Dark Wilderness a Phenomenological Exploration of the Idea of Cave Wilderness

Total Page:16

File Type:pdf, Size:1020Kb

Dark Wilderness a Phenomenological Exploration of the Idea of Cave Wilderness Graduate Theses, Dissertations, and Problem Reports 2003 DARK WILDERNESS A PHENOMENOLOGICAL EXPLORATION OF THE IDEA OF CAVE WILDERNESS Patricia E. Seiser Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Forest Management Commons, and the Other Forestry and Forest Sciences Commons Recommended Citation Seiser, Patricia E., "DARK WILDERNESS A PHENOMENOLOGICAL EXPLORATION OF THE IDEA OF CAVE WILDERNESS" (2003). Graduate Theses, Dissertations, and Problem Reports. 7991. https://researchrepository.wvu.edu/etd/7991 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact researchrepository@mail.wvu.edu. DARK WILDERNESS A PHENOMENOLOGICAL EXPLORATION OF THE IDEA OF CAVE WILDERNESS PATRICIA E. SEISER Dissertation submitted to the Davis College of Agriculture, Forestry and Consumer Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Forest Resources Science Chad D. Pierskalla, Ph.D., Committee Chair Michael A. Schuett, Ph. D., Research Advisor Ronal Kerbo, National Cave Specialist, National Park Service Steven B. McBride, M.S. Henry W. Rauch, Ph.D. Steven W. Selin, Ph. D. Division of Forestry Morgantown, West Virginia 2003 Keywords: Cave Wilderness, Cave Management, Caves, Karst, Wilderness, Stewardship Copyright 2003 Patricia E. Seiser ABSTRACT Dark Wilderness by Patricia E. Seiser It has been almost forty years since the passage of the 1964 Wilderness Act and the establishment of the National Wilderness Preservation System. Forty years later, we still have not seen a wilderness that is not a surface environment. There exist neither subterranean nor marine wilderness areas. Efforts on behalf of cave wilderness have focused on the 1964 Wilderness Act legal definition of wilderness. Perhaps what is required is a different concept for the establishment of cave wilderness. This study explored the idea of cave wilderness from a human dimension perspective, via focus groups, using stakeholders from two cave regions of the United States – Carlsbad Caverns and Mammoth Cave. Through this process a definition of cave wilderness, as well as, definitions of wild cave, developed cave, show cave, and commercial use cave were generated. The study reports on a proposed intent for a cave wilderness designation as well as legislation and management prescriptions. Based on study findings the conceptual framework of wilderness was expanded from a two-dimensional model to a three-dimensional model, adding the human dimension to the wild and natural dimensions. A cave continuum model was developed which shows the interplay of these three dimensions of wilderness. Findings of this study clearly indicate the need for an ecosystem management approach in the stewardship of cave and karst resources. iii DEDICATION Some people can’t stand it, but for some the dark feels like home.” Dorothy Allison, Cavedweller “There’s no place like home.” Dorothy, The Wizard of Oz This is dedicated to all those for whom the Dark Wilderness feels like home. And, to my Beloved Stephen. Home is wherever the heart is and my heart lies with you. iv ACKNOWLEDGEMENTS I would like to thank all those who participated in the focus groups, without your participation, this study would never have happened. I truly appreciate your willingness to spend a few hours talking about caves and cave wilderness. I would also like to extend my thanks to the many people from the communities of Carlsbad, Cave City, Horse Cave, and Park City for their willingness to talk with me about my research. Thanks go to my committee members for their support and guidance. Mike Schuett was a most excellent research mentor, whose patience and persistence is truly appreciated. I would like to extend special thanks to: Stephen Mosberg, who served as my research assistant extraordinaire, chauffer, and faithful sidekick; the NSS Conservation Committee for the research grant; the ACCA & NSS Bookstore for education material for the focus group participants, Ella Belling & Kim Bjorgo, who showed true friendship by suffering through data coding and analysis for me; Roger Brucker, Paul Burger, Emily Davis, Tom Lera, & Mike Werner for reviewing and critiquing my proposal; Kathryn Greever & Virginia Seiser who reviewed, critiqued, and proofed both the proposal and dissertation; the caving community for their interest and support; Joe Abbott for his friendship and undying curiosity about my research; Christina Arevalo & Emily Raker for being my friends despite my poor communication these last five years; Jim & Val Werker, it is your fault; the Cave Gods, you know who you are; the Colorado Grotto, where “everything I learned about caving and cave protection” began; my family for supporting their crazy sister; and the kitties six – Tequila, Kahlua, Merry Mayhem, Patron, Mescal, & Tesoro – who see in the dark (and helped keep things in perspective). v PROLOGUE What will cave wilderness … mean to the caving public, the general populace, and to the park managers? Hopefully, it will mean the same thing to everyone – that the caves so designated will be held in the public trust in such a manner and by such means that the wildness for which they are currently known will be sustained unimpaired by human alteration and impact into a far and timeless future; the caves