Phylogenomics and a Posteriori Data Partitioning Resolve the Cretaceous Angiosperm Radiation Malpighiales

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenomics and a Posteriori Data Partitioning Resolve the Cretaceous Angiosperm Radiation Malpighiales Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales Zhenxiang Xia, Brad R. Ruhfela,b, Hanno Schaefera,c, André M. Amorimd, M. Sugumarane, Kenneth J. Wurdackf, Peter K. Endressg, Merran L. Matthewsg, Peter F. Stevensh, Sarah Mathewsi,1, and Charles C. Davisa,1 aDepartment of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA 02138; bDepartment of Biological Sciences, Eastern Kentucky University, Richmond, KY 40475; cBiodiversitaet der Pflanzen, Technische Universitaet Muenchen, D-85354 Freising, Germany; dDepartamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, 45.662-900, Bahia, Brazil; eRimba Ilmu Botanic Garden, Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia; fDepartment of Botany, Smithsonian Institution, Washington, DC 20013; gInstitute of Systematic Botany, University of Zurich, CH-8008 Zurich, Switzerland; hDepartment of Biology, University of Missouri, St. Louis, MO 63166; and iArnold Arboretum, Harvard University, Boston, MA 02131 Edited by Robert K. Jansen, University of Texas, Austin, TX, and accepted by the Editorial Board September 11, 2012 (received for review April 6, 2012) The angiosperm order Malpighiales includes ∼16,000 species and mental, and genomic investigations of flowering plants, but also constitutes up to 40% of the understory tree diversity in tropical rain for crop improvement. forests. Despite remarkable progress in angiosperm systematics dur- Despite substantial progress in resolving the angiosperm Tree ing the last 20 y, relationships within Malpighiales remain poorly of Life during the last 20 y (1, 8–12), phylogenetic relationships resolved, possibly owing to its rapid rise during the mid-Cretaceous. within Malpighiales remain poorly resolved. Molecular studies Using phylogenomic approaches, including analyses of 82 plastid (1, 4) using multiple gene regions from the plastid, mitochon- genes from 58 species, we identified 12 additional clades in Malpigh- drial, and nuclear genomes have confirmed the monophyly of iales and substantially increased resolution along the backbone. This Malpighiales and its component families with a high degree of greatly improved phylogeny revealed a dynamic history of shifts in confidence but have identified only a handful of well-supported net diversification rates across Malpighiales, with bursts of diversi- multifamily clades. The most recent analysis by Wurdack and EVOLUTION fication noted in the Barbados cherries (Malpighiaceae), cocas (Eryth- Davis (3) included 13 genes, totaling 15,604 characters, sampled roxylaceae), and passion flowers (Passifloraceae). We found that across all three genomes from 144 Malpighiales. Their results commonly used a priori approaches for partitioning concatenated indicated that all families are monophyletic, but interrelation- data in maximum likelihood analyses, by gene or by codon position, ships among the 16 major subclades remained unresolved. The fi performed poorly relative to the use of partitions identi ed a poste- difficulty in determining these deep relationships may result from riori using a Bayesian mixture model. We also found better branch the rapid rise of the order during the mid-Cretaceous (4). support in trees inferred from a taxon-rich, data-sparse matrix, We used phylogenomic approaches to resolve relationships which deeply sampled only the phylogenetically critical placehold- within Malpighiales to provide a framework for studying their ers, than in trees inferred from a taxon-sparse matrix with little tempo and mode of diversification. Our core data set included missing data. Although this matrix has more missing data, our a pos- 82 genes sampled from the plastomes of 58 species, 48 of which teriori partitioning strategy reduced the possibility of producing were newly sequenced for this study. We combined this core data multiple distinct but equally optimal topologies and increased phy- set with the previously described taxon-rich data set of Wurdack logenetic decisiveness, compared with the strategy of partitioning by gene. These approaches are likely to help improve phylogenetic and Davis (3). Our results greatly improve phylogenetic resolu- resolution in other poorly resolved