High-Yield Gross Anatomy / Ronald W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Anatomical Exploration Into the Variable Patterns of the Venous Vasculature of the Human Kidney
AN ANATOMICAL EXPLORATION INTO THE VARIABLE PATTERNS OF THE VENOUS VASCULATURE OF THE HUMAN KIDNEY. by KAPIL SEWSARAN SATYAPAL Submitted in partial fulfilment of the requirements for the degree of DOCTOR OF MEDICINE in the Department of Surgery University of Natal Durban 1993 To my wife Pratima, daughter Vedika, son Pravir, and my family. m ABSTRACT In clinical anatomy, the renal venous system is relatively understudied compared to the arterial system. This investigation aims to clarify and update the variable patterns of the renal venous vasculature using cadaveric human (adult and foetal) and Chacma baboon (Papio ursinus) kidneys and to reflect on its clinical application, particularly in surgery and radiology. The study employed gross anatomical dissection and detailed morphometric and statistical analyses on resin cast and plastinated kidneys harvested from 211 adult, 20 foetal and 10 baboon cadavers. Radiological techniques were used to study intrarenal flow, renal veins and collateral pathways and renal vein valves. The gross anatomical description of the renal veins and its relations were confirmed and updated. Additional renal veins were observed much more frequently on the right side (31 %) than previously documented (15.4%). A practical classification system for the renal veins based on the number of primary tributaries, additional renal veins and anomalies is proposed. Detailed morphometric analyses of the various parameters of the renal veins corroborated and augmented previous anatomical studies. Contrary to standard anatomical textbooks, it was noted that the left renal vein is 2.5 times the length of its counterpart and that there are variable levels of entry of the renal veins into the IVe. -
GROSS ANATOMY and CLINICAL PROBLEMS of CNS BLOOD SUPPLY and GLOSSOPHARYNGEAL NERVE © 2019Zillmusom
GROSS ANATOMY AND CLINICAL PROBLEMS OF CNS BLOOD SUPPLY AND GLOSSOPHARYNGEAL NERVE © 2019zillmusom I. OVERVIEW - Branches to CNS are described as arising from two sources: Vertebral and Internal Carotid arteries. A. Spinal Cord - Anterior Arteries and Posterior Spinal Arteries form as branches of Vertebral Arteries; however, most blood supply to the spinal cord is derived from Radicular arteries (branches of segmental arteries that enter via Intervertebral Foramina) B. Brain - Common Carotid arteries bifurcate to Internal and External Carotid arteries; Internal Carotid arteries supply 80% of brain; 15% of strokes are associated with stenosis (narrowing) of Internal Carotid artery at or near bifurcation. II. GROSS ANATOMY OF BLOOD SUPPLY OF SPINAL CORD A. Arterial supply 1. Anterior Spinal artery - single artery formed from branches of both Vertebral arteries; courses on anterior surface of cord. 2. Posterior Spinal arteries - paired arteries dorsolateral to spinal cord; arise (75%) from Posterior Inferior Cerebellar arteries (branch of Vertebral Artery) or directly from Vertebral arteries (25%). 3. Radicular (root) arteries - Most of blood supply to spinal cord is provided by Radicular (root) arteries; most these arteries arise from the Aorta and enter the spinal canal through Intervertebral foramina; one particularly large artery (Great Radicular Artery of Adamkiewicz, usually unpaired) arises from T9-T12 and provides major blood supply to lumbar and sacral spinal cord. Clinical Note: Obstruction of Radicular Artery (of Adamkiewicz) - Can occur during clamping for heart surgery or by a dissecting Aortic aneurysm; causes infarction (tissue death in spinal cord) similar to an Anterior Spinal Artery syndrome (symptoms include paraplegia (Corticospinal tracts, bilateral voluntary paralysis of legs and lower body), loss of pain and temperature sense (Spinothalamc tract, loss of sphincter control) with sparing of vibration and position sense (Dorsal Columns, sensory). -
Identification of Differentially Expressed Genes of Primary
