Space Launch System America’S Rocket for Deep Space Exploration Boeing Space Exploration

Total Page:16

File Type:pdf, Size:1020Kb

Space Launch System America’S Rocket for Deep Space Exploration Boeing Space Exploration Space Launch System America’s Rocket for Deep Space Exploration Boeing Space Exploration Dan Shanahan Director, Global Sales and Marketing Ground-based Midcourse Defense Program [email protected] September 26, 2018 Copyright © 2018 Boeing. All rights reserved. Boeing Human Space Flight Heritage 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 20 Mercury Saturn Space Shuttle Gemini Apollo Space Station Apollo Soyuz Commercial Crew Skylab Ares SLS ICIO PGOC CAPPS Administrative and Public Domain Information – Not Export Controlled The U.S. Space Policy Directive 1 U.S. Space Policy Directive 1 Signed by President Donald J. Trump December 11, 2017 Administrative and Public Domain Information – Not Export Controlled NASA’s Exploration Campaign Administrative and Public Domain Information – Not Export Controlled SLS Program Overview Deep Space Exploration Rocket • 95 metric ton (mt) evolvable to 130 mt • Serves as primary transportation for Orion and exploration missions • Offers volume for science missions and other payloads of national importance Customer • NASA Marshall Space Flight Center, Huntsville, Alabama Boeing Role • Stages Prime Contractor • Core and Upper Stages • Program Office, Engineering – Huntsville, AL • Production – New Orleans, LA Ø NASA Michoud Assembly Facility (MAF) Near-Term Capability • First flight 2020 SLS is the Backbone of NASA’s Human Deep Space Exploration Plans Administrative and Public Domain Information – Not Export Controlled SLS Block 1 Launch Abort System Crew Module Service Module Encapsulated Service Module Panels Spacecraft Adapter Orion Stage Adapter Orion Multi-Purpose Interim Cryogenic Crew Vehicle Propulsion Stage Solid Rocket Lockheed Martin Boosters (2) Boeing / ULA Northrop Grumman Launch Vehicle Stage Adapter Teledyne Brown Engineering Core Stage Boeing RS-25 Engines (4) Aerojet Exploration Ground Systems SLS Block 1 Rocketdyne Jacobs Engineering Group SLS Block 1B Launch Abort System Crew Module Service Module Encapsulated Service Module Panels Spacecraft Adapter Orion Multi-Purpose Crew Vehicle HAB/Cargo Lockheed Martin Payload Attach Fitting (PAF) Exploration Upper Stage Boeing RL10 Engines (4) Solid Rocket Boosters (2) Universal Stage Adapter Northrop Dynetics Grumman Interstage Boeing Core Stage Boeing RS-25 Engines (4) Exploration Ground Systems Aerojet Jacobs Engineering Group Rocketdyne SLS Block 1B SLS Exploration Upper Stage (EUS) Fully human-rated upper stage ICPS EUS (Block 1) (Block 1B) 1.5X 1.7X 3X Mass to Moon Mass to Mars Mass to Mars Compared to Compared to Compared to SLS Block 1 SLS Block 1 EELV 4x RL-10 1x RL-10 5.0m § Significantly Improves Deep Space Performance 8.4m – Mass, Volume, Velocity EUS enables beyond earth exploration with meaningful payload capabilities SLS Evolution Launch Abort System Orion Universal Cargo Fairing Stage Adapter Cargo Fairing Interim Cryogenic Exploration Exploration Propulsion Stage Upper Stage Upper Stage Interstage Interstage Launch Vehicle Stage Adapter Core