future generations and/or one‟s
    [Show full text]
  • Climate Change: How Do We Know We're Not Wrong? Naomi Oreskes
    Changing Planet: Past, Present, Future Lecture 4 – Climate Change: How Do We Know We’re Not Wrong? Naomi Oreskes, PhD 1. Start of Lecture Four (0:16) [ANNOUNCER:] From the Howard Hughes Medical Institute...The 2012 Holiday Lectures on Science. This year's lectures: "Changing Planet: Past, Present, Future," will be given by Dr. Andrew Knoll, Professor of Organismic and Evolutionary Biology at Harvard University; Dr. Naomi Oreskes, Professor of History and Science Studies at the University of California, San Diego; and Dr. Daniel Schrag, Professor of Earth and Planetary Sciences at Harvard University. The fourth lecture is titled: Climate Change: How Do We Know We're Not Wrong? And now, a brief video to introduce our lecturer Dr. Naomi Oreskes. 2. Profile of Dr. Naomi Oreskes (1:14) [DR. ORESKES:] One thing that's really important for all people to understand is that the whole notion of certainty is mistaken, and it's something that climate skeptics and deniers and the opponents of evolution really exploit. Many of us think that scientific knowledge is certain, so therefore if someone comes along and points out the uncertainties in a certain scientific body of knowledge, we think that undermines the science, we think that means that there's a problem in the science, and so part of my message is to say that that view of science is incorrect, that the reality of science is that it's always uncertain because if we're actually doing research, it means that we're asking questions, and if we're asking questions, then by definition we're asking questions about things we don't already know about, so uncertainty is part of the lifeblood of science, it's something we need to embrace and realize it's a good thing, not a bad thing.
    [Show full text]
  • Rhetoric for Becoming Otherwise
    The Pennsylvania State University The Graduate School College of the Liberal Arts RHETORIC FOR BECOMING OTHERWISE: LIFE, LITERATURE, GENEALOGY, FLIGHT A Dissertation in English by Abram D. Anders © 2009 Abram D. Anders Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2009 ii The dissertation of Abram D. Anders was reviewed and approved* by the following: Richard M. Doyle Professor of English and Science, Technology and Society Dissertation Advisor Chair of Committee Jeffrey T. Nealon Liberal Arts Research Professor of English Xiaoye You Assistant Professor of English and Asian Studies Robert A. Yarber, Jr. Distinguished Professor of Art Robert R. Edwards Edwin Erle Sparks Professor of English and Comparative Literature Department of English Graduate Director *Signatures are on file in the Graduate School. iii ABSTRACT Rhetoric for Becoming Otherwise begins with the Isocratean premise that thought, speech, writing are best understood as bridges between the already said of language and the emerging circumstances that are the occasions for their production. This argument is rehearsed across a variety of domains and instances following Isocrates exhortation that the rhetorician or practitioner of philosophia can only model the movement of discourse without expecting to provide any “true knowledge” or “absolute theory” for how to encounter the problematics of an endlessly deferred present. As a matter of rhetoric, becoming otherwise is the continually renewed task of creating something new from the resources of language and for the demands of an ever deferred present—Presocratics versus Classicists (Chapter 1). As a matter of health, becoming otherwise is the necessity of overcoming limitation and suffering in order to achieve new norms of health and pursue the ever changing opportunities of a self‐developing capacity for producing new capacities—Normativity versus Normalization (Chapter 2).
    [Show full text]
  • “Hard-Won” Consensus Brent Ranalli
    Ranalli • Climate SCienCe, ChaRaCteR, and the “haRd-Won” ConSenSuS Brent Ranalli Climate Science, Character, and the “Hard-Won” Consensus ABSTRACT: What makes a consensus among scientists credible and convincing? This paper introduces the notion of a “hard-won” consensus and uses examples from recent debates over climate change science to show that this heuristic stan- dard for evaluating the quality of a consensus is widely shared. The extent to which a consensus is “hard won” can be understood to depend on the personal qualities of the participating experts; the article demonstrates the continuing util- ity of the norms of modern science introduced by Robert K. Merton by showing that individuals on both sides of the climate science debate rely intuitively on Mertonian ideas—interpreted in terms of character—to frame their arguments. INTRodUCTIoN he late Michael Crichton, science fiction writer and climate con- trarian, once remarked: “Whenever you hear the consensus of Tscientists agrees on something or other, reach for your wallet, because you’re being had. In science consensus is irrelevant. What is relevant is reproducible results” (Crichton 2003). Reproducibility of results and other methodological criteria are indeed the proper basis for scientific judgments. But Crichton is wrong to say that consensus is irrel- evant. Consensus among scientists serves to certify facts for the lay public.1 Those on the periphery of the scientific enterprise (i.e., policy makers and the public), who don’t have the time or the expertise or the equipment to check results for themselves, necessarily rely on the testimony of those at the center.
