Speleogenesis and Delineation of Megaporosity and Karst
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix 4-K Preliminary Assessment of Open Pit Slope Instability Due to the Mitchell Block Cave
APPENDIX 4-K PRELIMINARY ASSESSMENT OF OPEN PIT SLOPE INSTABILITY DUE TO THE MITCHELL BLOCK CAVE TM SEABRIDGE GOLD INC. KSM PRELIMINARY FEASIBILITY STUDY UPDATE PRELIMINARY ASSESSMENT OF OPEN PIT SLOPE INSTABILITY DUE TO THE MITCHELL BLOCK CAVE FINAL PROJECT NO: 0638-013-31 DISTRIBUTION: DATE: December 24, 2012 SEABRIDGE: 2 copies DOCUMENT NO: KSM12-26 BGC: 2 copies R.2.7.6 #500-1045 Howe Street Vancouver, B.C. Canada V6Z 2A9 Tel: 604.684.5900 Fax: 604.684.5909 December 24, 2012 Project No: 0638-013-31 Mr. T. Jim Smolik, Pre-Feasibility Study Manager Seabridge Gold Inc. 108 Front Street East Toronto, Ontario, M5A 1E1 Dear Mr. Smolik, Re: Preliminary Assessment of Open Pit Slope Instability due to the Mitchell Block Cave – FINAL Please find attached the above referenced report. Thank you for the opportunity to work on this interesting project. Should you have any questions or comments, please do not hesitate to contact the undersigned. Yours sincerely, BGC ENGINEERING INC. per: Derek Kinakin, M.Sc., P.Geo. (BC) Senior Engineering Geologist Seabridge Gold Inc., KSM Preliminary Feasibility Study Update December 24, 2012 Preliminary Assessment of Open Pit Slope Instability due to the Mitchell Block Cave FINAL Project No: 0638-013-31 EXECUTIVE SUMMARY The Mitchell Zone is the largest of the four exploration targets comprising Seabridge Gold Inc.’s KSM Project and is the only zone where a combination of open pit and block caving mining methods is proposed. The open pit will be mined with ultimate north and south wall heights reaching approximately 1,200 m. -
ROGER Y. ANDERSON Department of Geology, the University of New Mexico, Albuquerque, New Mexico 87106 WALTER E
ROGER Y. ANDERSON Department of Geology, The University of New Mexico, Albuquerque, New Mexico 87106 WALTER E. DEAN, JR. Department of Geology, Syracuse University, Syracuse, New Yor\ 13210 DOUGLAS W. KIRKLAND Mobil Research and Development Corporation, Dallas, Texas 75221 HENRY I. SNIDER Department of Physical Sciences, Eastern Connecticut State College, Willimantic, Connecticut 06226 Permian Castile Varved Evaporite Sequence, West Texas and New Mexico ABSTRACT is a change from thinner undisturbed anhy- drite laminae to thicker anhydrite laminae that Laminations in the Upper Permian evaporite generally show a secondary or penecontem- sequence in the Delaware Basin appear in the poraneous nodular character, with about 1,000 preevaporite phase of the uppermost Bell to 3,000 units between major oscillations or Canyon Formation as alternations of siltstone nodular beds. These nodular zones are correla- and organic layers. The laminations then change tive throughout the area of study and underly character and composition upward to organi- halite when it is present. The halite layers cally laminated claystone, organically laminated alternate with anhydrite laminae, are generally calcite, the calcite-laminated anhydrite typical recrystallized, and have an average thickness of the Castile Formation, and finally to the of about 3 cm. The halite beds were once west anhydrite-laminated halite of the Castile and of their present occurrence in the basin but Salado. were dissolved, leaving beds of anhydrite Laminae are correlative for distances up to breccia. The onset and cessation of halite depo- 113 km (70.2 mi) and probably throughout sition in the basin was nearly synchronous. most of the basin. Each lamina is synchronous, The Anhydrite I and II Members thicken and each couplet of two laminated components gradually across the basin from west to east, is interpreted as representing an annual layer of whereas the Halite I, II, and III Members are sedimentation—a varve. -
DIAGENESIS of the BELL CANYON and CHERRY CANYON FORMATIONS (GUADALUPIAN), COYANOSA FIELD AREA, PECOS COUNTY, TEXAS by Katherine