Stage Core Stage Core Stage Solid Solid Advanced Rocket Rocket Boosters Boosters Boosters RS-25 Engines SLS Block 1 SLS Block 1B Cargo SLS Block 1B Crew SLS Block 2 Cargo Space Launch System – Lift Capability Compared to other launch vehicles 140 360 Low Earth Orbit (LEO) Geostationary Transfer Orbit (GTO) 120 300 Lunar Transfer (ft.) Height Vehicle 100 Mars Transfer 240 80 180 60 120 40 60 Lift Capacity (metric tons) Lift (metric Capacity 20 0 0 Falcon 9 New Glenn (2 Stg) Atlas V Falcon 9 FT Delta IV-H Vulcan ACES Falcon Heavy SLS Block 1 Block 1B SLS Block 2 First Launch 2013 2020 (est) 2002 2015 2004 2022 (est) 2018 2020 (est) 2024 (est) 2029 (est) 2000 32 (m) Height Fairing 1500 24 1000 16 500 8 0 0 Payload Volume (m³) Volume Payload 5.2x13m 5.0x17m 5.4x19m 5.2 x 13m 5.1m x 19m 5.4x19m 5.2x13m 5.1 x 19m 8.4m x 21m 10m x 31m Fairing Diameter (m) Space Launch System The Only Rocket That Can Deliver Orion to the Moon and Beyond Building the SLS Rocket Backbone EM-1 Core Stage is in Final Assembly at Michoud Assembly Facility Core Stage 1 Core Stage 1 Core Stage 1 Core Stage 1 Core Stage 1 Engine Section LH2 Tank Intertank LOX Tank Forward Skirt Michoud Assembly Facility History You Can’t Get to Deep Space Without Going Through New Orleans 1940 1950 1960 1970 1980 1990 2000 2010 2018 Plant Complete Cargo Airplanes & Landing Craft N. O. Dock Board Tank Engines/Chrysler - Korean War NASA/MSFC begins operations Apollo / Saturn Skylab Shuttle / External Tank (ET) USDA/USDA/ NationalNational Finance Finance Center Center State of StateLA/UNO of LA/UNO NCAM NCAM SLS Coast Guard Saturn V CEV/Ori Exploration Orion/MPCVon Systems Boeing Mission Directorate SLS SLS Stages Structural Qual Testing 2 of 5 Tests Complete With 1 In Progress 1 ICPS Successfully Completed in May 2017 2 Engine Section Successfully Completed in Feb 2018 3 Intertank Testing In Progress – Completion in Oct 2018 4 LH2 Tank Testing Scheduled For Mar 2019 5 LOX Tank Testing Scheduled For Mar 2019 SLS Stages EM-1 Flight Hardware Core Stage Final Assembly and Outfitting Underway at MAF ICPS Forward Skirt Flight Unit at KSC Complete and Ready for Stacking Ready for Join LOX Tank TPS Complete at MAF Intertank Functional Testing Underway at MAF LH2 Tank Priming Complete at MAF Engine Section Outfitting Underway at MAF SLS Core Stage Road to the Launch Pad Final Design & Fabrication System Assembly, Integration & Test, Checkout EM-1 Launch 2020 SLS Structural Testing SLS Core Stage First Flight Firing RS-25 Currently in Testing Assembly Michoud Assembly Facility Marshall Space Flight Center Stennis Space Center Kennedy Space Center New Orleans, LA Huntsville, AL Bay St. Louis, MS Cape Canaveral, FL Exploration Mission - 1 Administrative and Public Domain Information – Not Export Controlled SLS Enhances Deep Space Science Missions Fastest to Deep Space – Europa Trajectory Time Example Atlas V 551 SLS Earth Gravity Assist (EGA) Venus Gravity Assist (VGA) Jupiter Orbit Insertion VGA Jupiter VGA (5/14/22) OrbitJOI (4/4/28) EGA EGA-1 Insertion 2 Years (10/24/23) EGA-2 LaunchLaunch (10/24/25) (11/21/21) Jupiter’s Orbit Launch 6½ Years (6/5/22) Deep Space Maneuver Launch SLS reduces transit time to Europa by more than 4 years | 18 .