major clades of angiosperms and tion within Malpighiales, highlight the value of a unique parti- to be more broadly useful in studies across the Tree of Life. tioning strategy for phylogenomic analyses, and reveal a dynamic history of shifts in net diversification rates across the order. alpighiales are one of the most surprising clades discov- Results and Discussion fl Mered in broad molecular phylogenetic studies of the ow- Taxon and Gene Sampling. Our core data set, the 82-gene matrix, – ∼ ering plants (1 3). The order contains 16,000 species and 42 included 58 taxa (48 are newly sequenced; SI Appendix, Table families (2, 3) that exhibit remarkable morphological and eco- S2) and 82 plastid genes common to most angiosperms (72,828 logical diversity. A few examples include cactus-like succulents characters; 17% of the cells in the matrix were gaps or missing (Euphorbiaceae), epiphytes (Clusiaceae), holoparasites (Raf- data; each taxon was represented by an average of 86% of the 82 flesiaceae), submerged aquatics (Podostemaceae), and wind- genes; SI Appendix, Tables S2 and S3). The taxa were carefully pollinated trees (temperate Salicaceae). The order is ecologically selected to capture the basal nodes within deeply diverged important: species in Malpighiales constitute up to 40% of the families, such as Centroplacaceae and Euphorbiaceae (4); understory tree diversity in tropical rain forests worldwide (4). They also include many economically important species, such as Barbados nut (Jatropha curcas L., Euphorbiaceae), cassava Author contributions: Z.X., B.R.R., H.S., K.J.W., S.M., and C.C.D. designed research; Z.X., B.R.R., (Manihot esculenta Crantz, Euphorbiaceae), castor bean (Ricinus A.M.A., M.S., M.L.M., and C.C.D. performed research; Z.X., B.R.R., H.S., P.K.E., P.F.S., S.M., and communis L., Euphorbiaceae), coca (Erythroxylum coca Lam., C.C.D. analyzed data; and Z.X., B.R.R., H.S., K.J.W., P.K.E., S.M., and C.C.D. wrote the paper. Erythroxylaceae), flax (Linum usitatissimum L., Linaceae), the The authors declare no conflict of interest. poplars (Populus spp., Salicaceae), and the rubber tree (Hevea This article is a PNAS Direct Submission. R.K.J. is a guest editor invited by the brasiliensis Müll. Arg., Euphorbiaceae). Partially for this rea- Editorial Board. Data deposition: The sequence reported in this paper has been deposited in the GenBank son, genomic resources for Malpighiales are growing at a rapid database (accession no. JX661767–JX665032). pace and include whole-genome sequencing projects com- 1To whom correspondence may be addressed. E-mail: [email protected] or smathews@ pleted or near completion for Barbados nut (5), cassava, castor oeb.harvard.edu. fl bean (6), ax, and poplar (7). Thus, a resolved phylogeny of Mal- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. pighiales is critical not only for evolutionary, ecological, develop- 1073/pnas.1205818109/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1205818109 PNAS Early Edition | 1of6 Downloaded by guest on September 23, 2021 they represent 39 of the 42 families of Malpighiales (excluding sensu Wurdack and Davis (3) (clade 7). Surprisingly, the Lophopyxidaceae, Malesherbiaceae, and Rafflesiaceae; SI Ap- euphorbioid clade (64 BP, 0.61 PP) reunites most of the former pendix, SI Materials and Methods) and relevant outgroups. To Euphorbiaceae (including Euphorbiaceae, Peraceae, Phyllan- obtain the most comprehensive phylogenetic tree for the order, thaceae, and Picrodendraceae but excluding Putranjivaceae) we used the 82-gene matrix as a scaffold to which we added the (13, 14) with the well-supported (96 BP, 1.0 PP) linoid clade existing taxon-rich but character-sparse 13-gene matrix (186 taxa; (clade 6; Ixonanthaceae + Linaceae) we identified. Within the 15,574 characters; 15% missing data) (3) to create our combined- euphorbioids, the linoids are well-supported (clade 5; 84 BP, 1.0 incomplete matrix (Table 1). This matrix included 191 taxa and 91 PP) as sister to the phyllanthoids (Phyllanthaceae + Picroden- genes (82 plastid genes, six mitochondrial genes, and three nu- draceae; 100 BP, 1.0 PP). The second major subclade identified clear genes; 81,259 characters; 64% missing data). We also cre- here, clade 7 (62 BP, 0.79 PP), includes Humiriaceae and the ated a combined-complete matrix by reducing the taxon sampling parietal clade (100 BP, 1.0 PP). Within the parietal clade, Gou- in the