Human Anatomy

Total Page:16

File Type:pdf, Size:1020Kb

Human Anatomy The State Medical and Pharmaceutical University “Nicolae Testemitanu” Department of Human Anatomy HumanHuman AnatomyAnatomy Volum III Angiology, Peripheral Nervous System and Sense Organs Collected and elaborated by Lilian Globa Chisinau 2012 CZU: 611.9(075.8) H 42 Recommende to print by Central Methodological Council of SMPhU “Nicolae Testemițanu” Proceedings nr. 1 din 05.06.2012 Lilian Globa, lecturer, Department of Human Anatomy Reviewers: Ilia Catereniuc, PhD., university professor, Department of Human Anatomy Tamara Hacina , MD., assistant professor, Department of Human Anatomy Contents: Angiology 5 The blood vascular system 5 Development of vascular system 7 The heart 10 Chambers of the heart 11 Structure of the heart walls 14 The conducting system 14 The vessels of the heart 15 The arteries 15 The veins 16 Lymph drenage and innervations of heart 17 The pericardial sac 18 The topography of the heart 19 Auscultantion (hearing) of heart valves 19 The vessels of pulmonary (lesser) circulation 22 The arteries of pulmonary circulation 22 The veins of pulmonary circulation 22 The vessels of systemic (greater) circulation 23 The arteries of systemic circulation 23 The aorta 23 Branches of the ascending aorta 23 Branches of the arch of the aorta 23 The brachiocephalic trunk 24 The common carotid artery 24 The external carotid artery 24 The internal carotid artery 32 The subclavian artery 37 Arteries of the upper extremity 44 The axillary artery 44 The brachial artery 45 The radial artery 45 The ulnar artery 46 The arches and arteries of the hand 46 Branches of the descending aorta 47 Branches of the thoracic aorta 47 Branches of the abdominal aorta 48 The unpaired visceral branches 48 The paired visceral branches 50 The parietal branches of the abdominal aorta 51 The common iliac artery 51 The internal iliac artery 51 The external iliac artery 53 Arteries of the lower extremity 53 The femoral artery 53 The popliteal artery 54 The anterior tibial artery 55 The posterior tibial artery 55 The arteries and arches of the foot 56 Distribution of the arteries 57 Collateral blood circulation 60 The veins of systemic circulation 61 The system of vena cava superior 61 The innominate veins 61 The internal jugular vein 61 The veins of brain 62 The external jugular vein 64 The anterior jugular vein 64 The subclavian vein 64 The veins of the upper extremity 64 Vena azygos and vena hemiazygos 65 Vertebral venous plexuses 66 The system of vena cava inferior 66 The portal vein (system) 67 The common iliac veins 67 Porto-caval anastomoses 68 Cava-caval anastomoses 69 The external iliac vein 69 The veins of the lower extremity 69 Distribution of the veins 70 Specific features of blood circulation of the foetus 71 The lymphatic system 74 Lymphatic vessels 74 Lymph nodes 76 The lymphatic system in various parts of the body 77 Lymphatics of the lower extremity 77 Lymphatics the pelvis 77 Lymphatics the abdomen 78 Lymphatics the thoracic cage 79 Lymphatics of the upper extremity 79 Lymphatics the head and neck 80 The collateral flow of the lymph 82 Anatomy of the lymphatic system of a living person 82 The development of lymphatic system 83 Immune system 85 Central organs of immune system organs 86 Bone marrow 86 The thymus 86 Peripheral organs of immune system organs 87 Lymph nodes 87 The spleen 87 The tonsils 89 Aggregates of lymphoid follicles 89 Neurology 90 The peripheral nervous system The spinal nerves The posterior branches of the spinal nerves The anterior branches of the spinal nerves The cervical plexus The brachial plexus The anterior branches of the thoracic nerves The lumbar plexus The sacral plexus The coccygeal plexus The cranial nerves The olfactory (1st) nerves The optic (2nd) nerve The oculomotor (3rd) nerve The trochlear (4th) nerve The abducent (6th) nerve The trigeminal (5th) nerve The facial (7th) nerve The vestibulocochlearis (8th) nerve The glossopharyngeal (9th) nerve The vagus (10th) nerve The accessory (11th) nerve The hypoglossal (12th) nerve Peripheral innervation of the soma The vegetative (autonomic) nervous system' The sympathetic nervous system The sympathetic trunk The parasympathetic nervous system The vegetative innervation of organs' Unity of the vegetative and somatic parts of the nervous system Zakharyin-Head's areas or zones Aesthesiology The organ of vision The eyeball The coats of the eyeball The refracting media of the eye The accessory organs of the eye The ocular muscles The lacrimal apparatus The pathway of visual information The organ of gravitation and balance and the organ of hearing The organ of hearing The external ear The middle ear The internal ear The pathways of sound conduction The organ of gravitation and balance The pathways of the statokinetic analyser The organ of taste The organ of smell The skin The conducting tracts of the skin analyser The mammary glands The interoceptive analyser Appendix