Spinal Vascular Malformations: Classification, Diagnosis and Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Spinal Vascular Malformations: Classification, Diagnosis and Treatment ESNR SPINE COURSE Spinal vascular malformations: classification, diagnosis and treatment M VOORMOLEN, MD PhD Interventional Neuroradiology Antwerp University Hospital, Belgium Antwerp, May 15th 2015 Introduction Spinal vascular diseases: • Vascular occlusions: • thrombo-embolic • aortic dissection • embolisation from intervertebral disc • iatrogenous • compression (tumor) • decompression illness • Vascular pathologic lesions • vascular neoplasm • aneurysm • arterioveneous malformation Spinal vascular lesions • Neoplasm: • Haemangioblastoma • Cavernous haemangioma • Aneurysm • Malformation: • Dural arteriovenous fistula (sDAVF) • Arteriovenous malformation (sAVM) (Spetzler et al 2002) haemangioblastoma Vascularisation spinal cord • intercostal arteries: • thoracolumbar spine • sidebranches vertebral arteries: • cervical spine • high thoracic spine • radicular arteries: • nerve roots • most end in pia mater • anterior spinal artery (anterior 2/3 cord): • 0 – 6 cervical region • 2 – 4 thoracic region • 1 – 2 lumbar region • largest: arteria radicalis magna (Adamkiewicz) Arteria spinalis anterior (ASA) • Adamkiewicz • Th 10 – L2 • Li > Re Arteria spinalis posterior (ASP) • cervical: • sidebranches a vertebrales (intracranial) • posterior radicular arteries: • cervical – thoracic - lumbar • more collateral circulation compared to anterior spinal arteries • posterior 1/3 part spinal cord Spinal vasculature • Arterial: • spinal artery • radicular artery • anterior • posterior • Venous: • spinal vein • anterior • posterior • radicular vein • internal vertebral venous plexus (epidural) Spinal venous drainage • venous plexus • anterior • posterior • intervertebral veins • ascending lumbar vein • segmental vein • inferior vena cava • (hemi-) azygos vein Vascular spinal diseases • Ischemia by arterial occlusion • spontaneous (≈ acute CVA ; usually ASA) • abdominal aortic surgery (Adamkievicz) • decompression illness (air embolus; 2 x frequent than brain) • disc embolus (young persons; degeneration analus fibrosus) • Ischemia by venous occlusion: • spinal dural AV fistula (sDAVF) • Spinal subarachnoid hemorrhage • spinal aneurysm (rare) • spinal aneurysm associated with spinal AVM Spinal subarachnoid haemorrhage • very rare • sudden, knife-like pain • level pain = level lesion • 50% rebleeding • < 10% symptom free recovery • after treatment 60% DLA independent (Shepard, 1992) • spinal intradural AVM most frequent cause • aneurysm associated with sAVM • some cases of arterial aneurysm (Massand et al, 2005) Imaging • CT scan: • limited information, except CT angio (pigtail in aorta) • MRI scan: • first choice • extramedullar and intramedullar lesions • MR angiography • Angiography: • risk (2-3%) permanent neurological deficit (Forbes et al. 1988) • focused at vascular lesion (and ASA) • embolisation Spinal angiography Classification 1. single shunts caused by a genetic disorder, for example arteriovenous lesions associated with hereditary haemorrhagic telangiectasia (Rendu–Osler– Weber disease) 2. multiple spinal cord vascular lesions that are not genetically determined but share metameric links (involvement with cord, bone, paraspinal, subcutaneous and skin tissues) 3. single lesions, which are either AVMs or AVF Berenstein A, Lasjaunias P, Ter Brugge KG. Surgical neuroangiography 2.2. Berlin: Springer; 2004 Classification (based on topographic and anatomic criteria) • sAVM (nidus; fed by arteries normally supplying the neural tissue): • Intramedullary • Pial • Epidural • Intra- and extramedular (Juvenile) • sAVF (direct AV shunt; fed by radiculomeningeal arteries): • Dural • Pial (small, large, giant) • Epidural Spetzler RF, et al. Modified