Diagenesis of the Bell Canyon and Cherry Canyon Formations (Guadalupian), Coyanosa field area, Pecos County, Texas Item Type text; Thesis-Reproduction (electronic) Authors Kanschat, Katherine Ann Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 19:22:41 Link to Item http://hdl.handle.net/10150/557840 DIAGENESIS OF THE BELL CANYON AND CHERRY CANYON FORMATIONS (GUADALUPIAN), COYANOSA FIELD AREA, PECOS COUNTY, TEXAS by Katherine Ann Kanschat A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 19 8 1 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable with out special permission, provided that accurate acknowledge ment of source is made. Requests for permission for ex tended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major de partment or the Dean of the Graduate College when in his judgment the proposed use of the material is in the inter ests of scholarship. -
Podgrad, Sw Slovenia Speleogeneza in Sedimentaci
COBISS: 1.01 SPELEOGENESIS AND DEPOSITIONAL HISTORY OF PALEOKARST PHREATIC CAVES/CAVITIES; PODGRAD, SW SLOVENIA SPELEOGENEZA IN SEDIMENTACIJSKA ZGODOVINA PALEOKRAŠKIH JAM/VOTLIN PREŽETE CONE; PODGRAD, JZ SLOVENIJA Bojan OTONIČAR1,* Abstract UDC 551.44:551.35(497.434) Izvleček UDK 551.44:551.35(497.434) Bojan Otoničar: Speleogenesis and depositional history of Bojan Otoničar: Speleogeneza in sedimentacijska zgodovina paleokarst phreatic caves/cavities; Podgrad, SW Slovenia paleokraških jam/votlin prežete cone; Podgrad, JZ Slovenija The studied paleokarst corresponds to an uplifted peripheral Raziskovani paleokras se je oblikoval na dvignjeni periferni foreland bulge when Upper Cretaceous diagenetically imma- izboklini, ko so bili diagenetsko nezreli zgornje kredni kar- ture eogenetic carbonates were subaerially exposed, karstified bonati dvignjeni nad morsko gladino in zakraseli. Kasneje je and subsequently overlain by upper Paleocene/lower Eocene bil ta zakraseli del periferne izbokline ponovno potopljen pod palustrine limestone. morsko gladino, paleokraško površje pa prekrito z zgornje pale- Among the subsurface paleokarstic features, both vadose and ocenskimi do spodnje eocenskimi palustrinimi apnenci. phreatic forms occur. The phreatic caves/cavities include fea- Na raziskovanem območju se pojavljajo podpovršinske tures characteristic of the mixing zone speleogenesis at the paleokraške oblike značilne tako za prežeto kot neprežeto interface between freshwater (brackish water) lenses and the hidrogeološko cono. Kraške jame in manjše votlinice prežete underlying seawater. They were found in various positions cone kažejo značilnosti speleogeneze v območju mešanja with respect to the paleokarstic surface, the deepest being meteorne in morske vode. Pojavljajo se v različnih nivo- about 75 m below the surface. Three indistinct horizons of jih glede na paleokraško površje, najgloblje približno 75 cavities/caves and intermediate vugs were recognized. -
Salt Caverns Studies
SALT CAVERN STUDIES - REGIONAL MAP OF SALT THICKNESS IN THE MIDLAND BASIN FINAL CONTRACT REPORT Prepared by Susan Hovorka for U.S. Department of Energy under contract number DE-AF22-96BC14978 Bureau of Economic Geology Noel Tyler, Director The University of Texas at Austin Austin, Texas 78713-8924 February 1997 CONTENTS Executive Summmy ....................... ..... ...................................................................... ...................... 1 Introduction ..................................................... .. .............................................................................. 1 Purpose .......................................................................................... ..................................... ............. 2 Methods ........................................................................................ .. ........... ...................................... 2 Structural Setting and Depositional Environments ......................................................................... 6 Salt Thickness ............................................................................................................................... 11 Depth to Top of Salt ...................................................................................................................... 14 Distribution of Salt in the Seven Rivers, Queen, and Grayburg Formations ................................ 16 Areas of Salt Thinning ................................................................................................................. -