Bibliography ANGIOLOGY The vascular system consists of a network of tubes or canals through which circulate the body's fluids, blood and lymph. From Latin angiology means the science of the vessels. The vascular system, on the one hand, supplies the cells and tissues of the body with necessary nutrients and, on the other hand, removes and transports waste products produced by the vital activity of the cells to the kidneys, the excretory organs. According to the character of the circulating fluid, the vascular system is classified into two systems: 1. The blood vascular system, made up of tubes (the heart, arteries and veins), through which the blood circulates; and 2. The lymphatic system, made up of tubes along which lymph, a colourless fluid, flows. The blood vascular system The blood vascular system (the cardiovascular system) consists of the heart as a central organ, and blood vessels, tubes of various calibres connected to it as peripheral organs. The blood vessels passing from the heart to the organs and carrying blood are called arteries (Gk arteria windpipe). Histologicaly the wall of the artery consists of three coats. The inner coat (tunica intima) is lined with endothelium and an inner elastic membrane. The middle coat (tunica media) is made up of two layers of smooth muscle fibres (an external longitudinal and an internal circular layer), which alternate with elastic fibres. The outer coat (tunica externa or adventitia) contains connective tissue fibres. The elastic elements of the arterial wall form a single elastic frame, resilient as a spring, which lends elasticity to the arteries. Some arteries supply whole organs or parts of organs with blood. Arteries can be classified as extraorganic arteries, which pass outside the organ before entering it, and their continuations, intraorganic arteries, which branch out inside the organ. Lateral branches of a single trunk or branches of different trunks can join one another. Such a junction of vessels before their division into capillaries is called an anastomosis (Gk anastomoein to provide with a mouth). Most arteries form anastomoses. The final branches of the arteries are very fine and delicate and are, therefore, classified separately as arterioles. They are directly continuous with the capillaries. Capillaries are hair-like vessels concerned with metabolism. The capillary wall consists of a single layer of flat endothelial cells permeable to substances and gases solved in liquids. The pre-capillaries, capillaries, postcapillaries, and venules primarily perform a trophic (metabolic) function The capillaries anastomose widely among themselves and form networks continuous with the veins. The veins carry blood from the organs to the heart, i.e., in a direction opposite to the flow of blood in the arteries. The walls of veins are formed in the same way as those of the arteries, except that they are much thinner and contain less elastic and muscular tissue. As a result, empty veins drop flat while the lumen of an artery in cross section gapes. The initial segments of the venous bed are the venules, which form directly from the capillary network and make up the roots of the veins. The venules are continuous with the veins which merge to form large venous trunks passing to the heart. The veins anastomose widely among themselves and form venous plexuses. Blood flows through the veins because of the suction action of the heart and the thoracic cavity. Suction is created by negative pressure produced during inhalation as the result of the difference of pressure in the cavities, the contraction of striated and smooth muscles of the organs, and other factors. Venous blood is prevented from flowing backward by special semilunar valves in the venous walls. These valves are shaped from the folds of the endothelium with a thin layer of connective tissue inside. As an individual grows older, the diameter of his veins and the capacity of the venous bed increase relative to the diameter of the arteries and the volume of the arterial bed. There are also the direct connections between the tiniest arteries and veins in many organs, called arterio- venous anastomoses, formed in such a way that the artery divides into two branches, the larger of which branches out further into arterioles and capillaries, while the smaller merges with the veins, losing the characteristics of an arterial vessel and becoming closer in structure to a vein. As a consequence, an excess of arterial blood flowing at any moment to the tissues may be diverted to the venous bed, bypassing the capillary network. This functional adaptation saves the energy of the heart muscle and, in some cases, becomes significantly important to the function of the organ. The arteries and attended by two veins and the large-calibre arteries by one. The exceptions to this rule, besides certain deep veins, are mainly superficial veins passing through the subcutaneous tissue that are rarely accompanied by arteries.