will continue to hold mystery and adventure, and that the thrill of original exploration may always be just ahead, just around the corner or through a tight squeeze, out at the limits of time and endurance; that not everything has been inventoried and neatly disked onto a computer; and that the caves have been recognized for what they are - as important - as wild as any surface areas on earth (Ronal Kerbo, 1988, p. 433). vi TABLE OF CONTENTS page Abstract........................................................................................................................................... ii Dedication......................................................................................................................................iii Acknowledgements........................................................................................................................ iv Prologue .......................................................................................................................................... v Table of Contents........................................................................................................................... vi List of Tables ................................................................................................................................ xii List of Figures.............................................................................................................................. xiv Chapter One Introduction ............................................................................................................... 1 A New Dimension to Wilderness ............................................................................................... 1 Nature of Problem................................................................................................................... 4 Purpose of the Study ............................................................................................................... 5 Need for the Study .................................................................................................................. 5 Delimitations of the Study ......................................................................................................6 Limitations of the Study.......................................................................................................... 7 Definition of Terms................................................................................................................. 7 Chapter Two Literature Review...................................................................................................... 9 The Unseen Wild Lands.............................................................................................................. 9 Caves, Cavers, and Caving ....................................................................................................... 10 Caves..................................................................................................................................... 10 The Nature of Caves ......................................................................................................... 10 Speleology......................................................................................................................... 13 Speleogenesis.................................................................................................................... 15 Cave and Karst Hydrology...............................................................................................
Recommended publications
  • Paleoclimate Reconstruction in the Levant Region from the Petrography and the Geochemistry of a MIS 5 Stalagmite from the Kanaan
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Clim. Past Discuss., 11, 3241–3275, 2015 www.clim-past-discuss.net/11/3241/2015/ doi:10.5194/cpd-11-3241-2015 © Author(s) 2015. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal Climate of the Past (CP). Please refer to the corresponding final paper in CP if available. Paleoclimate reconstruction in the Levant region from the petrography and the geochemistry of a MIS 5 stalagmite from the Kanaan Cave, Lebanon C. Nehme1,2, S. Verheyden1,2, S. R. Noble3, A. R. Farrant4, J. J. Delannoy5, and P. Claeys2 1Department of Earth and History of Life, Royal Institute of Natural Sciences (RBINS), Brussels, Belgium 2Analytical, Environmental & Geo-Chemistry, Department of Chemistry, Faculty of Sciences Vrije Universiteit Brussel, Belgium 3British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK 4NERC Isotope Geochemistry Laboratory, Keyworth, Nottingham, NG12 5GG, UK 5Laboratoire EDYTEM UMR 5204 CNRS, Université de Savoie Mont-Blanc, Pôle Montagne, Bourget-du-Lac, France 3241 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Received: 17 June 2015 – Accepted: 25 June 2015 – Published: 17 July 2015 Correspondence to: C. Nehme (carole.nehme@naturalsciences.be) Published by Copernicus Publications on behalf of the European Geosciences Union. 3242 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract Lying at the transition between the temperate Mediterranean domain and subtropical deserts, the Levant is a key area to study the palaeoclimatic response over glacial- interglacial cycles. This paper presents a precisely dated last interglacial (MIS 5) sta- 5 lagmite (129–84 ka) from the Kanaan Cave, Lebanon.