Paleoclimate Reconstruction in the Levant Region from the Petrography and the Geochemistry of a MIS 5 Stalagmite from the Kanaan
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Clim. Past Discuss., 11, 3241–3275, 2015 www.clim-past-discuss.net/11/3241/2015/ doi:10.5194/cpd-11-3241-2015 © Author(s) 2015. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal Climate of the Past (CP). Please refer to the corresponding final paper in CP if available. Paleoclimate reconstruction in the Levant region from the petrography and the geochemistry of a MIS 5 stalagmite from the Kanaan Cave, Lebanon C. Nehme1,2, S. Verheyden1,2, S. R. Noble3, A. R. Farrant4, J. J. Delannoy5, and P. Claeys2 1Department of Earth and History of Life, Royal Institute of Natural Sciences (RBINS), Brussels, Belgium 2Analytical, Environmental & Geo-Chemistry, Department of Chemistry, Faculty of Sciences Vrije Universiteit Brussel, Belgium 3British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK 4NERC Isotope Geochemistry Laboratory, Keyworth, Nottingham, NG12 5GG, UK 5Laboratoire EDYTEM UMR 5204 CNRS, Université de Savoie Mont-Blanc, Pôle Montagne, Bourget-du-Lac, France 3241 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Received: 17 June 2015 – Accepted: 25 June 2015 – Published: 17 July 2015 Correspondence to: C. Nehme ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 3242 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract Lying at the transition between the temperate Mediterranean domain and subtropical deserts, the Levant is a key area to study the palaeoclimatic response over glacial- interglacial cycles. This paper presents a precisely dated last interglacial (MIS 5) sta- 5 lagmite (129–84 ka) from the Kanaan Cave, Lebanon. -
Late Quaternary Speleogenesis and Landscape Evolution in the Northern Apennine Evaporite Areas
EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms (2017) Copyright © 2016 John Wiley & Sons, Ltd. Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/esp.4099 Late quaternary speleogenesis and landscape evolution in the northern Apennine evaporite areas Andrea Columbu,1 * Veronica Chiarini,2,3 Jo De Waele,2 Russell Drysdale,1,3 Jon Woodhead,4 John Hellstrom4 and Paolo Forti2 1 School of Geography, University of Melbourne, 221 Bouverie Street, 3010 Melbourne, Australia 2 Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, 40127 Bologna, Italy 3 Laboratoire EDYTEM, University of Savoie, bd de la Mer Caspienne, Le Bourget du Lac cedex F-73376, France 4 School of Earth Sciences, University of Melbourne, Corner Swanston & Elgin Streets, 3010 Melbourne, Australia Received 9 June 2016; Revised 7 December 2016; Accepted 8 December 2016 *Correspondence to: Andrea Columbu, School of Geography, University of Melbourne, 221 Bouverie Street, 3010, Melbourne, Australia. E-mail: acolumbu@student. unimelb.edu.au ABSTRACT: Gypsum beds host the majority of the caves in the north-eastern flank of the Apennines, in the Emilia Romagna region (Italy). More than six hundred of these caves have been surveyed, including the longest known epigenic gypsum cave systems in the world (Spipola-Acquafredda, ~11 km). Although this area has been intensively studied from a geological point of view, the age of the caves has never been investigated in detail. The rapid dissolution of gypsum and uplift history of the area have led to the long-held view that speleogenesis commenced only during the last 130 000 years. -
Adm Issue 10 Finnished