Recommended publications
  • An Anatomical Exploration Into the Variable Patterns of the Venous Vasculature of the Human Kidney
    AN ANATOMICAL EXPLORATION INTO THE VARIABLE PATTERNS OF THE VENOUS VASCULATURE OF THE HUMAN KIDNEY. by KAPIL SEWSARAN SATYAPAL Submitted in partial fulfilment of the requirements for the degree of DOCTOR OF MEDICINE in the Department of Surgery University of Natal Durban 1993 To my wife Pratima, daughter Vedika, son Pravir, and my family. m ABSTRACT In clinical anatomy, the renal venous system is relatively understudied compared to the arterial system. This investigation aims to clarify and update the variable patterns of the renal venous vasculature using cadaveric human (adult and foetal) and Chacma baboon (Papio ursinus) kidneys and to reflect on its clinical application, particularly in surgery and radiology. The study employed gross anatomical dissection and detailed morphometric and statistical analyses on resin cast and plastinated kidneys harvested from 211 adult, 20 foetal and 10 baboon cadavers. Radiological techniques were used to study intrarenal flow, renal veins and collateral pathways and renal vein valves. The gross anatomical description of the renal veins and its relations were confirmed and updated. Additional renal veins were observed much more frequently on the right side (31 %) than previously documented (15.4%). A practical classification system for the renal veins based on the number of primary tributaries, additional renal veins and anomalies is proposed. Detailed morphometric analyses of the various parameters of the renal veins corroborated and augmented previous anatomical studies. Contrary to standard anatomical textbooks, it was noted that the left renal vein is 2.5 times the length of its counterpart and that there are variable levels of entry of the renal veins into the IVe.