    [Show full text]
  • Speleogenesis and Delineation of Megaporosity and Karst
    Stephen F. Austin State University SFA ScholarWorks Electronic Theses and Dissertations 12-2016 Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas Jon T. Ehrhart Stephen F. Austin State University, jontehrhart@gmail.com Follow this and additional works at: https://scholarworks.sfasu.edu/etds Part of the Geology Commons, Hydrology Commons, and the Speleology Commons Tell us how this article helped you. Repository Citation Ehrhart, Jon T., "Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas" (2016). Electronic Theses and Dissertations. 66. https://scholarworks.sfasu.edu/etds/66 This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu. Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This thesis is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/etds/66 Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas By Jon Ehrhart, B.S. Presented to the Faculty of the Graduate School of Stephen F. Austin State University In Partial Fulfillment Of the requirements For the Degree of Master of Science STEPHEN F.
    [Show full text]
  • Sinkhole Physical Models to Simulate and Investigate Sinkhole Collapses
    SINKHOLE PHYSICAL MODELS TO SIMULATE AND INVESTIGATE SINKHOLE COLLAPSES Mohamed Alrowaimi Doctoral Student, Civil, Environmental and Construction Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816, USA, alrowaimi@knights.ucf.edu Hae-Bum Yun Assistant professor, Civil, Environmental and Construction Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816, USA, Hae-Bum.Yun@ucf.edu Manoj Chopra Professor, Civil, Environmental and Construction Engineering, University of Central Florida 4000 Central Florida Blvd., Orlando, Florida, 32816, USA, Manoj.Chopra@ucf.edu Abstract Introduction Florida is one of the most susceptible states for sinkhole Sinkhole is a ground surface depression that occurs with collapses due to its karst geology. In Florida, sinkholes or without any surface indication. Sinkholes commonly are mainly classified as cover subsidence sinkholes that occur in a very distinctive terrain called karst terrain. result in a gradual collapse with possible surface signs, This terrain mainly has a bedrock of a carbonate rocks and cover collapse sinkholes, which collapse in a sudden such as limestone, dolomite, or gypsum. Sinkholes and often catastrophic manner. The future development develop when the carbonate bedrocks are subjected of a reliable sinkhole prediction system will have to dissolution with time to form cracks, conduits, and the potential to minimize the risk to life, and reduce cavities in the underground bedrock. These features delays in construction due to the need for post-collapse allow the overburden soils (on top of the carbonate remediation. In this study, different versions of small- bedrock) to transport through them to the underground scale sinkhole physical models experimentally used cavities, which results in surface collapse due to the to monitor the water levels in a network of wells.