Recommended publications
  • Preparation of Papers for AIAA Journals
    ASCEND 10.2514/6.2020-4000 November 16-18, 2020, Virtual Event ASCEND 2020 Cryogenic Fluid Management Technologies Enabling for the Artemis Program and Beyond Hans C. Hansen* and Wesley L. Johnson† NASA Glenn Research Center, Cleveland, Ohio, 44135, USA Michael L. Meyer‡ NASA Engineering Safety Center, Cleveland, Ohio, 44135, USA Arthur H. Werkheiser§ and Jonathan R. Stephens¶ NASA Marshall Space Flight Center, Huntsville, Alabama, 35808, USA NASA is endeavoring on an ambitious return to the Moon and eventually on to Mars through the Artemis Program leveraging innovative technologies to establish sustainable exploration architectures collaborating with US commercial and international partners [1]. Future NASA architectures have baselined cryogenic propulsion systems to support lunar missions and ultimately future missions to Mars. NASA has been investing in maturing CFM active and passive storage, transfer, and gauging technologies over the last decade plus primarily focused on ground development with a few small- scale microgravity fluid experiments. Recently, NASA created a Cryogenic Fluid Management (CFM) Technology Roadmap identifying the critical gaps requiring further development to reach a technology readiness level (TRL) of 6 prior to infusion to flight applications. To address the technology gaps the Space Technology Mission Directorate (STMD) strategically plans to invest in a diversified CFM portfolio approach through ground and flight demonstrations, collaborating with international partners, and leveraging Public Private Partnerships (PPPs) opportunities with US industry through Downloaded by Michele Dominiak on December 23, 2020 | http://arc.aiaa.org DOI: 10.2514/6.2020-4000 the Tipping Point and Announcement of Collaborative Opportunities (ACO) solicitations. Once proven, these system capabilities will enable the high performing cryogenic propellant systems needed for the Artemis Program and beyond.
    [Show full text]
  • Space Launch System (Sls) Motors
    Propulsion Products Catalog SPACE LAUNCH SYSTEM (SLS) MOTORS For NASA’s Space Launch System (SLS), Northrop Grumman manufactures the five-segment SLS heavy- lift boosters, the booster separation motors (BSM), and the Launch Abort System’s (LAS) launch abort motor and attitude control motor. The SLS five-segment booster is the largest solid rocket motor ever built for flight. The SLS booster shares some design heritage with flight-proven four-segment space shuttle reusable solid rocket motors (RSRM), but generates 20 percent greater average thrust and 24 percent greater total impulse. While space shuttle RSRM production has ended, sustained booster production for SLS helps provide cost savings and access to reliable material sources. Designed to push the spent RSRMs safely away from the space shuttle, Northrop Grumman BSMs were rigorously qualified for human space flight and successfully used on the last fifteen space shuttle missions. These same motors are a critical part of NASA’s SLS. Four BSMs are installed in the forward frustum of each five-segment booster and four are installed in the aft skirt, for a total of 16 BSMs per launch. The launch abort motor is an integral part of NASA’s LAS. The LAS is designed to safely pull the Orion crew module away from the SLS launch vehicle in the event of an emergency on the launch pad or during ascent. Northrop Grumman is on contract to Lockheed Martin to build the abort motor and attitude control motor—Lockheed is the prime contractor for building the Orion Multi-Purpose Crew Vehicle designed for use on NASA’s SLS.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Why NASA's Planet-Hunting Astrophysics Telescope Is an Easy Budget Target, and What Defeat Would Mean PAGE 24
    Q & A 12 ASTRONAUT’S VIEW 20 SPACE LAUNCH 34 Neil deGrasse Tyson A realistic moon plan SLS versus commercial SPECIAL REPORT SPACE DARK ENERGY DILEMMA Why NASA’s planet-hunting astrophysics telescope is an easy budget target, and what defeat would mean PAGE 24 APRIL 2018 | A publication of the American Institute of Aeronautics andd Astronautics | aeroaerospaceamerica.aiaa.orgerospaceamerica.aiaa.org 9–11 JULY 2018 CINCINNATI, OH ANNOUNCING EXPANDED TECHNICAL CONTENT FOR 2018! You already know about our extensive technical paper presentations, but did you know that we are now offering an expanded educational program as part of the AIAA Propulsion and Energy Forum and Exposition? In addition to our pre-forum short courses and workshops, we’ve enhanced the technical panels and added focused technical tutorials, high level discussion groups, exciting keynotes and more. LEARN MORE AND REGISTER TODAY! For complete program details please visit: propulsionenergy.aiaa.org FEATURES | April 2018 MORE AT aerospaceamerica.aiaa.org 20 34 40 24 Returning to Launching the Laying down the What next the moon Europa Clipper rules for space Senior research scientist NASA, Congress and We asked experts in for WFIRST? and former astronaut the White House are space policy to comment Tom Jones writes about debating which rocket on proposed United NASA’s three upcoming space what it would take to should send the probe Nations guidelines deliver the funds and into orbit close to this for countries and telescopes are meant to piece together political support for the Jovian moon. companies sending some heady puzzles, but the White Lunar Orbital Outpost- satellites and other craft House’s 2019 budget proposal would Gateway.