4x4x4x4 Four times a year Four times the copy Four times the quality Four times the dive experience Advanced Diver Magazine might just be a quarterly magazine, printing four issues a year. Still, compared to all other U.S. monthly dive maga- zines, Advanced Diver provides four times the copy, four times the quality and four times the dive experience. The staff and contribu- tors at ADM are all about diving, diving more than should be legally allowed. We are constantly out in the field "doing it," exploring, photographing and gathering the latest information about what we love to do. In this issue, you might notice that ADM is once again expanding by 16 pages to bring you, our readers, even more information and contin- ued high-quality photography. Our goal is to be the best dive magazine in the history of diving! I think we are on the right track. Tell us what you think and read about what others have to say in the new "letters to bubba" section found on page 17. Curt Bowen Publisher Issue 10 • • Pg 3 Advanced Diver Magazine, Inc. © 2001, All Rights Reserved Editor & Publisher Curt Bowen General Manager Linda Bowen Staff Writers / Photographers Jeff Barris • Jon Bojar Brett Hemphill • Tom Isgar Leroy McNeal • Bill Mercadante John Rawlings • Jim Rozzi Deco-Modeling Dr. Bruce Wienke Text Editor Heidi Spencer Assistants Rusty Farst • Tim O’Leary • David Rhea Jason Richards • Joe Rojas • Wes Skiles Contributors (alphabetical listing) Mike Ball•Philip Beckner•Vern Benke Dan Block•Bart Bjorkman•Jack & Karen Bowen Steve Cantu•Rich & Doris Chupak•Bob Halstead Jitka Hyniova•Steve Keene•Dan Malone Tim Morgan•Jeff Parnell•Duncan Price Jakub Rehacek•Adam Rose•Carl Saieva Susan Sharples•Charley Tulip•David Walker Guy Wittig•Mark Zurl Advanced Diver Magazine is published quarterly in Bradenton, Florida. -
Sinkhole Physical Models to Simulate and Investigate Sinkhole Collapses
SINKHOLE PHYSICAL MODELS TO SIMULATE AND INVESTIGATE SINKHOLE COLLAPSES Mohamed Alrowaimi Doctoral Student, Civil, Environmental and Construction Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816, USA, [email protected] Hae-Bum Yun Assistant professor, Civil, Environmental and Construction Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816, USA, [email protected] Manoj Chopra Professor, Civil, Environmental and Construction Engineering, University of Central Florida 4000 Central Florida Blvd., Orlando, Florida, 32816, USA, [email protected] Abstract Introduction Florida is one of the most susceptible states for sinkhole Sinkhole is a ground surface depression that occurs with collapses due to its karst geology. In Florida, sinkholes or without any surface indication. Sinkholes commonly are mainly classified as cover subsidence sinkholes that occur in a very distinctive terrain called karst terrain. result in a gradual collapse with possible surface signs, This terrain mainly has a bedrock of a carbonate rocks and cover collapse sinkholes, which collapse in a sudden such as limestone, dolomite, or gypsum. Sinkholes and often catastrophic manner. The future development develop when the carbonate bedrocks are subjected of a reliable sinkhole prediction system will have to dissolution with time to form cracks, conduits, and the potential to minimize the risk to life, and reduce cavities in the underground bedrock. These features delays in construction due to the need for post-collapse allow the overburden soils (on top of the carbonate remediation. In this study, different versions of small- bedrock) to transport through them to the underground scale sinkhole physical models experimentally used cavities, which results in surface collapse due to the to monitor the water levels in a network of wells. -
Hypogenic Speleogenesis Within Seven Rivers Evaporites: Coffee Ac Ve, Eddy County, New Mexico Kevin W
Stephen F. Austin State University SFA ScholarWorks Faculty Publications Department of Geology 4-2008 Hypogenic Speleogenesis within Seven Rivers Evaporites: Coffee aC ve, Eddy County, New Mexico Kevin W. Stafford College of Sciences and Mathematics, Department of Geology, Stephen F. Austin State University, [email protected] Lewis Land Alexander Klimchouk Follow this and additional works at: http://scholarworks.sfasu.edu/geology Part of the Geology Commons Tell us how this article helped you. Recommended Citation Stafford, Kevin W.; Land, Lewis; and Klimchouk, Alexander, "Hypogenic Speleogenesis within Seven Rivers Evaporites: Coffee Cave, Eddy County, New Mexico" (2008). Faculty Publications. Paper 10. http://scholarworks.sfasu.edu/geology/10 This