    [Show full text]
  • Staunton Caverns
    Staunton Caverns Staunton, Virginia Also known as: (Dogwood Cave) (City Garage Cave) (Staunton Quarry Cave) By Rick Lambert Edited by Meredith Hall Weberg The City of Staunton in the Shenandoah Valley of Virginia is well known for its caves and karst. First known as Dogwood Cave, from the hill it is on, Staunton Caverns was renamed in 1907 when it was commercialized. Though it was closed shortly afterwards it remained a favorite destination for the caving youth of Staunton until the City closed it with a steel door and later with a cement block wall. Contributors Ted Andrus, Charlie Bishop Jr., Paul Borzelleca, Terri Brown, Fran Coble, Melissa Davidson, Al and Beth Grimm, David A. Hubbard, Dwane Knowles, John Larner, Phil and Charlotte Lucas, David Schwartz, Gary K. Soule, Virginia Cave Board, Virginia Speleological Survey, Sarah Larner Wilkins The Commercialization of Staunton Caverns Photograph of a young William Larner in England. (From the great-grandchildren of William Larner) The story of Staunton Caverns begins with an English stonemason named William Larner. William was born in Hadfield, Derbyshire, England on April 15, 1856. In 1881, in his mid-20’s, he visited his brother in Massachusetts, seeking a better life. He sent a message to his wife, Esther, asking her and their two children to come to America. They did. Fort Fairfield, Maine, where William Larner moved his family from Massachusetts. (From the great- grandchildren of William Larner) From Massachusetts they moved to Maine where William worked in textile mills. After seeing a brochure on Staunton, Virginia, in 1890 he took a trip to check out the town.
    [Show full text]
  • Karstic Processes on Earth and Titan
    45th Lunar and Planetary Science Conference (2014) 2371.pdf KARSTIC PROCESSES ON EARTH AND TITAN. K. L. Mitchell1, M. J. Malaska1, D. G. Horvath2 and J. C. Andrews-Hanna2, 1Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 183-601, 4800 Oak Grove Dr., Pasadena, CA 91109-8099. Karl.L.Mitchell@jpl.nasa.gov. 2Colorado School of Mines, Golden, CO. Karst on Titan: Cassini has revealed that Titan’s erences therein] in which the mode of subsurface flow surface is dominated by products of upper atmosphere changes, typically from slow porous or fracture flow, photochemistry [1]. Multiple lines of evidence suggest to far more rapid flow though conduits and caves. a global average of tens of metres of predominantly Three phases of speleogenesis are now generally organic materials delivered initially by airfall, poten- accepted: (1) initiation: initial enlargement of a frac- tially including acetylene, hydrogen cyanide, acetoni- ture to a critical size; (2) breakthrough: a fairly sudden trile and benzene, among others [2,3,4]. The precise transition to rapid dissolution, resulting in growth of an mixture is likely a complex smörgåsbord of organics incipient cave into a true cave, and (3) enlargement: and other materials. Many of these materials are solu- growth of a protoconduit/incipient cave to full conduit ble in the alkanes that make of the hydrological sys- size [e.g. 11]. As a karstic system progresses through tem, and so some degree of geological dissolution these phases, dissolution becomes less important as seems inevitable, opening up the possibility of karst. faster flow enhances suffosion and collapse, which Compelling geomorphologic interpretations have become the dominate solute transport and landscape been presented for karstic lakes [4,5], as well as poljes, forming mechanisms for mature karst.
    [Show full text]
  • Karst Hydrology 121 Section A-Identifying and Protecting Cave Resources
    Part 2-Conservation, Management, Ethics: Veni-Karst Hydrology 121 Section A-Identifying and Protecting Cave Resources Karst Hydrology: Protecting and Restoring Caves and Their Hydrologic Systems GeorgeVeni Cavers tend to be conscientious. We try to tread softly through passages to limit our impact. We clean up and restore caves that have been impacted by others. We fight to preserve and protect caves and their contents from outside impacts like urbanization. We work to improve our restoration and protection methods, and, through vehicles like this book, share that information as much as possible. Many of the adverse Many orthe adverse impacts a cave may suffer and the means to prevent impacts a cave may or alleviate them are determined by the cave's hydrology. This chapter suffer and the means provides hydrologic information and guidelines to assist cavers in protect- ing and restoring caves. It teaches the basics of how caves forn1 and how to prevent or water moves through caves and their surrounding landscapes. The chapter alleviate them are also examines common hydrologic problems and impacts on caves, and determined by the what problems can be solved by individual and group actions. cave's hydrology. The following sections are meant to reach cavers of all experience levels. References are cited for those wanting details. Specific recommendations are included, but the focus is on general principles to help guide cavers through situations that cannot be covered within this chapter. The Basics of Karst Hydrology How Water Enters, Moves Through, and Exits Caves The movement of water through caves is closely tied to the question of how caves form.