classification of spinal cord vascular lesions. J Neurosurg 2002; 96: 145–56 Frequency spinal vascular lesions 1. sDAVF 70% 2. sAVM 20-30% 3. pial sAVF rare 4. epidural sAVF very rare 5. juvenile sAVM extreme rare Spinal dural arteriovenous fistula (sDAVF) • middle aged male • late diagnosis (weeks/months/years) due to gradual onset • starts with sensory or motor deficit feet / lower legs • later: • sensory / motor deficits lower body • micturation / defecation disorder • acquired • unknown etiology (venous thrombosis?) sDAVF • abnormal connection radiculomeningeal artery / radicular vein (along nerve root) in dura mater of intervertebral foramen (McCutcheon et al;1996) • usually thoracic or lumbar level (Jellema et al; 2003) • common venous drainage radicular vein and spinal cord • high pressure on spinal cord veins/capillaries (valveless) • venous congestion • disfunction and necrosis (edema and loss of blood-cord barrier) • first gray matter, later white matter (Hurst et al; 1995) sDAVF - symptoms • starts at medullary conus (independent of level sDAVF) 1. sensory deficits feet ascending to buttock (sacral segments) 2. motor deficits: 1. periferal (gray matter cord) 2. spasticity and pathologic reflexes (white matter) 3. mictural disorders (periferal nature) 4. erectile disorders 5. defecation disorder Spinal haemorrhage very rare (only in some cervical sDAVF) sDAVF - imaging • MRI scan • venous congestion • spinal cord edema (T2 hyperintens) • tortuous veins dorsal to spinal cord • Angiography: • indentification level of sDAVF • identification ASA (Adamkievicz) sDAVF - treatment • Surgery: • Clipping / cauterisation of fistula (laminectomy) • Endovascular embolisation: • First choice option • Glue (Histo-Acryl) or Onyx embolisation of fistula • Venous part needs to be reached • Presurgical marking of vertebral level with coil Male, 80 years; sDAVF L2 Spinal angiography with 3D reconstructions Endovascular treatment with Histo-acryl glue (arrows) sDAVF left L1: surgical clipping sAVM • 20-30% of all sAV lesions • high-flow • location: • spinal cord surface, intramedullary or both • arterial supply: pial and perforating arteries (ASA/PSA) • venous drainage: intrinsic or pial veins • nidus, single or multiple fistulae • association with arterial aneurysm or venous pouches • even distribution along spinal cord sAVM • childhood or early adulthood • sudden onset of symptoms due to hemorrhage or compression-induced myelopathy: • motor and/or sensory deficits • bladder and bowel disturbances • pain • progressive deterioration of spinal cord function with each new event Male, 29 years; sAVM L1 (Adamkievicz Th10) Right Th10 Left L1 Endovascular occlusion with Onyx® Characteristics sDAVF and sAVM dural AVF intradural AVM Age first symptoms 95% after 4th decade 85% before 4th decade Gender 80% male male = female Spinal SAH rare 60% Pial sAVF • single or few intradural direct arteriovenous shunts without intervening nidus • location: pial surface of the cord • arterial supply: ≥1 arterial feeder (ASA or PSA) • venous drainage: spinal cord veins • classification (shunt size and flow): • small (type I) • large (type II) • giant (type III) Small pial sAVF (type I) • present later in life • progressive neurologic deficits (venous hypertension) • SAH is rare • single slow-flow shunt: nondilated ASA - slightly dilated spinal vein • location: anterior aspect conus medullaris/filum terminale easily confused with DAVFs Large pial sAVF (type II) • single or few shunts • greater flow than small sAVF • many arterial feeders (ASA or PSA) that converge to 1 or few shunts • ampullary dilation draining vein • location: posterolateral aspect conus medullaris Giant pial sAVF (type III) • single or few high-flow shunts with ≥1 dilated arterial feeder from ASA and PSA converging to single shunt draining into massively dilated arterialized draining