    [Show full text]
  • Orbital Fueling Architectures Leveraging Commercial Launch Vehicles for More Affordable Human Exploration
    ORBITAL FUELING ARCHITECTURES LEVERAGING COMMERCIAL LAUNCH VEHICLES FOR MORE AFFORDABLE HUMAN EXPLORATION by DANIEL J TIFFIN Submitted in partial fulfillment of the requirements for the degree of: Master of Science Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY January, 2020 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis of DANIEL JOSEPH TIFFIN Candidate for the degree of Master of Science*. Committee Chair Paul Barnhart, PhD Committee Member Sunniva Collins, PhD Committee Member Yasuhiro Kamotani, PhD Date of Defense 21 November, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Table of Contents List of Tables................................................................................................................... 5 List of Figures ................................................................................................................. 6 List of Abbreviations ....................................................................................................... 8 1. Introduction and Background.................................................................................. 14 1.1 Human Exploration Campaigns ....................................................................... 21 1.1.1. Previous Mars Architectures ..................................................................... 21 1.1.2. Latest Mars Architecture .........................................................................
    [Show full text]
  • Interstellar Probe on Space Launch System (Sls)
    INTERSTELLAR PROBE ON SPACE LAUNCH SYSTEM (SLS) David Alan Smith SLS Spacecraft/Payload Integration & Evolution (SPIE) NASA-MSFC December 13, 2019 0497 SLS EVOLVABILITY FOUNDATION FOR A GENERATION OF DEEP SPACE EXPLORATION 322 ft. Up to 313ft. 365 ft. 325 ft. 365 ft. 355 ft. Universal Universal Launch Abort System Stage Adapter 5m Class Stage Adapter Orion 8.4m Fairing 8.4m Fairing Fairing Long (Up to 90’) (up to 63’) Short (Up to 63’) Interim Cryogenic Exploration Exploration Exploration Propulsion Stage Upper Stage Upper Stage Upper Stage Launch Vehicle Interstage Interstage Interstage Stage Adapter Core Stage Core Stage Core Stage Solid Solid Evolved Rocket Rocket Boosters Boosters Boosters RS-25 RS-25 Engines Engines SLS Block 1 SLS Block 1 Cargo SLS Block 1B Crew SLS Block 1B Cargo SLS Block 2 Crew SLS Block 2 Cargo > 26 t (57k lbs) > 26 t (57k lbs) 38–41 t (84k-90k lbs) 41-44 t (90k–97k lbs) > 45 t (99k lbs) > 45 t (99k lbs) Payload to TLI/Moon Launch in the late 2020s and early 2030s 0497 IS THIS ROCKET REAL? 0497 SLS BLOCK 1 CONFIGURATION Launch Abort System (LAS) Utah, Alabama, Florida Orion Stage Adapter, California, Alabama Orion Multi-Purpose Crew Vehicle RL10 Engine Lockheed Martin, 5 Segment Solid Rocket Aerojet Rocketdyne, Louisiana, KSC Florida Booster (2) Interim Cryogenic Northrop Grumman, Propulsion Stage (ICPS) Utah, KSC Boeing/United Launch Alliance, California, Alabama Launch Vehicle Stage Adapter Teledyne Brown Engineering, California, Alabama Core Stage & Avionics Boeing Louisiana, Alabama RS-25 Engine (4)
    [Show full text]
  • Control of NASA's Space Launch System
    Success Stories FOR CONTROL Control of NASA’s Space Launch System The flight control system for the NASA Space Launch System (SLS) employs a control architecture that evolved from Saturn, Space Shuttle, and Ares I-X while also incorporating modern enhancements. This control system, baselined for the first unmanned launch, has been verified and successfully flight-tested on the Ares I-X rocket and an F/A-18 aircraft. The development of the launch vehicle itself came on the heels of the Space Shuttle retirement in 2011 and will deliver more payload to orbit and produce more thrust than any other vehicle, past or present, opening the way to new frontiers of space exploration as it carries the Orion crew vehicle, equipment, and experiments into new territories. The initial 70-metric-ton vehicle consists of four RS-25 core stage engines from the Space Shuttle inventory, two five-segment solid rocket boosters that are advanced versions of the Space Shuttle boosters, and a core stage that resembles the External Tank and carries the liquid propellant while also serving as the vehicle’s structural backbone. Just above SLS’s core stage is the Interim Cryogenic Propulsion Stage (ICPS), based on the payload motor used by the Delta IV Evolved Expendable Launch Vehicle (EELV). Challenges of Controlling the Space Launch System As with all large launch vehicles, the SLS control system must balance the competing needs of maximizing performance while maintaining robustness to limitations in preflight models. With its high thrust, large size, and multistructural load paths, SLS exhibits a high degree of structural flexion with nonplanar characteristics.