    [Show full text]
  • Part III-Introduction; the Retsof Salt Mine Collapse
    PART III Collapsing Cavities The Retsof Salt Mine Collapse Sinkholes, West-Central Florida udden and unexpected collapse of the land surface into subsurface cavities is arguably the most hazardous type of S subsidence. Such catastrophic subsidence is most commonly triggered by ground-water-level declines caused by pumping, or by diversion of surface runoff or ground-water flow through suscep- tible rocks. Though the collapse features tend to be highly localized, they can introduce contaminants to the aquifer system and, thereby, have lasting regional impacts. Collapse features tend to be associated with specific rock types having hydrogeologic properties that render them susceptible to the formation of cavities. Human activities can facilitate the formation of subsurface cavities in these susceptible materials and trigger their collapse, as well as the collapse of preex- isting subsurface cavities. In terms of land area affected, underground mining accounts for about 20 percent of the total land subsidence in the United States, and most of this fraction is associated with underground mining for coal. Subsidence over underground coal workings develops as a gradual downwarping of the overburden into mine voids and is gen- erally unrelated to subsurface water conditions. Underground salt and gypsum mines are also subject to downwarping of the overbur- den, but these evaporite minerals are also susceptible to rapid and This sinkhole in Kansas was formed by collapsed evaporite rocks. extensive dissolution by water. Salt and gypsum are, respectively, al- most 7,500 and 150 times more soluble than limestone, the rock- type often associated with catastrophic sinkhole formation and the distinctively weathered landscapes collectively known as karst.
    [Show full text]
  • Forest Sinkhole Manual February 2002
    Forest Practices Board Forest Sinkhole Manual February 2002 prepared by Kevin Kiernan Senior Geomorphologist, Forest Practices Board Forest Practices Board 30 Patrick Street Hobart, Tasmania, 7000 phone (03) 62 337966 fax (03) 62 337954 e-mail: info@fpb.tas.gov.au www.fpb.tas.gov.au 1 forest sinkhole manual This forest sinkhole manual constitutes the technical note referred to in the Forest Practices Code entitled Some Operational Considerations In Sinkhole Management It was endorsed by the Forest Practices Advisory Council in October 2001 as a Technical Note (status A2*) Suggested referencing for this publication: Kiernan, K. 2002 Forest Sinkhole Manual . Forest Practices Board, Hobart, Tasmania forest sinkhole manual 2 Contents INTRODUCTION ......................................................................................................................................... 1 Table 1. Summary of FPC clauses specific to sinkhole country ......................................... 2 PART I. PRINCIPLES UNDERLYING SINKHOLE MANAGEMENT A. SINKHOLES: THE BASICS a. Basic types of sinkhole .............................................................................................................. 4 b. How sinkholes work .................................................................................................................. 6 c. Relationship of sinkhole hazard to soil erosion hazard ................................................. 8 d. Relationship of sinkholes to broader drainage systems ..............................................