    [Show full text]
  • The Consensus on Anthropogenic Global Warming Matters
    BSTXXX10.1177/0270467617707079Bulletin of Science, Technology & SocietyPowell 707079research-article2017 Article Bulletin of Science, Technology & Society 2016, Vol. 36(3) 157 –163 The Consensus on Anthropogenic © The Author(s) 2017 Reprints and permissions: sagepub.com/journalsPermissions.nav Global Warming Matters DOI:https://doi.org/10.1177/0270467617707079 10.1177/0270467617707079 journals.sagepub.com/home/bst James Lawrence Powell1 Abstract Skuce et al., responding to Powell, title their article, “Does It Matter if the Consensus on Anthropogenic Global Warming Is 97% or 99.99%?” I argue that the extent of the consensus does matter, most of all because scholars have shown that the stronger the public believe the consensus to be, the more they support the action on global warming that human society so desperately needs. Moreover, anyone who knows that scientists once thought that the continents are fixed in place, or that the craters of the Moon are volcanic, or that the Earth cannot be more than 100 million years old, understands that a small minority has sometimes turned out to be right. But it is hard to think of a case in the modern era in which scientists have been virtually unanimous and wrong. Moreover, as I show, the consensus among publishing scientists is demonstrably not 97%. Instead, five surveys of the peer-reviewed literature from 1991 to 2015 combine to 54,195 articles with an average consensus of 99.94%. Keywords global warming, climate change, consensus, peer review, history of science Introduction Consensus Skuce et al. (2016, henceforth S16), responding to Powell What does consensus in science mean and how can it best be (2016), ask, “Does it matter if the consensus on anthropo- measured? The Oxford English Dictionary (2016) defines genic global warming is 97% or 99.99%?” consensus as “Agreement in opinion; the collective unani- Of course it matters.
    [Show full text]
  • Perceptions of Science in America
    PERCEPTIONS OF SCIENCE IN AMERICA A REPORT FROM THE PUBLIC FACE OF SCIENCE INITIATIVE THE PUBLIC FACE OF SCIENCE PERCEPTIONS OF SCIENCE IN AMERICA american academy of arts & sciences Cambridge, Massachusetts © 2018 by the American Academy of Arts & Sciences All rights reserved. isbn: 0-87724-120-1 This publication is available online at http://www.publicfaceofscience.org. The views expressed in this publication are those held by the contributors and are not necessarily those of the Officers and Members of the American Academy of Arts and Sciences. Please direct inquiries to: American Academy of Arts & Sciences 136 Irving Street Cambridge ma 02138-1996 Telephone: 617-576-5000 Fax: 617-576-5050 Email: [email protected] Web: www.amacad.org CONTENTS Preface v Top Three Takeaways vii Introduction 1 SECTION 1: General Perceptions of Science 4 Confidence in Scientific Leaders Remains Relatively Stable 4 A Majority of Americans Views Scientific Research as Beneficial . 6 . But Many are Concerned about the Pace of Change 7 Americans Express Strong Support for Public Investment in Research 8 Americans Support an Active Role for Science and Scientists in Public Life 10 Scientists Should Play a Major Role in Shaping Public Policy 11 Discussion and Research Considerations 12 SECTION 2: Demographic Influences on General Views of Science 14 Confidence in Scientific Leaders Varies Based on Demographics and Other Factors 14 Higher Educational Attainment Correlates with Positive Perceptions of Science 16 Trust in Scientists Varies Based on Education and Politics 18 Discussion and Research Considerations 20 SECTION 3: Case Studies of Perceptions on Specific Science Topics 22 There is No Single Anti-Science Population .