    [Show full text]
  • Launch Vehicle Control Center Architectures
    Launch Vehicle Control Center Architectures Michael D. Watson1, Amy Epps2, and Van Woodruff3 NASA Marshall Space Flight Center, Huntsville, AL 35812 Michael Jacob Vachon4 NASA Johnson Space Center, Houston, TX 77058 Julio Monreal5 European Space Agency, Launchers Directorate, Paris, France Marl Levesque6 United Launch Alliance, Vandenberg AFB and Randall Williams7 and Tom McLaughlin8 Aerospace Corporation, El Segundo, CA 90245 Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations. I. INTRODUCTION Launch vehicles in both Europe and the United States have been operating successfully for several decades.
    [Show full text]
  • 2020 Florida Space Day Handout
    2020 Florida Space Day is a milestone event that presents an opportunity to educate and bring awareness to Florida legislators on the significance of the aerospace industry and its impact on Florida’s economy. Florikan Scientific Instruments Scientific Lighting Solutions Zero Gravity Solutions BIOS Lighting Sarasota County Palm Beach County Brevard County Palm Beach County Brevard County The aerospace industry represents billions of dollars Has partnered with Supplies Kennedy Space Builds high-speed camera Has developed a micronutrient Is using NASA LED technology in annual economic impact and employs NASA multiple times to Center, as well as other space systems to detect and map formula, BAM-FX, that increases to create lighting systems for create a more robust and medical companies, with lightning strikes before the nutritional value and yield of unique applications, such as thousands of residents in the state’s 67 counties. polymer coating for its silicon diode sensors capable launches. The technology also crops. Nutrient-rich foods like maximizing plant photosynthesis controlled-release of tracking temperatures has applications in protecting these will be necessary for future and inducing wakefulness in fertilizer and to develop hundreds of degrees wind farms and investigating long-term space missions. humans by outputting only fertilizer to meet the below zero. insurance claims. certain wavelengths of light. needs of plants growing in space. 2020 SPACE DAY PARTNERS ECONOMIC DEVELOPMENT COMMISSION FLORIDA’S SPACE COAST FloridaSpaceDay.com » #FLSpaceDay The Florida Space Day is an organized and united effort to communicate to the Governor, Lt. Governor and Legislators an appreciation of their support to the space industry, educate them on the state wide economic impact of space and to develop and advocate for key initiatives that will enhance the competitiveness and viability of the state of Florida in the space sector.