Cell Research (2004); 14(6):507-512 ARTICLE http://www.cell-research.com Identification of differentially expressed genes of primary spermatocyte against round spermatid isolated from human testis using the laser capture microdissection technique Gang LIANG1,4, Xiao Dong ZHANG1, Lu Jing WANG1, Yu Shen SHA2, Jian Chao ZHANG2, Shi Ying MIAO1, Shu Dong ZONG2, Lin Fang WANG1,*, S.S. KOIDE3 1National Laboratory Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, 5 Dong Dan San Tiao, 100005 Beijing, China 2National Research Institute for Family Planning, WHO Collaboration Center for Research in Human Reproduction, Beijing, 12 Da Hui Si, 100081 Beijing, China 3Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10021, USA 4Chinese National Human Genome Center, Beijing, 3-707 North Yong Chang Road BDA, Beijing 100176, China ABSTRACT The method of laser capture microdissection (LCM) combined with suppressive subtractive hybridization (SSH) was developed to isolate specific germ cells from human testis sections and to identify the genes expressed during differen- tiation and development. In the present study, over 10,000 primary spermatocytes and round spermatid cells were successfully isolated by LCM. Using the cDNAs from primary spermatocytes and round spermatids, SSH cDNAs library of primary spermatocyte-specific was constructed. The average insert size of the cDNA isolated from 75 randomly picked white clones was 500 bp, ranging from 250 bp to 1.7 kb. Using the dot-blot method, a total of 421 clones were examined, resulting in the identification of 390 positive clones emitting strong signals. -
Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................ -
Anatomia Associada Ao Comportamento Reprodutivo De
Jimena García Rodríguez Anatomia associada ao comportamento reprodutivo de Cubozoa Anatomy associated with the reproductive behavior of Cubozoa São Paulo 2015 Jimena García Rodríguez Anatomia associada ao comportamento reprodutivo de Cubozoa Anatomy associated with the reproductive behavior of Cubozoa Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo para obtenção de Título de Mestre em Ciências, na Área de Zoologia Orientador: Prof. Dr. Antonio Carlos Marques São Paulo 2015 García Rodríguez, Jimena Anatomia associada ao comportamento reprodutivo de Cubozoa 96 páginas Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Zoologia. 1. Cubozoa; 2. Histologia; 3. Reprodução. I. Universidade de São Paulo. Instituto de Biociências. Departamento de Zoologia. Comissão Julgadora Prof(a) Dr(a) Prof(a) Dr(a) Prof. Dr. Antonio Carlos Marques A mis padres, hermana y en especial a mi abuelita “Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar. Al andar se hace el camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar. Caminante no hay camino sino estelas en la mar” Antonio Machado, 1912 Agradecimentos Em primeiro lugar, eu gostaria de agradecer ao meu orientador Antonio Carlos Marques, Tim, pela confiança desde o primeiro dia, pela ajuda tanto pessoal como profissional durante os dois anos de mestrado, pelas discussões de cada tema tratado e estudado e pelas orientações que tornaram possível a elaboração deste trabalho. Agradeço também o apoio institucional do Instituto de Biociências e do Centro de Biologia Marinha da Universidade de São Paulo. -
Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-Tailed Opossum (Monodelphis Domestica) and North American Opossum (Didelphis Virginiana)
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2001 Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-tailed Opossum (Monodelphis domestica) and North American Opossum (Didelphis virginiana) Lee Anne Cope University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Animal Sciences Commons Recommended Citation Cope, Lee Anne, "Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-tailed Opossum (Monodelphis domestica) and North American Opossum (Didelphis virginiana). " PhD diss., University of Tennessee, 2001. https://trace.tennessee.edu/utk_graddiss/2046 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Lee Anne Cope entitled "Comparative Anatomy of the Lower Respiratory Tract of the Gray Short-tailed Opossum (Monodelphis domestica) and North American Opossum (Didelphis virginiana)." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Animal Science. Robert W. Henry, Major Professor We have read this dissertation and recommend its acceptance: Dr. R.B. Reed, Dr. C. Mendis-Handagama, Dr. J. Schumacher, Dr. S.E. Orosz Accepted for the Council: Carolyn R. -
HUMAN ANATOMY: a Prosection Guide
HUMAN ANATOMY: A Prosection Guide 3rd Edition Frank J. Daly Cover image www.kendallhunt.com Send all inquiries to: 4050 Westmark Drive Dubuque, IA 52004-1840 Copyright © 2010 by Frank J. Daly. ISBN 978-0-7575- All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner. Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 iii GROSS ANATOMY LABORATORY PROCEDURES 1. Appropriate laboratory attire is required: Scrubs (full-length, scrub pants), close-toed shoes (no Crocs), safety glasses, and Nitrile gloves. Scrubs are available in the campus bookstore (no specific color required). NO shorts or skirts permitted, even if made from scrub material. Safety glasses for splash protection are available in the lab. Gloves will be provided; please try to limit use to ~ 1 pair/session. Long hair must be tied back, away from the face. Long necklaces should be removed. Contact Lenses are NOT advised, as they are permeable to volatile compounds and may result in injury. Students should bring their lab manual to lab sessions. 2. No food or beverages are allowed in the laboratory - EVER. Smoking and/or chewing gum is prohibited in the laboratory. 3. No cadaveric materials (or models) are EVER to be removed from the Gross Anatomy lab. This is a State and a Federal law. You WILL be prosecuted to the fullest extent of the law. -