    [Show full text]
  • GROSS ANATOMY and CLINICAL PROBLEMS of CNS BLOOD SUPPLY and GLOSSOPHARYNGEAL NERVE © 2019Zillmusom
    GROSS ANATOMY AND CLINICAL PROBLEMS OF CNS BLOOD SUPPLY AND GLOSSOPHARYNGEAL NERVE © 2019zillmusom I. OVERVIEW - Branches to CNS are described as arising from two sources: Vertebral and Internal Carotid arteries. A. Spinal Cord - Anterior Arteries and Posterior Spinal Arteries form as branches of Vertebral Arteries; however, most blood supply to the spinal cord is derived from Radicular arteries (branches of segmental arteries that enter via Intervertebral Foramina) B. Brain - Common Carotid arteries bifurcate to Internal and External Carotid arteries; Internal Carotid arteries supply 80% of brain; 15% of strokes are associated with stenosis (narrowing) of Internal Carotid artery at or near bifurcation. II. GROSS ANATOMY OF BLOOD SUPPLY OF SPINAL CORD A. Arterial supply 1. Anterior Spinal artery - single artery formed from branches of both Vertebral arteries; courses on anterior surface of cord. 2. Posterior Spinal arteries - paired arteries dorsolateral to spinal cord; arise (75%) from Posterior Inferior Cerebellar arteries (branch of Vertebral Artery) or directly from Vertebral arteries (25%). 3. Radicular (root) arteries - Most of blood supply to spinal cord is provided by Radicular (root) arteries; most these arteries arise from the Aorta and enter the spinal canal through Intervertebral foramina; one particularly large artery (Great Radicular Artery of Adamkiewicz, usually unpaired) arises from T9-T12 and provides major blood supply to lumbar and sacral spinal cord. Clinical Note: Obstruction of Radicular Artery (of Adamkiewicz) - Can occur during clamping for heart surgery or by a dissecting Aortic aneurysm; causes infarction (tissue death in spinal cord) similar to an Anterior Spinal Artery syndrome (symptoms include paraplegia (Corticospinal tracts, bilateral voluntary paralysis of legs and lower body), loss of pain and temperature sense (Spinothalamc tract, loss of sphincter control) with sparing of vibration and position sense (Dorsal Columns, sensory).
    [Show full text]
  • Heart Vein Artery
    1 PRE-LAB EXERCISES Open the Atlas app. From the Views menu, go to System Views and scroll down to Circulatory System Views. You are responsible for the identification of all bold terms. A. Circulatory System Overview In the Circulatory System Views section, select View 1. Circulatory System. The skeletal system is included in this view. Note that blood vessels travel throughout the entire body. Heart Artery Vein 2 Brachiocephalic trunk Pulmonary circulation Pericardium 1. Where would you find the blood vessels with the largest diameter? 2. Select a few vessels in the leg and read their names. The large blue-colored vessels are _______________________________ and the large red-colored vessels are_______________________________. 3. In the system tray on the left side of the screen, deselect the skeletal system icon to remove the skeletal system structures from the view. The largest arteries and veins are all connected to the _______________________________. 4. Select the heart to highlight the pericardium. Use the Hide button in the content box to hide the pericardium from the view and observe the heart muscle and the vasculature of the heart. 3 a. What is the largest artery that supplies the heart? b. What are the two large, blue-colored veins that enter the right side of the heart? c. What is the large, red-colored artery that exits from the top of the heart? 5. Select any of the purple-colored branching vessels inside the rib cage and use the arrow in the content box to find and choose Pulmonary circulation from the hierarchy list. This will highlight the circulatory route that takes deoxygenated blood to the lungs and returns oxygenated blood back to the heart.
    [Show full text]
  • Netter's Musculoskeletal Flash Cards, 1E
    Netter’s Musculoskeletal Flash Cards Jennifer Hart, PA-C, ATC Mark D. Miller, MD University of Virginia This page intentionally left blank Preface In a world dominated by electronics and gadgetry, learning from fl ash cards remains a reassuringly “tried and true” method of building knowledge. They taught us subtraction and multiplication tables when we were young, and here we use them to navigate the basics of musculoskeletal medicine. Netter illustrations are supplemented with clinical, radiographic, and arthroscopic images to review the most common musculoskeletal diseases. These cards provide the user with a steadfast tool for the very best kind of learning—that which is self directed. “Learning is not attained by chance, it must be sought for with ardor and attended to with diligence.” —Abigail Adams (1744–1818) “It’s that moment of dawning comprehension I live for!” —Calvin (Calvin and Hobbes) Jennifer Hart, PA-C, ATC Mark D. Miller, MD Netter’s Musculoskeletal Flash Cards 1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103-2899 NETTER’S MUSCULOSKELETAL FLASH CARDS ISBN: 978-1-4160-4630-1 Copyright © 2008 by Saunders, an imprint of Elsevier Inc. All rights reserved. No part of this book may be produced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publishers. Permissions for Netter Art figures may be sought directly from Elsevier’s Health Science Licensing Department in Philadelphia PA, USA: phone 1-800-523-1649, ext. 3276 or (215) 239-3276; or e-mail [email protected].