combined-incomplete matrix to match the taxon sampling of piaceae is sister to Violaceae (clade 9; 75 BP, 0.62 PP). Also the 82-gene matrix. This greatly reduced the percentage of within the parietal clade, (Malesherbiaceae (Passifloraceae + missing data cells in our alignment from 64% to 12%. The Turneraceae)) is sister to the salicoids [clade 8; (Lacistemataceae combined-complete matrix included 58 taxa and 91 genes (81,117 (Samydaceae (Salicaceae + Scyphostegiaceae))); 96 BP, 1.0 PP]. characters). Finally, we reanalyzed the 13-gene matrix alone to Clade 2 (83 BP, 1.0 PP) includes three subclades in a tri- determine the phylogenetic impact of adding the 82-gene matrix. chotomy. Its first major subclade, clade 10 (70 BP, 0.81 PP), Each of the four matrices was analyzed using four different data includes
Recommended publications
  • Lowland Plants
    Draft Ontario’s Native Plant Catalogue June 9, 2020 Lowland Garden - water saturated soil for at least part of the year Often the more sun the more consistent moisture the plant requires, and vice versa. The second line of each Entry specifies by numbers the regions in which the plant is native: 1 - southwest Ontario from Windsor to Toronto and from Goderich to Niagara-on-the-Lake; includes London, Hamilton, Burlington, Oakville, Mississauga, Toronto. 2 - north of region 1 to region 3; includes Kitchener-Waterloo, Cambridge, Guelph, Barrie 3 - the Bruce Peninsula and around the south shore of Georgian Bay to/including Collingwood. 4 - regions York, Durham, and Northumberland. 5 - Prince Edward County and along the St. Lawrence River to the Québec border. 6 - from Lake Simcoe across to the Ottawa River; Kawartha Lakes, Peterborough, Ottawa. 7 - from Georgian Bay across to the Ottawa River, plus Manitoulin Island and up the coast of Georgian Bay to just past Sault Ste. Marie; Parry Sound,North Bay, Sudbury, Temagami. 8 - the far northeast; includes Cobalt, Timmins; Kapuskasing is on the western border. 9 - the far north central (north of Sault Ste. Marie); Hearst; Kapuskasing is on the east border. 10 - the far northwest; Rainy River, Lake of the Woods, Kenora, Thunder Bay, Lake Nipigon, Terrace Bay, Wawa. For the photos on website www.minnesotawildflowers.info, click on any photo to see all of them enlarged. For www.michiganflora.net, click on “All Images”. The complete catalogue with all Internet Links active (pointing to beautiful photographs) is available for free at www.frontyardrestoration.com.
    [Show full text]
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
    MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion.
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Of Connecting Plants and People
    THE NEWSLEttER OF THE SINGAPORE BOTANIC GARDENS VOLUME 34, JANUARY 2010 ISSN 0219-1688 of connecting plants and people p13 Collecting & conserving Thai Convolvulaceae p2 Sowing the seeds of conservation in an oil palm plantation p8 Spindle gingers – jewels of Singapores forests p24 VOLUME 34, JANUARY 2010 Message from the director Chin See Chung ARTICLES 2 Collecting & conserving Thai Convolvulaceae George Staples 6 Spotlight on research: a PhD project on Convolvulaceae George Staples 8 Sowing the seeds of conservation in an oil palm plantation Paul Leong, Serena Lee 12 Propagation of a very rare orchid, Khoo-Woon Mui Hwang, Lim-Ho Chee Len Robiquetia spathulata Whang Lay Keng, Ali bin Ibrahim 150 years of connecting plants and people: Terri Oh 2 13 The making of stars Two minds, one theory - Wallace & Darwin, the two faces of evolution theory I do! I do! I do! One evening, two stellar performances In Search of Gingers Botanical diplomacy The art of botanical painting Fugitives fleurs: a unique perspective on floral fragments Falling in love Born in the Gardens A garden dialogue - Reminiscences of the Gardens 8 Children celebrate! Botanical party Of saints, ships and suspense Birthday wishes for the Gardens REGULAR FEATURES Around the Gardens 21 Convolvulaceae taxonomic workshop George Staples What’s Blooming 18 22 Upside down or right side up? The baobab tree Nura Abdul Karim Ginger and its Allies 24 Spindle gingers – jewels of Singapores forests Jana Leong-Škornicková From Education Outreach 26 “The Green Sheep” – a first for babies and toddlers at JBCG Janice Yau 27 International volunteers at the Jacob Ballas Children’s Garden Winnie Wong, Janice Yau From Taxonomy Corner 28 The puzzling bathroom bubbles plant..
