NASA's Space Launch System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Preparation of Papers for AIAA Journals
ASCEND 10.2514/6.2020-4000 November 16-18, 2020, Virtual Event ASCEND 2020 Cryogenic Fluid Management Technologies Enabling for the Artemis Program and Beyond Hans C. Hansen* and Wesley L. Johnson† NASA Glenn Research Center, Cleveland, Ohio, 44135, USA Michael L. Meyer‡ NASA Engineering Safety Center, Cleveland, Ohio, 44135, USA Arthur H. Werkheiser§ and Jonathan R. Stephens¶ NASA Marshall Space Flight Center, Huntsville, Alabama, 35808, USA NASA is endeavoring on an ambitious return to the Moon and eventually on to Mars through the Artemis Program leveraging innovative technologies to establish sustainable exploration architectures collaborating with US commercial and international partners [1]. Future NASA architectures have baselined cryogenic propulsion systems to support lunar missions and ultimately future missions to Mars. NASA has been investing in maturing CFM active and passive storage, transfer, and gauging technologies over the last decade plus primarily focused on ground development with a few small- scale microgravity fluid experiments. Recently, NASA created a Cryogenic Fluid Management (CFM) Technology Roadmap identifying the critical gaps requiring further development to reach a technology readiness level (TRL) of 6 prior to infusion to flight applications. To address the technology gaps the Space Technology Mission Directorate (STMD) strategically plans to invest in a diversified CFM portfolio approach through ground and flight demonstrations, collaborating with international partners, and leveraging Public Private Partnerships (PPPs) opportunities with US industry through Downloaded by Michele Dominiak on December 23, 2020 | http://arc.aiaa.org DOI: 10.2514/6.2020-4000 the Tipping Point and Announcement of Collaborative Opportunities (ACO) solicitations. Once proven, these system capabilities will enable the high performing cryogenic propellant systems needed for the Artemis Program and beyond. -
Constellation Program Overview
Constellation Program Overview October 2008 hris Culbert anager, Lunar Surface Systems Project Office ASA/Johnson Space Center Constellation Program EarthEarth DepartureDeparture OrionOrion -- StageStage CrewCrew ExplorationExploration VehicleVehicle AresAres VV -- HeavyHeavy LiftLift LaunchLaunch VehicleVehicle AltairAltair LunarLunar LanderLander AresAres II -- CrewCrew LaunchLaunch VehicleVehicle Lunar Capabilities Concept Review EstablishedEstablished Lunar Lunar Transportation Transportation EstablishEstablish Lunar Lunar Surface SurfaceArchitecturesArchitectures ArchitectureArchitecture Point Point of of Departure: Departure: StrategiesStrategies which: which: Satisfy NASA NGO’s to acceptable degree ProvidesProvides crew crew & & cargo cargo delivery delivery to to & & from from the the Satisfy NASA NGO’s to acceptable degree within acceptable schedule moonmoon within acceptable schedule Are consistent with capacity and capabilities ProvidesProvides capacity capacity and and ca capabilitiespabilities consistent consistent Are consistent with capacity and capabilities withwith candidate candidate surface surface architectures architectures ofof the the transportation transportation systems systems ProvidesProvides sufficient sufficient performance performance margins margins IncludeInclude set set of of options options fo for rvarious various prioritizations prioritizations of cost, schedule & risk RemainsRemains within within programmatic programmatic constraints constraints of cost, schedule & risk ResultsResults in in acceptable -
The SKYLON Spaceplane
The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration. -
Why NASA's Planet-Hunting Astrophysics Telescope Is an Easy Budget Target, and What Defeat Would Mean PAGE 24
Q & A 12 ASTRONAUT’S VIEW 20 SPACE LAUNCH 34 Neil deGrasse Tyson A realistic moon plan SLS versus commercial SPECIAL REPORT SPACE DARK ENERGY DILEMMA Why NASA’s planet-hunting astrophysics telescope is an easy budget target, and what defeat would mean PAGE 24 APRIL 2018 | A publication of the American Institute of Aeronautics andd Astronautics | aeroaerospaceamerica.aiaa.orgerospaceamerica.aiaa.org 9–11 JULY 2018 CINCINNATI, OH ANNOUNCING EXPANDED TECHNICAL CONTENT FOR 2018! You already know about our extensive technical paper presentations, but did you know that we are now offering an expanded educational program as part of the AIAA Propulsion and Energy Forum and Exposition? In addition to our pre-forum short courses and workshops, we’ve enhanced the technical panels and added focused technical tutorials, high level discussion groups, exciting keynotes and more. LEARN MORE AND REGISTER TODAY! For complete program details please visit: propulsionenergy.aiaa.org FEATURES | April 2018 MORE AT aerospaceamerica.aiaa.org 20 34 40 24 Returning to Launching the Laying down the What next the moon Europa Clipper rules for space Senior research scientist NASA, Congress and We asked experts in for WFIRST? and former astronaut the White House are space policy to comment Tom Jones writes about debating which rocket on proposed United NASA’s three upcoming space what it would take to should send the probe Nations guidelines deliver the funds and into orbit close to this for countries and telescopes are meant to piece together political support for the Jovian moon. companies sending some heady puzzles, but the White Lunar Orbital Outpost- satellites and other craft House’s 2019 budget proposal would Gateway. -