    [Show full text]
  • Impotence Due to External Iliac Steal Syndrome
    Case Report http://dx.doi.org/10.3348/kjr.2013.14.1.81 pISSN 1229-6929 · eISSN 2005-8330 Korean J Radiol 2013;14(1):81-85 Impotence due to External Iliac Steal Syndrome: Treatment with Percutaneous Transluminal Angioplasty and Stent Placement Serkan Gür, MD1, Levent Oguzkurt, MD2, Bilal Kaya, MD2, Güven Tekbas, MD2, Ugur Ozkan, MD2 1Sifa University, Department of Radiology, 35240 Basmane, Izmir, Turkey; 2Baskent University, Faculty of Medicine, Department of Radiology, 01250, Yüregir, Adana, Turkey We report a case of erectile dysfunction caused by external iliac artery occlusion, associated with pelvic steal syndrome; bilateral internal iliac arteries were patent. The patient stated that he had experienced erectile dysfunction at similar times along with claudication, but he did not mention it before angiography. He expressed that the erectile dysfunction did not last long and that he felt completely okay after the interventional procedure, in addition to his claudication. Successful treatment of the occlusion, by percutaneous transluminal angioplasty and stent implantation, helped resolve erectile dysfunction completely and treat the steal syndrome. Index terms: Erectile dysfunction; Pelvic steal syndrome; Percutaneous angioplasty INTRODUCTION and obstructive disease of the penile arteries are two main vascular causes of impotence. Obstructive arterial diseases Erectile dysfunction (ED) affects 10% of men between cause impotence by obstructing blood supply to the penis, the ages of 40 and 70 (1). ED includes multiple negative and impotence also occurs when the rare entities do not consequences; it was once believed to be a primarily obstruct the blood flow to the penis rather divert blood flow psychological problem. However, it has been estimated away from it.
    [Show full text]
  • The Anatomy of Th-E Blood Vascular System of the Fox ,Squirrel
    THE ANATOMY OF TH-E BLOOD VASCULAR SYSTEM OF THE FOX ,SQUIRREL. §CIURUS NlGER. .RUFIVENTEB (OEOEEROY) Thai: for the 009m of M. S. MICHIGAN STATE COLLEGE Thomas William Jenkins 1950 THulS' ifliillifllfllilllljllljIi\Ill\ljilllHliLlilHlLHl This is to certifg that the thesis entitled The Anatomy of the Blood Vascular System of the Fox Squirrel. Sciurus niger rufiventer (Geoffroy) presented by Thomas William Jenkins has been accepted towards fulfillment of the requirements for A degree in MEL Major professor Date May 23’ 19500 0-169 q/m Np” THE ANATOMY OF THE BLOOD VASCULAR SYSTEM OF THE FOX SQUIRREL, SCIURUS NIGER RUFIVENTER (GEOFFROY) By THOMAS WILLIAM JENKINS w L-Ooffi A THESIS Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Zoology 1950 \ THESlSfi ACKNOWLEDGMENTS Grateful acknowledgment is made to the following persons of the Zoology Department: Dr. R. A. Fennell, under whose guidence this study was completed; Mr. P. A. Caraway, for his invaluable assistance in photography; Dr. D. W. Hayne and Mr. Poff, for their assistance in trapping; Dr. K. A. Stiles and Dr. R. H. Manville, for their helpful suggestions on various occasions; Mrs. Bernadette Henderson (Miss Mac), for her pleasant words of encouragement and advice; Dr. H. R. Hunt, head of the Zoology Department, for approval of the research problem; and Mr. N. J. Mizeres, for critically reading the manuscript. Special thanks is given to my wife for her assistance with the drawings and constant encouragement throughout the many months of work.