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Plant Diversity Assessments in Tropical Forest of SE Asia
    August 18, 2015, 6th International Barcode of Life Conference Barcodes to Biomes Plant Diversity Assessments in tropical forest of SE Asia Tetsukazu Yahara Center for Asian Conservation Ecology & Institute of Decision Science for a Sustainable Society Kyushu University, Japan Goal: assessing plant species loss under the rapid deforestation in SE Asia Laumonier et al. (2010) Outline • Assessing trends of species richness, PD and community structure in 32 permanent plots of 50m x 50m in Cambodia • Recording status of all the vascular plant species in 100m x 5m plots placed in Vietnam, Cambodia, Thailand, Malaysia and Indonesia • Assessing extinction risks in some representative groups: case studies in Bauhinia and Dalbergia (Fabaceae) Deforestation in Cambodia Sep. 2010 Jan. 2011 Recently, tropical lowland forest of Cambodia is rapidly disappearing; assessments are urgently needed. Locations of plot surveys in Cambodia Unknown taxonomy of plot trees Top et al. (2009); 88 spp (36%) of 243 spp. remain unidentified. Top et al. (2009); many species are mis-identified. Use of DNA barcodes/phylogenetic tree 32 Permanent plots in Kg. Thom 347 species Bayesian method 14 calibration points Estimated common ancestor of Angiosperms 159 Ma 141-199 Ma (Bell et al. 2010) Scientific name: ???? rbcL Local name: Kro Ob Ixonanthes chinensis (544/545) Specimen No.: 2002 Ixonanthes reticulata (556/558) Cyrillopsis paraensis (550/563) Power point slides are prepared for all the plot tree species Scientific name: Ixonanthaceae Ixonanthes reticulata Jack Bokor 240m Local name: Tromoung Sek Phnom matK Ixonanthes chinensis (747/754) Gaps= 0/754 No. 4238 Ixonanthes reticulata (746/754) Gaps= 0/754 # Syn. = Ixonanthes cochinchinensis Pierrei Cyrillopsis paraensis (710/754) Gaps= 0/754“ Ixonanthaceae Ixonanthes reticulata Jack 4238 Specimen image from Kew Herbarium Catalogue http://apps.kew.org/herbcat/gotoHomePage.do Taxonomic papers & Picture Guides Toyama et al.
    [Show full text]
  • Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae) Patrick Wayne Sweeney University of Missouri-St
    University of Missouri, St. Louis IRL @ UMSL Dissertations UMSL Graduate Works 7-30-2008 Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae) Patrick Wayne Sweeney University of Missouri-St. Louis Follow this and additional works at: https://irl.umsl.edu/dissertation Part of the Biology Commons Recommended Citation Sweeney, Patrick Wayne, "Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae)" (2008). Dissertations. 539. https://irl.umsl.edu/dissertation/539 This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. SYSTEMATICS AND FLORAL EVOLUTION IN THE PLANT GENUS GARCINIA (CLUSIACEAE) by PATRICK WAYNE SWEENEY M.S. Botany, University of Georgia, 1999 B.S. Biology, Georgia Southern University, 1994 A DISSERTATION Submitted to the Graduate School of the UNIVERSITY OF MISSOURI- ST. LOUIS In partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in BIOLOGY with an emphasis in Plant Systematics November, 2007 Advisory Committee Elizabeth A. Kellogg, Ph.D. Peter F. Stevens, Ph.D. P. Mick Richardson, Ph.D. Barbara A. Schaal, Ph.D. © Copyright 2007 by Patrick Wayne Sweeney All Rights Reserved Sweeney, Patrick, 2007, UMSL, p. 2 Dissertation Abstract The pantropical genus Garcinia (Clusiaceae), a group comprised of more than 250 species of dioecious trees and shrubs, is a common component of lowland tropical forests and is best known by the highly prized fruit of mangosteen (G. mangostana L.). The genus exhibits as extreme a diversity of floral form as is found anywhere in angiosperms and there are many unresolved taxonomic issues surrounding the genus.