    [Show full text]
  • Last Deglaciation Flooding Events in the Southern Carpathians As Revealed by the Study of Cave Deposits from Muierilor Cave, Romania
    Palaeogeography, Palaeoclimatology, Palaeoecology xxx (xxxx) xxx Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Last deglaciation flooding events in the Southern Carpathians as revealed by the study of cave deposits from Muierilor Cave, Romania Ionuț-Cornel Mirea a,i,j,1, Marius Robu b,*,1, Alexandru Petculescu a,j, Marius Kenesz c,j, Luchiana Faur b,j, Razvan˘ Arghir a,j, Viorica Tecsa d,e, Alida Timar-Gabor d,e, Relu-Dumitru Roban f, Cristian G. Panaiotu g, Arash Sharifi h, Ali Pourmand h, Vlad A. Codrea i, Silviu Constantin a,j,k,*,1 a “Emil Racovit¸a˘” Institute of Speleology, Center for Geochronology and Paleoclimate, Frumoasa˘ 31, 010986, Bucharest, Romania b “Emil Racovit¸a˘” Institute of Speleology, Romanian Academy, Calea 13 Septembrie 13, 050711, Bucharest, Romania c “Emil Racovit¸a˘” Institute of Speleology, Cluj Branch, Clinicilor 5, 400006, Cluj-Napoca, Romania d Interdisciplinary Research Institute on Bio-Nano-Science of Babeș- Bolyai University, Treboniu Laurean 42, 400271 Cluj-Napoca, Romania e Faculty of Environmental Sciences and Engineering, Babeș- Bolyai University, Fant^ anele^ 30, 400294 Cluj-Napoca, Romania f Faculty of Geology and Geophysics, University of Bucharest, Lithos Reserch Center, Nicolae Balcescu˘ 1, 010041 Bucharest, Romania g Faculty of Physics, University of Bucharest, Paleomagnetic Laboratory, Atomiștilor 405, 077125 Magurele,˘ Romania h Neptune Isotope Laboratory, Division of Marine Geology and Geophysics,
    [Show full text]
  • Groundwater in Carboniferous Carbonates
    Groundwater in Carboniferous carbonates Field excursion to the Derbyshire "White Peak" District 26th June 2015 John Gunn with contributions from Andy Farrant, Paul Hardwick and Steve Worthington Contents PAGE 1. INTRODUCTION 2 2. THE "WHITE PEAK" DISTRICT 2 3. GEOLOGICAL BACKGROUND 2 4. SURFACE DRAINAGE AND GEOMORPHOLOGY 6 5. THE HYDROGEOLOGY OF THE PEAK DISTRICT LIMESTONES 7 6. CAVES 8 7. ITINERARY 9 STOP 1: THE BULL I'TH'THORN BOREHOLE, HURDLOW 9 STOP 2: THE RIVER WYE AND TUNSTEAD QUARRY 13 STOP 3: ELDON HILL QUARRY 19 STOP 4: ELDON HILL DOLINES 22 STOP 5: DIRTLOW RAKE AND DOLINES 23 STOP 6: CAVE DALE 25 STOP 7: CASTLETON SPRINGS AND PEAK CAVERN 25 STOP 8: WINNATS PASS 30 STOP 9: MAGPIE SOUGH TAIL 31 STOP 10: OLD BATH SPRING 32 8. REFERENCES 32 Acknowledgements The organisers are grateful to: The British Geological Survey for Figures 2 and 19, Maurice Gregory for permission to visit Eldon Hill Quarry, John Harrison for permission to visit Peak Cavern, and Peter Harrison for permission to visit Russet Well. Cover photographs A common perception of the Peak District karst hydrogeology is that it is dominated by sinking streams that feed caves which in turn discharge substantial flows of water from large springs such as Peak Cavern Rising (left). However, over much of the area where limestones crop out there is only dispersed autogenic recharge through a soil cover and surprisingly little evidence of karstic drainage, particularly at depth. During the excavation of stone from Ballidon Quarry in the southern White Peak no caves were encountered and the 100m of limestone exposure (right) shows only an epikarst below which there are no visible conduits and nothing to suggest concentrated drainage.