    [Show full text]
  • Nanoscience, Nanoscientists, and Controversy1
    Chapter 12 Nanoscience, Nanoscientists, and Controversy1 Jason Scott Robert 12.1 Introduction Contemporary life sciences and biotechnology research is controversial. Whether the topic is embryos, evolution, genetics, neuroimaging, pharmaceutical discovery, synthetic biology, or xenotransplantation, the research is subject to public, political, legal, regulatory, clinical, and/or scientific controversy. In some cases, the controversy may not be worth engaging, given the credibility (or, rather, lack thereof) of those who would object. Often, though, those who would object must be taken seriously— and even where the objectors lack credibility, any response to them must itself be serious. These are basic elements of civility in a pluralistic society, and yet they are widely ignored when science and scientists are the subjects of controversy. As a scholar of the life sciences in society, I have tended to pay less attention to the question of generally whether research in chemistry, math, physics, or engineering is as widely deemed to be controversial as is research in biology and biotechnology— except, of course, where that research is oriented toward or undertaken in concert with the life sciences (as with engineering in relation to stem cell biology, or chemistry in relation to directed molecular evolution). But with advances in nanos- cale science and engineering (NSE) research, it is hard to miss the fact that NSE is an exemplar of research in the natural and physical sciences that is controversial both in relation to the life sciences (as expected) but also in its own right. Whether because of the spatial or financial scale of the research, or because of the prospects for immense changes—good and bad—in science, industry, medicine, and society, or for a combination of these or other reasons, NSE research is paradigmatically controversial.
    [Show full text]
  • Social Decision-Making Under Scientific Controversy, Expertise, and the Precautionary Principle Olivier Godard
    Social Decision-Making under Scientific Controversy, Expertise, and the Precautionary Principle Olivier Godard To cite this version: Olivier Godard. Social Decision-Making under Scientific Controversy, Expertise, and the Precaution- ary Principle. C. Joerges, K.-H. Ladeur and E. Vos. Integrating scientific expertise into regulatory decisionmaking - National experiences and European innovations., Nomos Verlagsgesellschaft„ pp.39- 73, 1997. halshs-00624027 HAL Id: halshs-00624027 https://halshs.archives-ouvertes.fr/halshs-00624027 Submitted on 15 Sep 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Published in C. Joerges, K.-H. Ladeur and E. Vos (eds.), Integrating scientific expertise into regulatory decision- making - National experiences and European innovations. Baden-Baden, Nomos Verlagsgesellschaft, 1997, pp. 39-73. Social Decision-Making under Scientific Controversy, Expertise, and the Precautionary Principle Olivier GODARD * Abstract Integrating scientific inputs into the regulatory process is generally attributed to experts. But, environmental issues are often characterised by an all-pervasive uncertainty and scientific and social controversies which make the experts' task difficult. This paper presents the concept of social decision-making under scientific controversy and comes to an examination of the implicit but decisive roles expected from expertise in those contexts.
    [Show full text]
  • Scientific Consensus in Policy and the Media
    An Exercise in Scientific Integrity: Scientific Consensus in Policy and the Media I. The Importance of Scientific Consensus Science is a collaborative effort; over time, the ideas of many scientists are synthesized, modified, clarified, and sometimes discarded altogether as our understanding improves. Thus, science can be viewed as a method of reaching a consensus about the ways in which the world works. 1. From what you know about the scientific method, the peer review process, and the development of scientific theories, what does it mean when a scientific consensus emerges in a given field? 2. When science can have an impact on issues such as public health, environmental sustainability, and areas in which people have ethical or religious concerns (e.g., evolution, cloning), how should the existence of a scientific consensus affect the development of policy? 3. How should policy makers react to a scientific consensus that is politically or economically inconvenient? II. Skepticism Toward Scientific Consensus There are two unfortunate obstacles to an accurate public understanding of scientific consensus and its importance. First is a tendency to exaggerate the number of times scientific consensus has been overturned. This comes, in part, from the excitement of scientists, the public, and the media to new and untested ideas. When these attention- grabbing ideas prove mistaken or exaggerated during subsequent scientific review, this can give the impression that science has “failed.” There are certainly times when scientific consensus has been overturned, but such instances are rare. 4. How should policy makers react to cutting-edge science? Are there situations where policy decisions should be made before a scientific consensus has been reached, or should governments wait until the science is very clear? 5.