E Pleura and Lungs
Bailey & Love · Essential Clinical Anatomy · Bailey & Love · Essential Clinical Anatomy Essential Clinical Anatomy · Bailey & Love · Essential Clinical Anatomy · Bailey & Love Bailey & Love · Essential Clinical Anatomy · Bailey & Love · EssentialChapter Clinical4 Anatomy e pleura and lungs • The pleura ............................................................................63 • MCQs .....................................................................................75 • The lungs .............................................................................64 • USMLE MCQs ....................................................................77 • Lymphatic drainage of the thorax ..............................70 • EMQs ......................................................................................77 • Autonomic nervous system ...........................................71 • Applied questions .............................................................78 THE PLEURA reections pass laterally behind the costal margin to reach the 8th rib in the midclavicular line and the 10th rib in the The pleura is a broelastic serous membrane lined by squa- midaxillary line, and along the 12th rib and the paravertebral mous epithelium forming a sac on each side of the chest. Each line (lying over the tips of the transverse processes, about 3 pleural sac is a closed cavity invaginated by a lung. Parietal cm from the midline). pleura lines the chest wall, and visceral (pulmonary) pleura Visceral pleura has no pain bres, but the parietal pleura covers -
DEPARTMENT of ANATOMY IGMC SHIMLA Competency Based Under
DEPARTMENT OF ANATOMY IGMC SHIMLA Competency Based Under Graduate Curriculum - 2019 Number COMPETENCY Objective The student should be able to At the end of the session student should know AN1.1 Demonstrate normal anatomical position, various a) Define and demonstrate various positions and planes planes, relation, comparison, laterality & b) Anatomical terms used for lower trunk, limbs, joint movement in our body movements, bony features, blood vessels, nerves, fascia, muscles and clinical anatomy AN1.2 Describe composition of bone and bone marrow a) Various classifications of bones b) Structure of bone AN2.1 Describe parts, blood and nerve supply of a long bone a) Parts of young bone b) Types of epiphysis c) Blood supply of bone d) Nerve supply of bone AN2.2 Enumerate laws of ossification a) Development and ossification of bones with laws of ossification b) Medico legal and anthropological aspects of bones AN2.3 Enumerate special features of a sesamoid bone a) Enumerate various sesamoid bones with their features and functions AN2.4 Describe various types of cartilage with its structure & a) Differences between bones and cartilage distribution in body b) Characteristics features of cartilage c) Types of cartilage and their distribution in body AN2.5 Describe various joints with subtypes and examples a) Various classification of joints b) Features and different types of fibrous joints with examples c) Features of primary and secondary cartilaginous joints d) Different types of synovial joints e) Structure and function of typical synovial -
Chapter 22 *Lecture Powerpoint
Chapter 22 *Lecture PowerPoint The Respiratory System *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • Breathing represents life! – First breath of a newborn baby – Last gasp of a dying person • All body processes directly or indirectly require ATP – ATP synthesis requires oxygen and produces carbon dioxide – Drives the need to breathe to take in oxygen, and eliminate carbon dioxide 22-2 Anatomy of the Respiratory System • Expected Learning Outcomes – State the functions of the respiratory system – Name and describe the organs of this system – Trace the flow of air from the nose to the pulmonary alveoli – Relate the function of any portion of the respiratory tract to its gross and microscopic anatomy 22-3 Anatomy of the Respiratory System • The respiratory system consists of a system of tubes that delivers air to the lung – Oxygen diffuses into the blood, and carbon dioxide diffuses out • Respiratory and cardiovascular systems work together to deliver oxygen to the tissues and remove carbon dioxide – Considered jointly as cardiopulmonary system – Disorders of lungs directly effect the heart and vice versa • Respiratory system and the urinary system collaborate to regulate the body’s acid–base balance 22-4 Anatomy of the Respiratory System • Respiration has three meanings – Ventilation of the lungs (breathing) – The exchange of gases between the air and blood, and between blood and the tissue fluid – The use of oxygen in cellular metabolism 22-5 Anatomy of the Respiratory System • Functions – Provides O2 and CO2 exchange between blood and air – Serves for speech and other vocalizations – Provides the sense of smell – Affects pH of body fluids by eliminating CO2 22-6 Anatomy of the Respiratory System Cont. -
Latin Language and Medical Terminology
ODESSA NATIONAL MEDICAL UNIVERSITY Department of foreign languages Latin Language and medical terminology TextbookONMedU for 1st year students of medicine and dentistry Odessa 2018 Authors: Liubov Netrebchuk, Tamara Skuratova, Liubov Morar, Anastasiya Tsiba, Yelena Chaika ONMedU This manual is meant for foreign students studying the course “Latin and Medical Terminology” at Medical Faculty and Dentistry Faculty (the language of instruction: English). 3 Preface Textbook “Latin and Medical Terminology” is designed to be a comprehensive textbook covering the entire curriculum for medical students in this subject. The course “Latin and Medical Terminology” is a two-semester course that introduces students to the Latin and Greek medical terms that are commonly used in Medicine. The aim of the two-semester course is to achieve an active command of basic grammatical phenomena and rules with a special stress on the system of the language and on the specific character of medical terminology and promote further work with it. The textbook consists of three basic parts: 1. Anatomical Terminology: The primary rank is for anatomical nomenclature whose international version remains Latin in the full extent. Anatomical nomenclature is produced on base of the Latin language. Latin as a dead language does not develop and does not belong to any country or nation. It has a number of advantages that classical languages offer, its constancy, international character and neutrality. 2. Clinical Terminology: Clinical terminology represents a very interesting part of the Latin language. Many clinical terms came to English from Latin and people are used to their meanings and do not consider about their origin. -
Intervertebral Veins Directly Connecting the Vertebral Venous System to the Azygos Venous System Rather Than the Proximal End Of
Intervertebral Veins Rev Arg de Anat Clin; 2015, 7 (2): 88-92 ___________________________________________________________________________________________ Original Communication INTERVERTEBRAL VEINS DIRECTLY CONNECTING THE VERTEBRAL VENOUS SYSTEM TO THE AZYGOS VENOUS SYSTEM RATHER THAN THE PROXIMAL END OF THE POSTERIOR INTERCOSTAL VEINS Naief Dahran1,2, Roger Soames1 1Centre for Anatomy and Human Identification, College of Art, Science and Engineering, University of Dundee, Dundee, United Kingdom 2Department of Anatomy, College of Medicine, University of Jeddah, Jeddah, Kingdom of Saudi Arabia RESUMEN ABSTRACT La estructura de las venas de la cavidad torácica varía Veins in the thoracic cavity are highly variable in terms significativamente en función de sus conexiones. of their communications. Thirty Thiel-embalmed Treinta cadáveres embalsamados con la técnica de cadavers were dissected (18 females and 12 males), Thiel fueron disecados (18 mujeres, 12 hombres), con ranging in age from 48 to 98 years old (mean edades comprendidas entre 48 y 98 años (media 81.3±12.40). The lungs, heart, thoracic aorta, 81.3±12.40). Los pulmones, el corazón, la aorta oesophagus and parietal pleura were removed torácica, el esófago y la pleura parietal fueron carefully to expose the azygos, hemiazygos, accessory cuidadosamente retirados para permitir la visualización hemiazygos veins and thoracic duct. In most de las venas ácigos, hemiácigos y hemiácigos specimens (21) intervertebral veins were connected accesoria así como el conducto torácico. En la directly to the azygos venous systems rather than the mayoría de los especímenes (21) se encontró que las proximal end of the posterior intercostal veins. This venas intervertebrales estaban directamente presentation was observed to be more common on the conectadas con el sistema venoso ácigos en vez de right side, but not at all vertebral levels.