Sinkhole Physical Models to Simulate and Investigate Sinkhole Collapses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Drawdown Analysis of the Local Middle and Lower Trinity Aquifers
TECHNICAL MEMORANDUM TO: Mr. Dirk Aaron, General Manager, CUWCD FROM: Michael R. Keester, P.G. SUBJECT: Drawdown Analysis of the Local Middle and Lower Trinity Aquifers DATE: October 5, 2018 As noted in previous analyses of water level changes, District constituents have expressed concerns regarding declining water levels in the Trinity Aquifer. In addition, in response to proposed mining operations in northern Williamson County, landowners reached out to the District to better understand Trinity Aquifer conditions and how the pumping by the mine operators may affect their wells. To assess the current conditions of the aquifer, we built upon previous analyses of the changes in water levels in the Middle Trinity Aquifer in southern Bell and northern Williamson counties. As part of our analysis, we expanded our evaluation to include an assessment of the water level conditions for the Lower Trinity Aquifer. Methodology We began by assembling the most recent water level data collected in 2018. Within Bell County, we relied primarily on the water level measurements collected by District staff or from continuous monitoring wells maintained by the Texas Water Development Board. These water levels and locations were the most reliable as the water levels are collected regularly and the aquifer designation for the well has been reviewed by District staff and multiple hydrogeologists. To supplement the water level data available from the District’s database, we also collected records from the Submitted Driller’s Report database. This database provides a record of well completions as reported by licensed water well drillers. Data associated with the report includes the location of the well, the depth and completion interval of the well, and the water level in the well at the time of completion. -
Ground Water Introduction and Demonstration
Ground Water Introduction and Demonstration Page Content By Kimberly Mullen, CPG http://www.ngwa.org/Fundamentals/teachers/Pages/Ground-Water-Introduction-and- Demonstration.aspx Objective Students will be able to define terms pertaining to groundwater such as permeability, porosity, unconfined aquifer, confined aquifer, drawdown, cone of depression, recharge rate, Darcy’s law, and artesian well. Students will be able to illustrate environmental problems facing groundwater, (such as chemical contamination, point source and nonpoint source contamination, sediment control, and overuse). Introduction Looking at satellite photographs of the planet Earth can illustrate the fact that the majority of the Earth’s surface is covered with water. Earth is known as the “Blue Planet.” Seventy-one percent of the Earth’s surface is covered with water. There also is water beneath the surface of the Earth. Yet, with all of the water present on Earth, water is still a finite source, cycling from one form to another. This cycle, known as the hydrologic cycle, is an important concept to help understand the water found on Earth. In addition to understanding the hydrologic cycle, you must understand the different places that water can be found—primarily above the ground (as surface water) and below the ground (as groundwater). Today, we will be starting to understand water below the ground. General definitions and discussion points “What is groundwater?” Groundwater is defined as water that is found beneath the water table under Earth’s surface. “Why is groundwater important?” Groundwater, makes up about 98 percent of all the usable fresh water on the planet, and it is about 60 times as plentiful as fresh water found in lakes and streams. -
Introduction to Virginia's Karst
Introduction to Virginia’s Karst A presentation of The Virginia Department of Conservation and Recreation’s Karst Program & Project Underground Karst - A landscape developed in limestone, dolomite, marble, or other soluble rocks and characterized by subsurface drainage systems, sinking or losing streams, sinkholes, springs, and caves. Cross-section diagram by David Culver, American University. Karst topography covers much of the Valley and Ridge Province in the western third of the state. Aerial photo of karst landscape in Russell County. Smaller karst areas also occur in the Cumberland Plateau, Piedmont, and Coastal Plain provinces. At least 29 counties support karst terrane in western Virginia. In western Virginia, karst occurs along slopes and in valleys between mountain ridges. There are few surface streams in these limestone valleys as runoff from mountain slopes disappears into the subsurface upon contact with the karst bedrock. Water flows underground, emerging at springs on the valley floor. Thin soils over fractured, cavernous limestone allow precipitation to enter the subsurface directly and rapidly, with a minimal amount of natural filtration. The purer the limestone, the less soil develops on the bedrock, leaving bare pinnacles exposed at the ground surface. Rock pinnacles may also occur where land use practices result in massive soil loss. Precipitation mixing with carbon dioxide becomes acidic as it passes through soil. Through geologic time slightly acidic water dissolves and enlarges the bedrock fractures, forming caves and other voids in the bedrock. Water follows the path of least resistance, so it moves through voids in rock layers, fractures, and boundaries between soluble and insoluble bedrock. -