    [Show full text]
  • Abstract Volume of the IAG RCG-2011
    International Association of Geomorphologists Association Internationale de Géomorphologues IIAAGG//AAIIGG RREEGGIIOONNAALL CCOONNFFEERREENNCCEE 22001111 GEOMORPHOLOGY FOR HUMAN ADAPTATION TO CHANGING TROPICAL ENVIRONMENTS GHION HOTEL ADDIS ABABA, ETHIOPIA FEBRUARY 18‐22, 2011 AABBSSTTRRAACCTT VVOOLLUUMMEE Editors: Asfawossen Asrat, Francesco Dramis, Jan Nyssen, Mohammed Umer I A G ‐ 2 0 1 1 , A D D I S A B A B A , E T H I O P I A , 1 8 ‐ 2 2 F E B R U A R Y 2 0 1 1 Cover Photo: Amba Seneyti, Tigray, Northern Ethiopia. Triassic sandstone tor overlying Plaeozoic tillites, which in turn lie over upper Proterozoic metavolcanics-metasediments. [Photo © Asfawossen Asrat, 2010] I A G ‐ 2 0 1 1 , A D D I S A B A B A , E T H I O P I A , 1 8 ‐ 2 2 F E B R U A R Y 2 0 1 1 International Association of Geomorphologists Association Internationale de Géomorphologues IIAAGG//AAIIGG RREEGGIIOONNAALL CCOONNFFEERREENNCCEE 22001111 GEOMORPHOLOGY FOR HUMAN ADAPTATION TO CHANGING TROPICAL ENVIRONMENTS GHION HOTEL ADDIS ABABA, ETHIOPIA FEBRUARY 18‐22, 2011 AABBSSTTRRAACCTT VVOOLLUUMMEE Editors: Asfawossen Asrat, Francesco Dramis, Jan Nyssen, Mohammed Umer 1 | I A G ‐ 2 0 1 1 , A D D I S A B A B A , E T H I O P I A , 1 8 ‐ 2 2 F E B R U A R Y 2 0 1 1 CONFERENCE ORGANIZATION ORGANIZED BY EAG ‐ ETHIOPIAN ASSOCIATION OF GEOMORPHOLOGISTS WITH THE SUPPORT OF Department of Earth Sciences, Addis Ababa University, Ethiopia, Paleoanthropology & Paleoenvironment Program, Addis Ababa University, Ethiopia Mekelle University, Ethiopia Department of Geological Sciences,
    [Show full text]
  • Journal of Cave and Karst Studies
    March 2020 Volume 82, Number 1 JOURNAL OF ISSN 1090-6924 A Publication of the National CAVE AND KARST Speleological Society STUDIES DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, EXPLORATION, AND CONSERVATION Published By BOARD OF EDITORS The National Speleological Society Anthropology George Crothers http://caves.org/pub/journal University of Kentucky Lexington, KY Office george.crothers@utk.edu 6001 Pulaski Pike NW Huntsville, AL 35810 USA Conservation-Life Sciences Julian J. Lewis & Salisa L. Lewis Tel:256-852-1300 Lewis & Associates, LLC. nss@caves.org Borden, IN lewisbioconsult@aol.com Editor-in-Chief Earth Sciences Benjamin Schwartz Malcolm S. Field Texas State University National Center of Environmental San Marcos, TX Assessment (8623P) bs37@txstate.edu Office of Research and Development U.S. Environmental Protection Agency Leslie A. North 1200 Pennsylvania Avenue NW Western Kentucky University Bowling Green, KY Washington, DC 20460-0001 leslie.north@wku.edu 703-347-8601 Voice 703-347-8692 Fax field.malcolm@epa.gov Mario Parise University Aldo Moro Production Editor Bari, Italy mario.parise@uniba.it Scott A. Engel Knoxville, TN Carol Wicks 225-281-3914 Louisiana State University saecaver@gmail.com Baton Rouge, LA cwicks@lsu.edu Journal Copy Editor Exploration Paul Burger National Park Service Eagle River, Alaska paul_burger@nps.gov Microbiology Kathleen H. Lavoie State University of New York Plattsburgh, NY lavoiekh@plattsburgh.edu Paleontology Greg McDonald National Park Service Fort Collins, CO The Journal of Cave and Karst Studies , ISSN 1090-6924, CPM greg_mcdonald@nps.gov Number #40065056, is a multi-disciplinary, refereed journal pub- lished four times a year by the National Speleological Society.
    [Show full text]