veins • more prevalent in conus medullaris region • associated with complex vascular malformation syndromes Symptoms large and giant pial sAVF • usually childhood and adolescence • variety of clinical scenarios: • secondary to SAH (venous rupture): acute onset of symptoms • secondary to vascular steal, venous hypertension, or mass effect on the spinal cord and/or nerve roots from dilated veins: progressive motor and sensory deterioration and sphincter disturbance • mass effect on the cord or nerve roots from dilated veins explains the sometimes asymmetric nature of deficits A, Angiogram of the left T10 intercostal artery shows a pial AVF supplied by the artery of Adamkiewicz (arrow). Patsalides A et al. AJNR Am J Neuroradiol 2011;32:798-808 ©2011 by American Society of Neuroradiology Epidural sAVF • rare lesion associated with significant neurologic morbidity • abnormal shunt artery and epidural vein/venous plexus • cervical spine: most common location • neurologic symptoms occur by • mass effect on spinal cord and/or nerve roots from enlarged draining veins • arterial steal • venous hypertension A, A 69-year-old man with progressive bilateral lower extremity weakness. Patsalides A et al. AJNR Am J Neuroradiol 2011;32:798-808 ©2011 by American Society of Neuroradiology Juvenile sAVM = intra- and extramedular sAVM • least frequent; children and young adults • large malformations with both fistulous and glomerular compartments • involving spinal cord and neighboring tissues such as dura, vertebral body, paravertebral musculature and cutis • multiple feeders over several vertebral levels are common • metameric angiomatosis (Rendu-Osler-Weber) or Cobb’s syndrome: association of (in the same metamere) • vertebral hemangioma, • cutaneous lesion • spinal cord AVM • symptoms: pain and progressive myelopathy Boy, 3 years; Rendu Osler Weber; spinal macrofistula Multiple arterial feeders Left Th9 Right L1 Left Th12 Coil and Onyx embolisation aneurysm and main feeder Treatment • postoperative
Recommended publications
  • An Anatomical Exploration Into the Variable Patterns of the Venous Vasculature of the Human Kidney
    AN ANATOMICAL EXPLORATION INTO THE VARIABLE PATTERNS OF THE VENOUS VASCULATURE OF THE HUMAN KIDNEY. by KAPIL SEWSARAN SATYAPAL Submitted in partial fulfilment of the requirements for the degree of DOCTOR OF MEDICINE in the Department of Surgery University of Natal Durban 1993 To my wife Pratima, daughter Vedika, son Pravir, and my family. m ABSTRACT In clinical anatomy, the renal venous system is relatively understudied compared to the arterial system. This investigation aims to clarify and update the variable patterns of the renal venous vasculature using cadaveric human (adult and foetal) and Chacma baboon (Papio ursinus) kidneys and to reflect on its clinical application, particularly in surgery and radiology. The study employed gross anatomical dissection and detailed morphometric and statistical analyses on resin cast and plastinated kidneys harvested from 211 adult, 20 foetal and 10 baboon cadavers. Radiological techniques were used to study intrarenal flow, renal veins and collateral pathways and renal vein valves. The gross anatomical description of the renal veins and its relations were confirmed and updated. Additional renal veins were observed much more frequently on the right side (31 %) than previously documented (15.4%). A practical classification system for the renal veins based on the number of primary tributaries, additional renal veins and anomalies is proposed. Detailed morphometric analyses of the various parameters of the renal veins corroborated and augmented previous anatomical studies. Contrary to standard anatomical textbooks, it was noted that the left renal vein is 2.5 times the length of its counterpart and that there are variable levels of entry of the renal veins into the IVe.