Paleoclimate Reconstruction in the Levant Region from the Petrography and the Geochemistry of a MIS 5 Stalagmite from the Kanaan
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Clim. Past Discuss., 11, 3241–3275, 2015 www.clim-past-discuss.net/11/3241/2015/ doi:10.5194/cpd-11-3241-2015 © Author(s) 2015. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal Climate of the Past (CP). Please refer to the corresponding final paper in CP if available. Paleoclimate reconstruction in the Levant region from the petrography and the geochemistry of a MIS 5 stalagmite from the Kanaan Cave, Lebanon C. Nehme1,2, S. Verheyden1,2, S. R. Noble3, A. R. Farrant4, J. J. Delannoy5, and P. Claeys2 1Department of Earth and History of Life, Royal Institute of Natural Sciences (RBINS), Brussels, Belgium 2Analytical, Environmental & Geo-Chemistry, Department of Chemistry, Faculty of Sciences Vrije Universiteit Brussel, Belgium 3British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK 4NERC Isotope Geochemistry Laboratory, Keyworth, Nottingham, NG12 5GG, UK 5Laboratoire EDYTEM UMR 5204 CNRS, Université de Savoie Mont-Blanc, Pôle Montagne, Bourget-du-Lac, France 3241 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Received: 17 June 2015 – Accepted: 25 June 2015 – Published: 17 July 2015 Correspondence to: C. Nehme ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 3242 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract Lying at the transition between the temperate Mediterranean domain and subtropical deserts, the Levant is a key area to study the palaeoclimatic response over glacial- interglacial cycles. This paper presents a precisely dated last interglacial (MIS 5) sta- 5 lagmite (129–84 ka) from the Kanaan Cave, Lebanon. -
Speleogenesis and Delineation of Megaporosity and Karst
Stephen F. Austin State University SFA ScholarWorks Electronic Theses and Dissertations 12-2016 Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas Jon T. Ehrhart Stephen F. Austin State University, [email protected] Follow this and additional works at: https://scholarworks.sfasu.edu/etds Part of the Geology Commons, Hydrology Commons, and the Speleology Commons Tell us how this article helped you. Repository Citation Ehrhart, Jon T., "Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas" (2016). Electronic Theses and Dissertations. 66. https://scholarworks.sfasu.edu/etds/66 This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This thesis is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/etds/66 Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas By Jon Ehrhart, B.S. Presented to the Faculty of the Graduate School of Stephen F. Austin State University In Partial Fulfillment Of the requirements For the Degree of Master of Science STEPHEN F. -
A Sketchy Teacher's Guide To
Kansas Geological Survey A PRELIMINARY TEACHER’S GUIDE TO THE INTERACTIVE GROUND-WATER TUTOR By P. Allen Macfarlane, M.A. Townsend, G. Bohling, S. Case, and A. Reber Kansas Geological Survey Open File Report 2003-65 The University of Kansas, Lawrence, KS 66047 (785) 864-3965; www.kgs.ukans.edu KANSAS GEOLOGICAL SURVEY OPEN-FILE REPORTS >>>>>>>>>>>NOT FOR RESALE<<<<<<<<<< Disclaimer The Kansas Geological Survey made a conscientious effort to ensure the accuracy of this report. However, the Kansas Geological Survey does not guarantee this document to be completely free from errors or inaccuracies and disclaims any responsibility or liability for interpretations based on data used in the production of this document or decisions based thereon. This report is intended to make results of research available at the earliest possible date, but is not intended to constitute final or formal publication. Kansas Geological Survey A PRELIMINARY TEACHER’S GUIDE TO THE INTERACTIVE GROUND-WATER TUTOR By P. Allen Macfarlane, M.A. Townsend, G. Bohling, S. Case, and A. Reber Kansas Geological Survey Open File Report 2003-65 The University of Kansas, Lawrence, KS 66047 (785) 864-3965; www.kgs.ukans.edu Preface The Interim Teacher’s Guide to the Ground-water Tutor is designed for use with the interactive ground-water tutor during the alpha and beta testing and development stages in the formulation of the prototype, eventually Web-based software. In its final form, the manual will contain more information on assessment rubrics that can be used by teachers to evaluate student science learning as well as well as the results of the evaluations conducted as part of this NSF-funded project. -
Staunton Caverns