Orbital Fueling Architectures Leveraging Commercial Launch Vehicles for More Affordable Human Exploration
ORBITAL FUELING ARCHITECTURES LEVERAGING COMMERCIAL LAUNCH VEHICLES FOR MORE AFFORDABLE HUMAN EXPLORATION by DANIEL J TIFFIN Submitted in partial fulfillment of the requirements for the degree of: Master of Science Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY January, 2020 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis of DANIEL JOSEPH TIFFIN Candidate for the degree of Master of Science*. Committee Chair Paul Barnhart, PhD Committee Member Sunniva Collins, PhD Committee Member Yasuhiro Kamotani, PhD Date of Defense 21 November, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Table of Contents List of Tables................................................................................................................... 5 List of Figures ................................................................................................................. 6 List of Abbreviations ....................................................................................................... 8 1. Introduction and Background.................................................................................. 14 1.1 Human Exploration Campaigns ....................................................................... 21 1.1.1. Previous Mars Architectures ..................................................................... 21 1.1.2. Latest Mars Architecture ......................................................................... -
Interstellar Probe on Space Launch System (Sls)
INTERSTELLAR PROBE ON SPACE LAUNCH SYSTEM (SLS) David Alan Smith SLS Spacecraft/Payload Integration & Evolution (SPIE) NASA-MSFC December 13, 2019 0497 SLS EVOLVABILITY FOUNDATION FOR A GENERATION OF DEEP SPACE EXPLORATION 322 ft. Up to 313ft. 365 ft. 325 ft. 365 ft. 355 ft. Universal Universal Launch Abort System Stage Adapter 5m Class Stage Adapter Orion 8.4m Fairing 8.4m Fairing Fairing Long (Up to 90’) (up to 63’) Short (Up to 63’) Interim Cryogenic Exploration Exploration Exploration Propulsion Stage Upper Stage Upper Stage Upper Stage Launch Vehicle Interstage Interstage Interstage Stage Adapter Core Stage Core Stage Core Stage Solid Solid Evolved Rocket Rocket Boosters Boosters Boosters RS-25 RS-25 Engines Engines SLS Block 1 SLS Block 1 Cargo SLS Block 1B Crew SLS Block 1B Cargo SLS Block 2 Crew SLS Block 2 Cargo > 26 t (57k lbs) > 26 t (57k lbs) 38–41 t (84k-90k lbs) 41-44 t (90k–97k lbs) > 45 t (99k lbs) > 45 t (99k lbs) Payload to TLI/Moon Launch in the late 2020s and early 2030s 0497 IS THIS ROCKET REAL? 0497 SLS BLOCK 1 CONFIGURATION Launch Abort System (LAS) Utah, Alabama, Florida Orion Stage Adapter, California, Alabama Orion Multi-Purpose Crew Vehicle RL10 Engine Lockheed Martin, 5 Segment Solid Rocket Aerojet Rocketdyne, Louisiana, KSC Florida Booster (2) Interim Cryogenic Northrop Grumman, Propulsion Stage (ICPS) Utah, KSC Boeing/United Launch Alliance, California, Alabama Launch Vehicle Stage Adapter Teledyne Brown Engineering, California, Alabama Core Stage & Avionics Boeing Louisiana, Alabama RS-25 Engine (4) -
Minotaur I User's Guide
This page left intentionally blank. Minotaur I User’s Guide Revision Summary TM-14025, Rev. D REVISION SUMMARY VERSION DOCUMENT DATE CHANGE PAGE 1.0 TM-14025 Mar 2002 Initial Release All 2.0 TM-14025A Oct 2004 Changes throughout. Major updates include All · Performance plots · Environments · Payload accommodations · Added 61 inch fairing option 3.0 TM-14025B Mar 2014 Extensively Revised All 3.1 TM-14025C Sep 2015 Updated to current Orbital ATK naming. All 3.2 TM-14025D Sep 2018 Branding update to Northrop Grumman. All 3.3 TM-14025D Sep 2020 Branding update. All Updated contact information. Release 3.3 September 2020 i Minotaur I User’s Guide Revision Summary TM-14025, Rev. D This page left intentionally blank. Release 3.3 September 2020 ii Minotaur I User’s Guide Preface TM-14025, Rev. D PREFACE This Minotaur I User's Guide is intended to familiarize potential space launch vehicle users with the Mino- taur I launch system, its capabilities and its associated services. All data provided herein is for reference purposes only and should not be used for mission specific analyses. Detailed analyses will be performed based on the requirements and characteristics of each specific mission. The launch services described herein are available for US Government sponsored missions via the United States Air Force (USAF) Space and Missile Systems Center (SMC), Advanced Systems and Development Directorate (SMC/AD), Rocket Systems Launch Program (SMC/ADSL). For technical information and additional copies of this User’s Guide, contact: Northrop Grumman -