    [Show full text]
  • GROSS ANATOMY and CLINICAL PROBLEMS of CNS BLOOD SUPPLY and GLOSSOPHARYNGEAL NERVE © 2019Zillmusom
    GROSS ANATOMY AND CLINICAL PROBLEMS OF CNS BLOOD SUPPLY AND GLOSSOPHARYNGEAL NERVE © 2019zillmusom I. OVERVIEW - Branches to CNS are described as arising from two sources: Vertebral and Internal Carotid arteries. A. Spinal Cord - Anterior Arteries and Posterior Spinal Arteries form as branches of Vertebral Arteries; however, most blood supply to the spinal cord is derived from Radicular arteries (branches of segmental arteries that enter via Intervertebral Foramina) B. Brain - Common Carotid arteries bifurcate to Internal and External Carotid arteries; Internal Carotid arteries supply 80% of brain; 15% of strokes are associated with stenosis (narrowing) of Internal Carotid artery at or near bifurcation. II. GROSS ANATOMY OF BLOOD SUPPLY OF SPINAL CORD A. Arterial supply 1. Anterior Spinal artery - single artery formed from branches of both Vertebral arteries; courses on anterior surface of cord. 2. Posterior Spinal arteries - paired arteries dorsolateral to spinal cord; arise (75%) from Posterior Inferior Cerebellar arteries (branch of Vertebral Artery) or directly from Vertebral arteries (25%). 3. Radicular (root) arteries - Most of blood supply to spinal cord is provided by Radicular (root) arteries; most these arteries arise from the Aorta and enter the spinal canal through Intervertebral foramina; one particularly large artery (Great Radicular Artery of Adamkiewicz, usually unpaired) arises from T9-T12 and provides major blood supply to lumbar and sacral spinal cord. Clinical Note: Obstruction of Radicular Artery (of Adamkiewicz) - Can occur during clamping for heart surgery or by a dissecting Aortic aneurysm; causes infarction (tissue death in spinal cord) similar to an Anterior Spinal Artery syndrome (symptoms include paraplegia (Corticospinal tracts, bilateral voluntary paralysis of legs and lower body), loss of pain and temperature sense (Spinothalamc tract, loss of sphincter control) with sparing of vibration and position sense (Dorsal Columns, sensory).
    [Show full text]
  • Intervertebral Veins Directly Connecting the Vertebral Venous System to the Azygos Venous System Rather Than the Proximal End Of
    Intervertebral Veins Rev Arg de Anat Clin; 2015, 7 (2): 88-92 ___________________________________________________________________________________________ Original Communication INTERVERTEBRAL VEINS DIRECTLY CONNECTING THE VERTEBRAL VENOUS SYSTEM TO THE AZYGOS VENOUS SYSTEM RATHER THAN THE PROXIMAL END OF THE POSTERIOR INTERCOSTAL VEINS Naief Dahran1,2, Roger Soames1 1Centre for Anatomy and Human Identification, College of Art, Science and Engineering, University of Dundee, Dundee, United Kingdom 2Department of Anatomy, College of Medicine, University of Jeddah, Jeddah, Kingdom of Saudi Arabia RESUMEN ABSTRACT La estructura de las venas de la cavidad torácica varía Veins in the thoracic cavity are highly variable in terms significativamente en función de sus conexiones. of their communications. Thirty Thiel-embalmed Treinta cadáveres embalsamados con la técnica de cadavers were dissected (18 females and 12 males), Thiel fueron disecados (18 mujeres, 12 hombres), con ranging in age from 48 to 98 years old (mean edades comprendidas entre 48 y 98 años (media 81.3±12.40). The lungs, heart, thoracic aorta, 81.3±12.40). Los pulmones, el corazón, la aorta oesophagus and parietal pleura were removed torácica, el esófago y la pleura parietal fueron carefully to expose the azygos, hemiazygos, accessory cuidadosamente retirados para permitir la visualización hemiazygos veins and thoracic duct. In most de las venas ácigos, hemiácigos y hemiácigos specimens (21) intervertebral veins were connected accesoria así como el conducto torácico. En la directly to the azygos venous systems rather than the mayoría de los especímenes (21) se encontró que las proximal end of the posterior intercostal veins. This venas intervertebrales estaban directamente presentation was observed to be more common on the conectadas con el sistema venoso ácigos en vez de right side, but not at all vertebral levels.