Staunton Caverns Staunton, Virginia Also known as: (Dogwood Cave) (City Garage Cave) (Staunton Quarry Cave) By Rick Lambert Edited by Meredith Hall Weberg The City of Staunton in the Shenandoah Valley of Virginia is well known for its caves and karst. First known as Dogwood Cave, from the hill it is on, Staunton Caverns was renamed in 1907 when it was commercialized. Though it was closed shortly afterwards it remained a favorite destination for the caving youth of Staunton until the City closed it with a steel door and later with a cement block wall. Contributors Ted Andrus, Charlie Bishop Jr., Paul Borzelleca, Terri Brown, Fran Coble, Melissa Davidson, Al and Beth Grimm, David A. Hubbard, Dwane Knowles, John Larner, Phil and Charlotte Lucas, David Schwartz, Gary K. Soule, Virginia Cave Board, Virginia Speleological Survey, Sarah Larner Wilkins The Commercialization of Staunton Caverns Photograph of a young William Larner in England. (From the great-grandchildren of William Larner) The story of Staunton Caverns begins with an English stonemason named William Larner. William was born in Hadfield, Derbyshire, England on April 15, 1856. In 1881, in his mid-20’s, he visited his brother in Massachusetts, seeking a better life. He sent a message to his wife, Esther, asking her and their two children to come to America. They did. Fort Fairfield, Maine, where William Larner moved his family from Massachusetts. (From the great- grandchildren of William Larner) From Massachusetts they moved to Maine where William worked in textile mills. After seeing a brochure on Staunton, Virginia, in 1890 he took a trip to check out the town. -
Further Discussion on the Influence Radius of a Pumping Well
water Review Further Discussion on the Influence Radius of a Pumping Well: A Parameter with Little Scientific and Practical Significance That Can Easily Be Misleading Yuanzheng Zhai , Xinyi Cao , Ya Jiang * , Kangning Sun, Litang Hu , Yanguo Teng, Jinsheng Wang and Jie Li * Engineering Research Center for Groundwater Pollution Control, Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China; [email protected] (Y.Z.); [email protected] (X.C.); [email protected] (K.S.); [email protected] (L.H.); [email protected] (Y.T.); [email protected] (J.W.) * Correspondence: [email protected] (Y.J.); [email protected] (J.L.); Tel.: +86-151-6658-7857 (Y.J.); Fax: +86-010-58802736 (J.L.) Abstract: To facilitate understanding and calculation, hydrogeologists have introduced the influence radius. This parameter is now widely used, not only in the theoretical calculation and reasoning of well flow mechanics, but also in guiding production practice, and it has become an essential parameter in hydrogeology. However, the reasonableness of this parameter has always been disputed. This paper discusses the nature of the influence radius and the problems of its practical application based on mathematical reasoning and analogy starting from the Dupuit formula and Thiem formula. It is found that the influence radius is essentially the distance in the time–distance problem in physics; Citation: Zhai, Y.; Cao, X.; Jiang, Y.; therefore, it is a function of time and velocity and is influenced by hydrogeological conditions and Sun, K.; Hu, L.; Teng, Y.; Wang, J.; Li, pumping conditions. -
The Favorability of Florida's Geology to Sinkhole
Appendix H: Sinkhole Report 2018 State Hazard Mitigation Plan _______________________________________________________________________________________ APPENDIX H: Sinkhole Report _______________________________________________________________________________________ Florida Division of Emergency Management THE FAVORABILITY OF FLORIDA’S GEOLOGY TO SINKHOLE FORMATION Prepared For: The Florida Division of Emergency Management, Mitigation Section Florida Department of Environmental Protection, Florida Geological Survey 3000 Commonwealth Boulevard, Suite 1, Tallahassee, Florida 32303 June 2017 Table of Contents EXECUTIVE SUMMARY ............................................................................................................ 4 INTRODUCTION .......................................................................................................................... 4 Background ................................................................................................................................. 5 Subsidence Incident Report Database ..................................................................................... 6 Purpose and Scope ...................................................................................................................... 7 Sinkhole Development ................................................................................................................ 7 Subsidence Sinkhole Formation .............................................................................................. 8 Collapse Sinkhole -
Caves in New Mexico and the Southwest Issue 34