    [Show full text]
  • Understanding and Trusting Science
    Understanding and Trusting Science MATTHEW H. SLATER, JOANNA K. HUXSTER, JULIA E. BRESTICKER (forthcoming in the Journal for the General Philosophy of Science) Science communication via testimony requires a certain level of trust. But in the context of ideologically-entangled scientific issues, trust is in short supply — particularly when the issues are politically “entangled”. In such cases, cultural values are better predictors than scientific literacy for whether agents trust the publicly-directed claims of the scientific community. In this paper, we argue that a common way of thinking about scientific literacy — as knowledge of particular scientific facts or concepts — ought to give way to a second-order understanding of science as a process as a more important notion for the public’s trust of science. 1. Introduction The state of scientific literacy in America and in other developed nations has been an issue of concern for many decades now (Miller 1983, 2004; Bodmer 1985; OECD 2007). More recently, a palpable anti-science sentiment has become more prominent (McCright and Dunlap 2011; Kahan 2015). This is reflected, in part, by the fact that large portions of the public remain intransigent with respect to their dismissal of policy-relevant science, such as that concerning the risks of anthropogenic climate change (Leiserowitz et al. 2016). Given the amount of attention that scientific education and communication have received in the intervening decades, these facts may seem a little surprising. Why have we failed to bring about better outcomes? A number of plausible explanations could be cited, from the persistence of problematic models of science communication to the increasing prominence of well-funded anti-science groups (Dunlap and McCright 2010, 2011; Brulle 2014).
    [Show full text]
  • Scientific Controversies: Authentic and Contrived [Post-Print]
    Trinity College Trinity College Digital Repository Faculty Scholarship 2017 Scientific Controversies: Authentic and Contrived [post-print] Mark P. Silverman Trinity College, [email protected] Follow this and additional works at: https://digitalrepository.trincoll.edu/facpub Part of the Physical Sciences and Mathematics Commons Science & Education 26 (3) (2017) 397-405 DOI 10.1007/s11191-017-9886-2 The published article is available at: http://link.springer.com/article/10.1007/s11191-017-9886-2 Scientific Controversies: Authentic and Contrived M P Silverman, G A Jarvis Professor of Physics Trinity College, Hartford CT 06106 USA Email: [email protected] Web: mpsilverman.com Review of David Harker (2015) Creating Scientific Controversies: Uncertainty and Bias in Science and Society, Cambridge University Press, Cambridge UK. ISBN: 9781107706903, 266 pages, price (PB): $28.99 (paperback) 1 Characteristics of Real Science and Real Scientific Controversy Science is more of a journey than a destination. And, as to be expected of any journey taken by diverse travellers to an unexplored place, there may arise disagreements over how to get there, what is seen, and what it all means. If the place is relatively unimportant and the number of travellers few, the discord rarely spreads far. But if the destination is important, the travellers are many, and the outcome of getting there (or not) is consequential, disagreements can escalate into a broadly sweeping controversy with a lot at stake. Some 25 years ago, I had the pleasure of contributing an invited paper (M P Silverman, 1992, “Raising Questions: Philosophical Significance of Controversy in Science”, Science & Education 1: 163-179) to the inaugural volume of this journal on the provocative topic of the significance of controversy in science.
    [Show full text]
  • Program Schedule
    PROGRAM SCHEDULE FRIDAY, MAY 28, 2010 12:15 – 1:45 pm A01 A REPORT OF THE FIRST RSA CAREER RETREAT Co-Chairs: Cheryl Geisler, Simon Fraser University; Michael Halloran, Rensselaer Polytechnic Institute; Krista Ratcliffe, Marquette University Participants: Jen Bacon, West Chester University; Suzanne Bordelon, San Diego State University; Elizabeth Britt, Northeastern University; Leah Ceccarelli, University of Washington; Martha Cheng, Rollins College; Janice Chernekoff, Kutztown University; Arabella Lyon, SUNY-Buffalo; Carole Clark Papper, Hofstra University; Barbara Schneider, University of Toledo; Christine Tully, University of Wisconsin, Madison; Liz Wright, Rivier College A02 BARACK OBAMA: THE RHETORIC OF A POSTMODERN PRESIDENT Chair: Connie Johnson, University of Texas at Austin A Tale of Two Cities: Obama at Howard and at South New Hampshire Sheena Howard, Howard University Cultural Memory and Productive Forgetting in Obama’s A More Perfect Union Speech G. Mitchell Reyes, Lewis and Clark College A More Perfect Union: A Critical Analysis of Obama’s "Race" Speech Matt Morris, University of Texas at Austin Barack Obama’s Heroic Whiteness: Invoking the Founding Fathers to Win the Presidency Connie Johnson, University of Texas at Austin Respondent : Barry Brummett, University of Texas at Austin A03 RHETORIC OF SCIENCE Chair: Virginia Anderson, Indiana University Southeast Raising Moral Questions through Science: Silent Spring’s Use of Narrative, Time, and Space Jessica Prody, University of Minnesota Evolving Concordance: An Aristotelian
    [Show full text]