    [Show full text]
  • Venous Congestive Myelopathy Due to Chronic Inferior Vena Cava Thrombosis Treated with Endovascular Stenting: Case Report and Review of the Literature
    Venous Congestive Myelopathy due to Chronic Inferior Vena Cava Thrombosis Treated with Endovascular Stenting: Case Report and Review of the Literature 1 2 3 4 Diego Z. Carvalho, MD , Joshua D. Hughes, MD , Greta B. Liebo, MD , Emily C. Bendel, MD , 4 1 Haraldur Bjarnason, MD , and James P. Klaas, MD 1Department of Neurology, Mayo Clinic, Rochester, MN, USA. 2Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA 3Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA 4Department of Vascular & Interventional Radiology, Mayo Clinic, Rochester, MN, USA Journal of Vascular and Interventional Neurology, Vol. 8 Abstract Authors have no conflict of interest to disclose. Objective—Impaired inferior vena cava (IVC) outflow can lead to collateralization of blood to the valve- less epidural venous plexus, causing epidural venous engorgement and venous congestion. Herein we describe a case of chronic IVC thrombosis presenting as venous congestive myelopathy treated with angio- plasty and endovascular stenting. The pathophysiological mechanisms of cord injury are hypothesized, and IVC stenting application is evaluated. Methods—Case report and review of the literature. Results—IVC outflow obstruction has only rarely been associated with neurologic dysfunction, with reports of lumbosacral nerve root compression in the cases of IVC agenesis, compression, or occlusion. Although endovascular angioplasty with stenting is emerging as a leading treatment option for chronic IVC thrombosis, its use to treat neurologic complications is limited to one case report for intractable sciatica. Our case is the first description of IVC thrombosis presenting with venous congestive myelopathy, and treated successfully with IVC stenting. Conclusion—Venous congestive myelopathy should be seen as a broader clinical condition, including not only typical dural arteriovenous fistulas, but also disorders of venous outflow.
    [Show full text]
  • A Syllabus of Core Surgical Anatomy
    A Syllabus of Core Surgical Anatomy Background In February 2010, it was agreed that the Anatomy Committee would undertake to develop a new generic examination for implementation in 2012 to assess anatomy for surgical trainees. Content Anatomical questions relate to: • clinical examination – surface anatomy, inspection, palpation, percussion, auscultation, pelvic examination, testing for peripheral nerve injuries, potential sites of spread of tumours (as determined by anatomy e.g. lymphatic drainage of the breast) • urethral catheterization • vascular access (arterial and venous, peripheral and central) • the airway: maintenance, access • chest drainage • imaging (plain radiographs, CT, MRI, US, contrast studies) • surgical access – open and minimally invasive • endoscopy (GI, arthroscopy etc) • peripheral nerve blocks • percutaneous liver biopsy • trauma (aligned to anatomy in EMST) • common anatomical complications of routine surgical procedures • principles of anatomy: terminology, anatomical position, planes, relationships in regional anatomy, movements, tissues, systems, and anatomical variation. Syllabus Essential (+++) • What an early SET 1 trainee (PGY 2-3 with general experience) should know. • Must recognise, understand and be able to explain. • These structures comprise core basic surgical anatomy and are essential in inter-specialty communication. • Lack of knowledge could jeapordise patient safety. • Includes all common and important anatomical characteristics of the structure: location, constituent parts, relations, blood supply and lymphatic drainage, innervation, course and distribution, when the structure is at risk, effects of injury, and common variants of clinical importance. Desirable (++) • Should be able to describe the basic anatomy/location of the structure, its function, major nerve and blood supply ± lymphatic drainage, and general relations. Non-core (+) • Not considered core knowledge but may be appropriate for specialty-specific anatomy.