Silencing Nasa's Space Shuttle Crawler
SILENCING NASA’S SPACE SHUTTLE CRAWLER TRANSPORTER R. MacDonalda, C. Faszerb, and R. Margasahayamc aNoise Solutions Inc., #310 605 – 1st Street SW, Calgary, Alberta, Canada T2P 3S9 bFaszer Farquharson & Associates, #304 605 – 1st Street SW, Calgary, Alberta, Canada T2P 3S9 cNASA, John F. Kennedy Space Center, Florida, United States of America 32899 [email protected]; [email protected]; [email protected] Abstract. The crawler transporter (CT) is the world’s second largest known tracked vehicle, weighing 6 million pounds with a length of 131 feet and a width of 113 feet. The Kennedy Space Center (KSC) has two CTs that were designed and built for the Apollo program in the 1960’s, maintained and retrofitted for use in the Space Shuttle program. As a key element of the Space Shuttle ground systems, the crawler transports the entire 12-million-pound stack comprising the orbiter, the mobile launch platform (MLP), the external tank (ET), and the solid rocket boosters (SRB) from the Vehicle Assembly Building (VAB) to the launch pad. This rollout, constituting a 3.5 to 5.0 mile journey at a top speed of 0.9 miles-per-hour, requires over 8 hours to reach either Launch Complex 39A or B. This activity is only a prelude to the spectacle of sound and fury of the Space Shuttle launch to orbit in less than 10 minutes and traveling at orbital velocities of Mach 24. This paper summarizes preliminary results from the Crawler Transporter Sound Attenuation Study, encompassing test and engineering analysis of significant sound sources to measure and record full frequency spectrum and intensity of the various noise sources and to analyze the potential for noise mitigation. -
Spaceport Infrastructure Cost Trends
AIAA 2014-4397 SPACE Conferences & Exposition 4-7 August 2014, San Diego, CA AIAA SPACE 2014 Conference and Exposition Spaceport Infrastructure Cost Trends Brian S. Gulliver, PE1, and G. Wayne Finger, PhD, PE2 RS&H, Inc. The total cost of employing a new or revised space launch system is critical to understanding its business potential, analyzing its business case and funding its development. The design, construction and activation of a commercial launch complex or spaceport can represent a significant portion of the non-recurring costs for a new launch system. While the historical cost trends for traditional launch site infrastructure are fairly well understood, significant changes in the approach to commercial launch systems in recent years have required a reevaluation of the cost of ground infrastructure. By understanding the factors which drive these costs, informed decisions can be made early in a program to give the business case the best chance of economic success. The authors have designed several NASA, military, commercial and private launch complexes and supported the evaluation and licensing of commercial aerospaceports. Data from these designs has been used to identify the major factors which, on a broad scale, drive their non-recurring costs. Both vehicle specific and location specific factors play major roles in establishing costs. I. Introduction It is critical for launch vehicle operators and other stakeholders to understand the factors and trends that affect the non-recurring costs of launch site infrastructure. These costs are often an area of concern when planning for the development of a new launch vehicle program as they can represent a significant capital investment that must be recovered over the lifecycle of the program. -
Spaceport News America's Gateway to the Universe
MissionUpdate Vol. 36, No. 17 August 29, 1997 Shuttle-Mir Spaceport News America's gateway to the universe. Leading the world in preparing and launching missions to Earth and beyond. John F. Kennedy Space Center Internal EVA conducted: Mir 24 cosmonauts Anatoly Solovyev and Pavel Vinogradov and U.S. astronaut Michael Foale continue the process of verifying restoration of electrical power to the Russian Busy week at Space Station Mir after an intravehicular activity Aug. 22. Troubleshooting of the oxygen- generating system also was under America’s way, and an extravehicular activity was tentatively set for the first week of September to conduct an spaceport inspection of leak sites on the damaged Spektr module. STS-86 ONE Shuttle rolled out to the launch pad Aug. 18 and another returned to KSC