Lite fall 2013 Caves in New Mexico and the Southwest issue 34 The Doll’s Theater—Big Room route, Carlsbad Cavern. Photo by Peter Jones, courtesy of Carlsbad Caverns National Park. In This Issue... Caves in New Mexico and the Southwest Cave Dwellers • Mapping Caves Earth Briefs: Suddenly Sinkholes • Crossword Puzzle New Mexico’s Most Wanted Minerals—Hydromagnesite New Mexico’s Enchanting Geology Classroom Activity: Sinkhole in a Cup Through the Hand Lens • Short Items of Interest NEW MEXICO BUREAU OF GEOLOGY & MINERAL RESOURCES A DIVISION OF NEW MEXICO TECH http://geoinfo.nmt.edu/publications/periodicals/litegeology/current.html CAVES IN NEW MEXICO AND THE SOUTHWEST Lewis Land Cave Development flowing downward from the surface. Epigenic A cave is a naturally-formed underground cavity, usually caves can be very long. with a connection to the surface that humans can enter. The longest cave in the Caves, like sinkholes, are karst features. Karst is a type of world is the Mammoth landform that results when circulating groundwater causes Cave system in western voids to form due to dissolution of soluble bedrock. Karst Kentucky, with a surveyed terrain is characterized by sinkholes, caves, disappearing length of more than 400 streams, large springs, and underground drainage. miles (643 km). The largest and most common caves form by dissolution of In recent years, limestone or dolomite, and are referred to as solution caves. scientists have begun to Limestone and dolomite rock are composed of the minerals recognize that many caves calcite (CaCO ) and dolomite (CaMg(CO ) ), which are 3 3 2 are hypogenic in origin, soluble in weak acids such as carbonic acid (H CO ), and are 2 3 meaning that they were thus vulnerable to dissolution by groundwater. -
Karstic Processes on Earth and Titan
45th Lunar and Planetary Science Conference (2014) 2371.pdf KARSTIC PROCESSES ON EARTH AND TITAN. K. L. Mitchell1, M. J. Malaska1, D. G. Horvath2 and J. C. Andrews-Hanna2, 1Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 183-601, 4800 Oak Grove Dr., Pasadena, CA 91109-8099. [email protected]. 2Colorado School of Mines, Golden, CO. Karst on Titan: Cassini has revealed that Titan’s erences therein] in which the mode of subsurface flow surface is dominated by products of upper atmosphere changes, typically from slow porous or fracture flow, photochemistry [1]. Multiple lines of evidence suggest to far more rapid flow though conduits and caves. a global average of tens of metres of predominantly Three phases of speleogenesis are now generally organic materials delivered initially by airfall, poten- accepted: (1) initiation: initial enlargement of a frac- tially including acetylene, hydrogen cyanide, acetoni- ture to a critical size; (2) breakthrough: a fairly sudden trile and benzene, among others [2,3,4]. The precise transition to rapid dissolution, resulting in growth of an mixture is likely a complex smörgåsbord of organics incipient cave into a true cave, and (3) enlargement: and other materials. Many of these materials are solu- growth of a protoconduit/incipient cave to full conduit ble in the alkanes that make of the hydrological sys- size [e.g. 11]. As a karstic system progresses through tem, and so some degree of geological dissolution these phases, dissolution becomes less important as seems inevitable, opening up the possibility of karst. faster flow enhances suffosion and collapse, which Compelling geomorphologic interpretations have become the dominate solute transport and landscape been presented for karstic lakes [4,5], as well as poljes, forming mechanisms for mature karst. -
Cave Diving in Southeastern Pennsylvania
The Underground Movement Volume 13, Number 11 CAVE DIVING IN SOUTHEASTERN PENNSYLVANIA November 2013 CAVE DIVING IN SOUTHEASTERN PENNSYLVANIA An Historical, Cultural, and Speleological Perspective of Bucks County — Danny A. Brass — Large portions of central and southern Pennsylvania are ipants than dry caving, cave diving still remains a global underlain by carbonate bedrock (primarily limestone and activity. Worldwide, a variety of cave-diving organiza- dolomite, but with smaller amounts of marble as well). tions can be found in areas rich in underwater caves. Ma- Over the course of geologic time, much of this bedrock jor cave-diving sites include the cenotes and tidal blue- has been exposed by gradual erosion of the overburden. holes of the Bahamas and Mexico’s Yucatán Peninsula, In combination with the abrasive activity of water-borne the vast underground rivers of Australia’s Nullarbor Plain sediments, the relentless action of weak acids (i.e., chemi- and the sinkholes of its unique Mt. Gambier region, the cal dissolution by acidic groundwater) on soluble car- sumps of Great Britain, and the rich concentration of bonate deposits, especially limestone, is a self- springs in Florida. Diving conditions vary greatly from accelerating process that has led to the development of one region to another. This is reflected in the many differ- broad areas of karst topography. A variety of surface and ences in training procedures, required equipment, under- subsurface geological features are characteristically asso- water protocols, and even diving philosophies, all of ciated with karstification; the presence of large numbers which have evolved in association with local diving con- of solution caves and sinkholes is common.