    [Show full text]
  • Current Concepts ⅢⅢⅢⅢⅢⅢⅢⅢⅢⅢⅢⅢⅢⅢ Focal Neurological Manifestations Following Aberrant Central Venous Catheter Placement
    Current Concepts nnnnnnnnnnnnnn Focal Neurological Manifestations Following Aberrant Central Venous Catheter Placement Vigna Rajan, MD On day 14, infant B acutely developed sustained tonic-clonic Feizal Waffarn, MD movements affecting the lower extremities; these movements were clinically diagnosed as focal seizures and were treated with an anti- An infant developed focal tonic clonic movements of both lower limbs convulsant. A lumbar puncture performed to rule out meningitis 3 while receiving total parenteral nutrition through a left saphenous yielded cloudy fluid consisting of 34,114/mm red blood cells and 3 percutaneous central venous catheter. Radiographic studies using a 749/mm white blood cells with 3% lymphocytes and 97% poly- contrast confirmed that the catheter tip was located in the ascending morphs. The glucose and protein content of the fluid was 3943 mg/dl lumbar vein in close proximity to the epidural space. Withdrawal of the and 127 mg/dl, respectively. Blood and lumbar puncture fluid cul- catheter abated all clinical symptoms. This case emphasizes the need to tures grew coagulase-negative staphylococcus sensitive to vancomy- 3 confirm central venous catheter placement and illustrates yet another cin. A repeat lumbar puncture specimen showed 50,250/mm red 3 risk associated with the infusion of parenteral alimentation. blood cells, 1,515/mm white blood cells, and 7,348 mg/dl glucose. There was a continuous leakage of serous fluid at the site of the lum- bar puncture, with a glucose level of .800 mg/dl. Serum glucose levels remained between 80 and 120 mg/dl during this period. A lat- Central venous access for long-term total parenteral nutrition eral radiograph of the abdomen and pelvis showed the catheter loca- (TPN) is a standard practice in neonatology, and associated com- tion posterior to the lumbar vertebral column.
    [Show full text]
  • The Development of the Vertebra and the Intervertebral Disc 1
    1 THE DEVELOPMENT OF Disc Disease and Dynamic Stabilization Lumbar Degenerative THE VERTEBRA AND THE INTERVERTEBRAL DISC 1 Safiye CAVDAR M.D. fibrosus’. The nucleus pulposus’ plus the anulus fib- 1. Precartilage Stage (mesenchimal stage) rosus form the intervertebral disc. Some remnents of the notochord may remain within the interverteb- The vertebral column develops from the mesenchi- ral disc which can result as ‘chordoma’. This neop- mal cells that accumulated around the notochord lasm frequently occurs at the base of the skull and during the 4th week of the embryonic period. At the at lumbosacral region (1-3). end of the 4th week the mesenchimal cells that de- rive from the scleratom of the somits accumulates in 3 major regions (1-3). 1.b. Region surounding the neurol tube The mesenchimal cells at this region gives rise to 1.a. Region surounding the Notchord the vertebral archs. In the 4th week of the embryonic period the sclera- toms elgine around the notochord as paired mesenc- 1.c. Region surouunding the corpus hial cells. Each of the scleratoms cells are grouped lo- The mesenchimal cells at this region gives rise to the osely at cranial and compact at caudal levels. Some costal processes. The costal porocesses will give rise of the dense cells groups migrate cranially and form to the ribs at thoracic region (1-3). the intervertebral disc. The rest of the dens cell group together with the caudal loose scleratom group uni- 2. Cartilage Stage tes and forms the mesenchimal vertebral centrum. Each centrum is formed by two adjacent scleratom At the 6th week of the embryonal stage the mesenchi- and forms an intergemental structure.
    [Show full text]
  • The Cerebrospinal Venous System: Anatomy, Physiology, and Clinical Implications Edward Tobinick, MD
    5/8/2017 www.medscape.org/viewarticle/522597_print www.medscape.org The Cerebrospinal Venous System: Anatomy, Physiology, and Clinical Implications Edward Tobinick, MD Posted: 2/22/2006 Abstract and Introduction Abstract There is substantial anatomical and functional continuity between the veins, venous sinuses, and venous plexuses of the brain and the spine. The term "cerebrospinal venous system" (CSVS) is proposed to emphasize this continuity, which is further enhanced by the general lack of venous valves in this network. The first of the two main divisions of this system, the intracranial veins, includes the cortical veins, the dural sinuses, the cavernous sinuses, and the ophthalmic veins. The second main division, the vertebral venous system (VVS), includes the vertebral venous plexuses which course along the entire length of the spine. The intracranial veins richly anastomose with the VVS in the suboccipital region. Caudally, the CSVS freely communicates with the sacral and pelvic veins and the prostatic venous plexus. The CSVS constitutes a unique, large­capacity, valveless venous network in which flow is bidirectional. The CSVS plays important roles in the regulation of intracranial pressure with changes in posture, and in venous outflow from the brain. In addition, the CSVS provides a direct vascular route for the spread of tumor, infection, or emboli among its different components in either direction. Introduction "... we begin to wonder whether our conception of the circulation today is completely acceptable. As regards the venous part of the circulation, I believe our present conception is incorrect." Herlihy[1] "It seems incredible that a great functional complex of veins would escape recognition as a system until 1940..