the following day. The Space Shuttle Atlantis (above) is now at Pad 39A, undergoing final preparations for launch Sept. 25 on the seventh Shuttle-Mir docking mission, STS-86. The Terminal Countdown Demonstration Test is scheduled for Sept. 9- Atlantis (20th flight OV-104) 10. At about 7:08 a.m., Aug. 19, Discovery (right) 87th Shuttle flight touched down on Runway 33 of KSC's Shuttle Landing Pad 39A Facility, bringing Mission STS-85 to a successful 7th Mir Docking conclusion. Researchers were delighted with the Launch: Sept. 25, 10:34 p.m. performance of the primary scientific instruments flown Crew: Wetherbee; Bloomfield; on the 86th Shuttle flight, the Cryogenic Infrared Parazynski; Titov; Chretien Spectrometers and Telescopes for the Atmosphere (France); Lawrence; Wolf. (CRISTA)-SPAS and the Middle Atmosphere High Commander Wetherbee flew on Resolution Spectrograph Investigation (MAHRSI), both of STS-63, the Shuttle flight that which performed flawlessly. -
SPACE VEHICLE OPERATORS CONCEPT of OPERATIONS a Vision to Transform Ground and Launch Operations
SPACE VEHICLE OPERATORS CONCEPT OF OPERATIONS A Vision to Transform Ground and Launch Operations Future Interagency Range and Spaceport Technologies October 2004 Future Interagency Range and Spaceport Technologies (FIRST) FOREWORD The Future Interagency Range and Spaceport Technologies (FIRST) initiative is a partnership and interagency working group of NASA, the Department of Defense (Air Force Space Command and Office of the Secretary of Defense), and the Federal Aviation Administration. The partnership was established to guide transformation of U.S. ground and space launch operations toward a single, integrated national “system” of space transportation systems that enables low-cost, routine, safe access to space for a variety of applications and markets through technology infusion. This multi-agency consortium is formulating plans to create a national program office that will coordinate individual agency plans to produce an integrated national space transportation system infrastructure comprised of spaceports, ranges, and space and air traffic management systems. A set of concepts of operations, or CONOPS, has been produced to articulate a cohesive interagency vision for this future space transportation system in support of FIRST program formulation efforts. These concepts are intended to guide and support the coordinated development of technologies that allow multiple launch vehicle architectures and missions to be supported by the same ground and launch systems without significant modification. These documents reflect the interests of the partners in the working group, and are not intended to imply final approval or policy of any of the participating agencies. These visionary CONOPS documents have been built on the foundation that was established over the past two years by the Advanced Range Technology Working Group (ARTWG) and Advanced Spaceport Technology Working Group (ASTWG). -
The World's Spaceport
Strict security THE WORLD’S The French government, the CSG, and Arianespace follow strict security measures that meet the most rigorous international SPACEPORT and national agreements and requirements. Arianespace activities are characterized as highly security sensitive ones by the French governement and consequently very strict and rigorous measures are implemented with the Ideal location support of national authorities to satisfy both national and international requirements. They apply to the three launch The Guiana Space Center (CSG) offers ideal conditions for systems: Ariane 5, Soyuz, and Vega, and strictly limit access launching any payload to any orbit at any time. Located to spacecraft. at 5 degrees North latitude, its proximity to the equator provides an extra boost of energy due to the Earth’s Specifically, the security regime is compliant with requirements rotation – a slingshot effect that is greater here than at most governing the export of U.S. manufactured satellites or parts other launch sites. under the ITAR regulation. State-of-the-art facilities Safety mission TECHNICAL OVERVIEW The CSG provides modern Payload Preparation Facilities The CSG entities apply rigorous Safety Rules during each that are recognized for their high quality in the space launch campaign: this includes authorization of equipment industry. The facilities are capable of processing several use, operator certification, and permanent operation spacecrafts from different customers simultaneously, thanks monitoring. Any potentially dangerous activity is to be to vast clean-rooms and commodious infrastructure. reported to the CSG responsible, which in turn, makes certain Designed to support the rockets’ multiple launch capability that safety equipment and emergency response teams are SOYUZ and high launch tempo, the preparation facilities meet the poised to deal with any hazard.