Article is brought to you for free and open access by the Department of Geology at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. K. W. Stafford, L. Land, and A. Klimchouk – Hypogenic speleogenesis within Seven Rivers Evaporites: Coffee Cave, Eddy County, New Mexico. Journal of Cave and Karst Studies, v. 70, no. 1, p. 47–61. HYPOGENIC SPELEOGENESIS WITHIN SEVEN RIVERS EVAPORITES: COFFEE CAVE, EDDY COUNTY, NEW MEXICO KEVIN W. STAFFORD1,2,LEWIS LAND2,3, AND ALEXANDER KLIMCHOUK3,4 Abstract: Coffee Cave, located in the lower Pecos region of southeastern New Mexico, illustrates processes of hypogenic speleogenesis in the middle Permian Seven Rivers Formation. Coffee Cave is a rectilinear gypsum maze cave with at least four stratigraphically-distinct horizons of development. Morphological features throughout the cave provide unequivocal evidence of hypogenic ascending speleogenesis in a confined aquifer system driven by mixed (forced and free) convection. -
Salado Formation Followed
GW -^SZ-i^ GENERAL CORRESPONDENCE YEAR(S): B. QUICK, Inc. 3340 Quail View Drive • Nashville, TN 37214 Phone: (615) 874-1077 • Fax: (615) 386-0110 Email: [email protected] November 12,2002 Mr Roger Anderson Environmental Bureau Chief New Mexico OCD 1220 S. ST. Francis Dr. 1 Santa Fe, NM 87507 Re: Class I Disposal Wells Dear Roger, I am still very interested in getting the disposal wells into salt caverns in Monument approved by OCD. It is my sincere belief that a Class I Disposal Well would be benefical to present and future industry in New Mexico. I suspect that one of my problems has been my distance from the property. I am hoping to find a local company or individuals who can be more on top of this project. In the past conditions have not justified the capital investment to permit, build and operate these wells and compete with surface disposal. Have there been any changes in OCD policy that might effect the permitting of these wells? If so, would you please send me any pretinent documents? Sincerely, Cc: Lori Wrotenbery i aoie or moments rage i uu Ctoraeferiz&MoiHi ©ff Bedded Satt fltoir Storage Caverns Case Stundy from the Midlamdl Basim Susan D. Hovorka Bureau of Economic Geology The University of Texas at Austin AUG1 0R9 9 Environmental Bureau Introduction to the Problem °" Conservation D/ws/on About solution-mined caverns l^Btg*** Geolojy_ofsalt Purpose, scope, and methods of our study Previous work: geologic setting of the bedded salt in the Permian Basin J^rV^W^' " Stratigraphic Units and Type Logs s Midland Basin stratigraphy -
Ru Bidium-Strontium and Related Studies of the Salado Formation, Southeastern New Mexico
CONTRACTOR REPORT SAND8 1-7072 PROPERTY OF GSA LIBRARY Unlimited.Release UC-70 Ru bidium-Strontium and Related Studies of the Salado Formation, Southeastern New Mexico Joseph K. Register University of New Mexico, Albuquerque Prepared by Sandia National Laboratones, Albuquerque. New Mexico 87185 and Livermore, Californ~a94550 for the United States Department of Energy under Contract DE-AC04-76DP00789 Printed October 198 1 Prepared for Sandia National Laboratories under Contract No. 13-9756 Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees nor any of theu contractors subcontractors or their employees makes any wanan'ty express or implied or assukes any legal lAbility or responsibdty for the accuracy cdmp~etenessorusefuiness of any information apparatus product or process disclosed or represent; that its use would not inhinie privatel; owned iights. Reference here& to any specific commercial product. process. or,service by trade name trademark manufacturer or otherwise does not necessarily constitute or imply its enddrsement re'commendation' or favoring by the United States Government any agency thereof or hyof their contr;ctors or subcontractors. The views and opinion; expressed herein do not necessarily state ,or reflect those of the United States Government, any agency thereof or any of theu contractors or subcontractors. Printed in the United States of America Available from National Technical Information Servlce U. S. Department of Commerce 5285 Port Royal Road Springfield.