    [Show full text]
  • Imaging in Spinal Posterior Epidural Space Lesions: a Pictorial Essay
    Published online: 2021-07-30 NEUROIMAGING Imaging in spinal posterior epidural space lesions: A pictorial essay Foram B Gala1,2, Yashant Aswani3 1Lifescan Imaging Centre, 3Department of Radiology, TNMC and BYL Nair Charitable Hospital, Mumbai, Maharashtra, India, 2Department of Neuroradiology, University Hospital of Zurich/Children’s Hospital of Zurich, Zurich, Switzerland Correspondence: Dr. Foram B Gala, Lifescan Imaging Centre, Malad, Mumbai ‑ 400 064, Maharashtra, India. E‑mail: [email protected] Abstract Spinal epidural space is a real anatomic space located outside the dura mater and within the spinal canal extending from foramen magnum to sacrum. Important contents of this space are epidural fat, spinal nerves, epidural veins and arteries. Due to close proximity of posterior epidural space to spinal cord and spinal nerves, the lesions present with symptoms of radiculopathy and/ or myelopathy. In this pictorial essay, detailed anatomy of the posterior epidural space, pathologies affecting it along with imaging pearls to accurately diagnose them are discussed. Various pathologies affecting the posterior epidural space either arising from the space itself or occurring secondary to vertebral/intervertebral disc pathologies. Primary spinal bone tumors affecting the posterior epidural space have been excluded. The etiological spectrum affecting the posterior epidural space ranges from degenerative, infective, neoplastic ‑ benign or malignant to miscellaneous pathologies. MRI is the modality of choice in evaluation of these lesions with CT scan mainly helpful in detecting calcification. Due to its excellent soft tissue contrast, Magnetic Resonance Imaging is extremely useful in assessing the pathologies of posterior epidural space, to know their entire extent, characterize them and along with clinical history and laboratory data, arrive at a specific diagnosis and guide the referring clinician.
    [Show full text]
  • Diagnosis and Surgical Treatment of Epidural Varicose Veins of the Lumbar Spine
    Acta Scientific Neurology (ISSN: 2582-1121) Volume 4 Issue 3 March 2021 Clinical Case Report Diagnosis and Surgical Treatment of Epidural Varicose Veins of the Lumbar Spine Kayode Agboola1* and Eugene Slynko2 Received: July 14, 2020 1Romodanov Institute of Neurosurgery, National Academy of Medical Sciences of Published: February 15, 2021 Ukraine, Kyiv, Ukraine © All rights are reserved by Kayode Agboola 2Professor and Head of Department, Department of Spinal Pathologies, and Eugene Slynko. Romodanov, Institute of Neurosurgery, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine *Corresponding Author: Kayode Agboola, Romodanov Institute of Neurosurgery, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine. Abstract Introduction: Dilated lumbar epidural veins are vascular abnormalities causing compression, ischemic injury and excessive pres- sure on spinal nerve roots, theca sac or dorsal ganglia, giving rise to symptoms of lumbar radiculopathy of the involved neural struc- tures. Degenerative changes of the spine might also be observed. Importance: The importance of mentioned pathology is in the complexity of its diagnosis - missed diagnosis, relatively small number follow-ups. Misdiagnosis is often encountered due to low awareness even on MRI. of observations, classification types, publications and estimates of the long-term outcomes of surgical treatment of this pathology on Objectives: - tern of occurrence, and surgical treatment of lumbar epidural varices. The aim of this study was to increase the awareness and lay emphasis on the importance of diagnosis, classification, pat Observation: N = 100. Diagnostic Method: Enhanced lumbar MRI and occasional CT. Additional Diagnostic Method: Venospondylography. Surgical Intervention: Laminectomy and microscopic decompression using micro-coagulation - bipolar cautery and eventual exci- sion.