    [Show full text]
  • Triadenum Fraseri, Hypericaceae) Im Emsdettener Venn (Kreis Steinfurt, Nordrhein-Westfalen)
    Veröff. Bochumer Bot. Ver. 8(4) 25–28 2016 Frasers Auenhartheu (Triadenum fraseri, Hypericaceae) im Emsdettener Venn (Kreis Steinfurt, Nordrhein-Westfalen) LUDWIG KLASING, PETER SCHWARTZE, GÖTZ HEINRICH LOOS & ARMIN JAGEL Kurzfassung Im NSG Emsdettener Venn im Kreis Steinfurt/NRW wächst seit mindestens 2011 Frasers Auenhartheu (Triade- num fraseri), eine Art, die an sumpfigen Standorten in Nord-Amerika heimisch ist. Das Vorkommen breitet sich im Emsdettener Venn weiter aus und ist hier offensichtlich bereits eingebürgert. Da es sich wahrscheinlich um die erste Verwilderung der Art in Deutschland handelt, wird Frasers Auenhartheu mit Fotos vorgestellt und das Vorkommen näher beschrieben. Abstract: Fraser's St. John's wort (Triadenum fraseri, Hypericaceae) in the fen of Emsdetten (District of Steinfurt, North-Rhine Westphalia, Germany). Fraser's St. John's wort (Triadenum fraseri), a species native to wetland habitats of North-America, has been known to grow at least since 2011 in the fen of Emsdetten. The species's range is expanding and it can be considered established in this fen. Since this population represents most likely the first known case of successful establishment in Germany, its occurrence will be discussed in detail. 1 Einleitung Seit mindestens sechs Jahren wächst im Naturschutzgebiet Emsdettener Venn im Kreis Steinfurt eine Pflanzenart in einem Moortümpel, die mit herkömmlicher mitteleuropäischer Bestimmungsliteratur nicht zu bestimmen ist. So ist sie z. B. weder in der neuesten Auflage des SCHMEIL-FITSCHEN (2016) enthalten, noch im Zier- und Nutzpflanzen-Band des ROTHMALER (JÄGER & al. 2008) oder im neuesten ZANDER (2014). Selbst die European Garden Flora (ROBSON 2011) nennt weder die Gattung noch die Art.
    [Show full text]
  • First Steps Towards a Floral Structural Characterization of the Major Rosid Subclades
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2006 First steps towards a floral structural characterization of the major rosid subclades Endress, P K ; Matthews, M L Abstract: A survey of our own comparative studies on several larger clades of rosids and over 1400 original publications on rosid flowers shows that floral structural features support to various degrees the supraordinal relationships in rosids proposed by molecular phylogenetic studies. However, as many apparent relationships are not yet well resolved, the structural support also remains tentative. Some of the features that turned out to be of interest in the present study had not previously been considered in earlier supraordinal studies. The strongest floral structural support is for malvids (Brassicales, Malvales, Sapindales), which reflects the strong support of phylogenetic analyses. Somewhat less structurally supported are the COM (Celastrales, Oxalidales, Malpighiales) and the nitrogen-fixing (Cucurbitales, Fagales, Fabales, Rosales) clades of fabids, which are both also only weakly supported in phylogenetic analyses. The sister pairs, Cucurbitales plus Fagales, and Malvales plus Sapindales, are structurally only weakly supported, and for the entire fabids there is no clear support by the present floral structural data. However, an additional grouping, the COM clade plus malvids, shares some interesting features but does not appear as a clade in phylogenetic analyses. Thus it appears that the deepest split within eurosids- that between fabids and malvids - in molecular phylogenetic analyses (however weakly supported) is not matched by the present structural data. Features of ovules including thickness of integuments, thickness of nucellus, and degree of ovular curvature, appear to be especially interesting for higher level relationships and should be further explored.
    [Show full text]