    [Show full text]
  • The Incidence and Anatomy of Accessory Pudendal Arteries As
    The Incidence and Anatomy of Accessory Pudendal Arteries as Depicted on Multidetector-Row CT Angiography: Clinical Implications of Preoperative Evaluation for Laparoscopic and Robot-Assisted Radical Prostatectomy Beom Jin Park, MD1 Objective: To help preserve accessory pudendal arteries (APAs) and to Deuk Jae Sung, MD1 ensure optimal postoperative sexual function after a laparoscopic or robot-assist- Min Ju Kim, MD1 ed radical prostatectomy, we have evaluated the incidence of APAs as detected Sung Bum Cho, MD1 on multidetector-row CT (MDCT) angiography and have provided a detailed 1 Yun Hwan Kim, MD anatomical description. Kyoo Byung Chung, MD1 Materials and Methods: The distribution of APAs was evaluated in 121 con- Seok Ho Kang, MD2 secutive male patients between February 2006 and July 2007 who underwent 64- Jun Cheon, MD2 channel MDCT angiography of the lower extremities. We defined an APA as any artery located within the periprostatic region running parallel to the dorsal vascu- lar complex. We also subclassified APAs into lateral and apical APAs. Two radiol- ogists retrospectively evaluated the origin, course and number of APAs; the final Index terms: Accessory pudendal arteries APA subclassification based on MDCT angiography source data was determined Computed tomography (CT) by consensus. Angiography Results: We identified 44 APAs in 36 of 121 patients (30%). Two distinct vari- Laparoscopy Prostatectomy eties of APAs were identified. Thirty-three APAs (75%) coursed near the antero- lateral region of the prostatic apex, termed apical APAs. The remaining 11 APAs DOI:10.3348/kjr.2009.10.6.587 (25%) coursed along the lateral aspect of the prostate, termed lateral APAs.
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Reconstructive
    RECONSTRUCTIVE Angiosomes of the Foot and Ankle and Clinical Implications for Limb Salvage: Reconstruction, Incisions, and Revascularization Christopher E. Attinger, Background: Ian Taylor introduced the angiosome concept, separating the M.D. body into distinct three-dimensional blocks of tissue fed by source arteries. Karen Kim Evans, M.D. Understanding the angiosomes of the foot and ankle and the interaction among Erwin Bulan, M.D. their source arteries is clinically useful in surgery of the foot and ankle, especially Peter Blume, D.P.M. in the presence of peripheral vascular disease. Paul Cooper, M.D. Methods: In 50 cadaver dissections of the lower extremity, arteries were injected Washington, D.C.; New Haven, with methyl methacrylate in different colors and dissected. Preoperatively, each Conn.; and Millburn, N.J. reconstructive patient’s vascular anatomy was routinely analyzed using a Dopp- ler instrument and the results were evaluated. Results: There are six angiosomes of the foot and ankle originating from the three main arteries and their branches to the foot and ankle. The three branches of the posterior tibial artery each supply distinct portions of the plantar foot. The two branches of the peroneal artery supply the anterolateral portion of the ankle and rear foot. The anterior tibial artery supplies the anterior ankle, and its continuation, the dorsalis pedis artery, supplies the dorsum of the foot. Blood flow to the foot and ankle is redundant, because the three major arteries feeding the foot have multiple arterial-arterial connections. By selectively performing a Doppler examination of these connections, it is possible to quickly map the existing vascular tree and the direction of flow.