    [Show full text]
  • [ 88 ] the Arterial Supply and Venous Drainage of the Vertebral Column Of
    [ 88 ] THE ARTERIAL SUPPLY AND VENOUS DRAINAGE OF THE VERTEBRAL COLUMN OF THE DOG BY H. V. CROCK, F.R.C.S. Nuffield Orthopaedic Centre, Oxford In recent years orthopaedic surgeons have become increasingly aware of the impor- tance of comparative anatomy and pathology. Because of this renewed interest, the dog is being used more frequently for experimental work on the vertebral column and hip joints by surgeons and veterinarians alike. It would seem timely, therefore, to reassess the work on the blood supply of the dog's vertebrae. Apart from a general anatomical description of the arteries supplying the spine, the standard reference works provide inadequate detail on the intraosseous distri- bution of the vessels (Miller, 1948; Bradley & Grahame, 1959). The interest aroused in the vertebral venous system in man by the work. of Batson (1940) has been extended to the dog by Worthman (1956). His papers on the anatomy and functional aspects of the longitudinal vertebral venous sinuses of the dog do not, however, contain a full account of the arrangement of veins within the vertebrae. This paper is designed primarily to describe the anatomy of the arteries and veins as they are found within the vertebrae of the dog. MATERIALS AND METHODS Specimens were obtained from the cervical, thoracic and lumbar vertebrae of fifteen normal dogs. The arterial supply to the vertebral column was studied in ten dogs, and the venous drainage in five. These animals varied in age from 8 weeks to 12 years. The group was made up of different breeds, and included two adult cocker spaniels, four greyhound racing dogs, one bull terrier cross breed and eight mongrel dogs.
    [Show full text]
  • Imaging Portosystemic Shunts in Small Animals – Hepatic Vascular Anatomy, Shunt Morphology, Radiography
    Vlaams Diergeneeskundig Tijdschrift,2007, 76 Theme: portosystemic shunts in dogs and cats 315 Portosystemic shunts in dogs and cats: imaging portosystemic shunts in small animals – hepatic vascular anatomy, shunt morphology, radiography Portosystemische shunts bij honden en katten: beeldvorming van portosystemische shunts bij kleine huisdieren – hepatische vasculaire anatomie, shuntmorfologie, radiografie 1H. Haers, 2D. Paepe, 1K. Vermote, 1J.H. Saunders, 2S. Daminet, 1,2M. Risselada 1Department of Medical Imaging of Domestic Animals 2Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University Salisburylaan 133, B-9820 Merelbeke, Belgium [email protected] ABSTRACT Portosystemic shunts (PSSs) are anomalous vascular communications between the portal vein or its branches and the systemic venous system. Signalment, history, clinical signs, and laboratory findings can already provide a presumptive diagnosis of a PSS. However, imaging techniques such as portography, ultrasonography (US), nuclear scintigraphy, computed tomography (CT), or magnetic resonance imaging (MRI) are required to provide a definitive diagnosis. Nuclear scintigraphy is the gold standard for de- tecting PSSs, but it is not useful in distinguishing the different types of shunts. Due to its high sensitivity, portography was for a long time considered the gold standard for the differentiation of PSSs, even though it is an invasive technique. However, the recent development of a standard protocol for ultrasound (US) and the routine use of Doppler modalities resulted in the same sensitivity as portography. Therefore, with the additional benefit of being fast and noninvasive, US is now more commonly performed. It may be sug- gested as a “new” gold standard, depending upon the experience of the radiologist.
    [Show full text]