    [Show full text]
  • Exploring Space
    EXPLORING SPACE: Opening New Frontiers Past, Present, and Future Space Launch Activities at Cape Canaveral Air Force Station and NASA’s John F. Kennedy Space Center EXPLORING SPACE: OPENING NEW FRONTIERS Dr. Al Koller COPYRIGHT © 2016, A. KOLLER, JR. All rights reserved. No part of this book may be reproduced without the written consent of the copyright holder Library of Congress Control Number: 2016917577 ISBN: 978-0-9668570-1-6 e3 Company Titusville, Florida http://www.e3company.com 0 TABLE OF CONTENTS Page Foreword …………………………………………………………………………2 Dedications …………………………………………………………………...…3 A Place of Canes and Reeds……………………………………………….…4 Cape Canaveral and The Eastern Range………………………………...…7 Early Missile Launches ...……………………………………………….....9-17 Explorer 1 – First Satellite …………………….……………………………...18 First Seven Astronauts ………………………………………………….……20 Mercury Program …………………………………………………….……23-27 Gemini Program ……………………………………………..….…………….28 Air Force Titan Program …………………………………………………..29-30 Apollo Program …………………………………………………………....31-35 Skylab Program ……………………………………………………………….35 Space Shuttle Program …………………………………………………..36-40 Evolved Expendable Launch Program ……………………………………..41 Constellation Program ………………………………………………………..42 International Space Station ………………………………...………………..42 Cape Canaveral Spaceport Today………………………..…………………43 ULA – Atlas V, Delta IV ………………………………………………………44 Boeing X-37B …………………………………………………………………45 SpaceX Falcon 1, Falcon 9, Dragon Capsule .………….........................46 Boeing CST-100 Starliner …………………………………………………...47 Sierra
    [Show full text]
  • Sale Price Drives Potential Effects on DOD and Commercial Launch Providers
    United States Government Accountability Office Report to Congressional Addressees August 2017 SURPLUS MISSILE MOTORS Sale Price Drives Potential Effects on DOD and Commercial Launch Providers Accessible Version GAO-17-609 August 2017 SURPLUS MISSILE MOTORS Sale Price Drives Potential Effects on DOD and Commercial Launch Providers Highlights of GAO-17-609, a report to congressional addressees Why GAO Did This Study What GAO Found The U.S. government spends over a The Department of Defense (DOD) could use several methods to set the sale billion dollars each year on launch prices of surplus intercontinental ballistic missile (ICBM) motors that could be activities as it strives to help develop a converted and used in vehicles for commercial launch if current rules prohibiting competitive market for space launches such sales were changed. One method would be to determine a breakeven and assure its access to space. Among price. Below this price, DOD would not recuperate its costs, and, above this others, one launch option is to use price, DOD would potentially save. GAO estimated that DOD could sell three vehicles derived from surplus ICBM Peacekeeper motors—the number required for one launch, or, a “motor set”—at motors such as those used on the Peacekeeper and Minuteman missiles. a breakeven price of about $8.36 million and two Minuteman II motors for about The Commercial Space Act of 1998 $3.96 million, as shown below. Other methods for determining motor prices, such prohibits the use of these motors for as fair market value as described in the Federal Accounting Standards Advisory commercial launches and limits their Board Handbook, resulted in stakeholder estimates ranging from $1.3 million per use in government launches in part to motor set to $11.2 million for a first stage Peacekeeper motor.
    [Show full text]
  • SPACE LAUNCH SYSTEM PAYLOAD TRANSPORTATION BEYOND LEO. S. D. Creech1, J. D. Baker2, A. L. Jackman3 and G. Vane4, 1NASA/MSFC
    Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989) 8060.pdf SPACE LAUNCH SYSTEM PAYLOAD TRANSPORTATION BEYOND LEO. S. D. Creech1, J. D. Baker2, A. L. Jackman3 and G. Vane4, 1NASA/MSFC Huntsville, AL 35812, [email protected], 2Jet Propulsion Laboratory, Pasadena, CA 91109, [email protected], 3NASA/MSFC Huntsville, AL 35812, [email protected], and 4Jet Propulsion Laboratory, Pasadena, CA 91109, [email protected] Introduction: NASA has successfully completed the Critical Design Review (CDR) of the heavy lift Space Launch System (SLS) and is working towards the first flight of the vehicle in 2018. SLS will begin flying crewed missions with an Orion capsule to the lunar vicinity every year after the first 2 flights starting in the early 2020's. As early as 2021, in addition to delivering an Orion capsule to a cislunar destination, SLS will also deliver ancillary payload, termed “Co- manifested Payload (CPL)”, with a mass of at least 5.5 mT and volume up to 280 m3 simultaneously to that same destination. Later SLS flights have a goal of delivering as much as 10 mT of CPL to cislunar destinations. In addition to cislunar destinations, SLS flights may deliver non-crewed, science-driven missions with Primary Payload (PPL) to more distant destinations. SLS PPL missions will utilize a unique payload fairing offering payload volume (ranging from 320 m3 to 540 m3) that greatly exceeds the largest existing Expendable Launch Vehicle (ELV) fairing available. The Characteristic Energy (C3) offered by the SLS system will generate opportunities to deliver up to 40 mT to cislunar space, and deliver double PPL mass or decrease flight time by half for some outer planet destinations when compared to existing capabilities.
    [Show full text]