    [Show full text]
  • Downhill Varices Resulting from Giant Intrathoracic Goiter
    E40 UCTN – Unusual cases and technical notes Downhill varices resulting from giant intrathoracic goiter Fig. 2 Sagittal com- puted tomography of the chest. The goiter was immense, reaching the aortic arch, sur- rounding the trachea and partially compres- sing the upper esopha- gus. The esophagus was additionally com- pressed by anterior spinal spondylophytes. Fig. 1 Multiple submucosal veins in the upper esophagus, consistent with downhill varices. An 82-year-old man was admitted to the hospital because of substernal chest pain, dyspnea, and occasional dysphagia to sol- ids. His past medical history was remark- geal varices are called “downhill varices”, References able for diabetes mellitus type II, hyper- as they are located in the upper esophagus 1 Kotfila R, Trudeau W. Extraesophageal vari- – lipidemia, and Parkinson’s disease. On and project downwards. Downhill varices ces. Dig Dis 1998; 16: 232 241 2 Basaranoglu M, Ozdemir S, Celik AF et al. A occur as a result of shunting in cases of up- physical examination he appeared frail case of fibrosing mediastinitis with obstruc- but with no apparent distress. Examina- per systemic venous obstruction from tion of superior vena cava and downhill tion of the neck showed no masses, stri- space-occupying lesions in the medias- esophageal varices: a rare cause of upper dor or jugular venous distension. Heart tinum [2,3]. Downhill varices as a result of gastrointestinal hemorrhage. J Clin Gastro- – examination disclosed a regular rate and mediastinal processes are reported to enterol 1999; 28: 268 270 3 Calderwood AH, Mishkin DS. Downhill rhythm; however a 2/6 systolic ejection occur in up to 50% of patients [3,4].
    [Show full text]
  • Clinical Pelvic Anatomy
    SECTION ONE • Fundamentals 1 Clinical pelvic anatomy Introduction 1 Anatomical points for obstetric analgesia 3 Obstetric anatomy 1 Gynaecological anatomy 5 The pelvic organs during pregnancy 1 Anatomy of the lower urinary tract 13 the necks of the femora tends to compress the pelvis Introduction from the sides, reducing the transverse diameters of this part of the pelvis (Fig. 1.1). At an intermediate level, opposite A thorough understanding of pelvic anatomy is essential for the third segment of the sacrum, the canal retains a circular clinical practice. Not only does it facilitate an understanding cross-section. With this picture in mind, the ‘average’ of the process of labour, it also allows an appreciation of diameters of the pelvis at brim, cavity, and outlet levels can the mechanisms of sexual function and reproduction, and be readily understood (Table 1.1). establishes a background to the understanding of gynae- The distortions from a circular cross-section, however, cological pathology. Congenital abnormalities are discussed are very modest. If, in circumstances of malnutrition or in Chapter 3. metabolic bone disease, the consolidation of bone is impaired, more gross distortion of the pelvic shape is liable to occur, and labour is likely to involve mechanical difficulty. Obstetric anatomy This is termed cephalopelvic disproportion. The changing cross-sectional shape of the true pelvis at different levels The bony pelvis – transverse oval at the brim and anteroposterior oval at the outlet – usually determines a fundamental feature of The girdle of bones formed by the sacrum and the two labour, i.e. that the ovoid fetal head enters the brim with its innominate bones has several important functions (Fig.
    [Show full text]
  • Intervertebral Veins Directly Connecting the Vertebral Venous System to the Azygos Venous System Rather Than the Proximal End Of
    Intervertebral Veins Rev Arg de Anat Clin; 2015, 7 (2): 88-92 ___________________________________________________________________________________________ Original Communication INTERVERTEBRAL VEINS DIRECTLY CONNECTING THE VERTEBRAL VENOUS SYSTEM TO THE AZYGOS VENOUS SYSTEM RATHER THAN THE PROXIMAL END OF THE POSTERIOR INTERCOSTAL VEINS Naief Dahran1,2, Roger Soames1 1Centre for Anatomy and Human Identification, College of Art, Science and Engineering, University of Dundee, Dundee, United Kingdom 2Department of Anatomy, College of Medicine, University of Jeddah, Jeddah, Kingdom of Saudi Arabia RESUMEN ABSTRACT La estructura de las venas de la cavidad torácica varía Veins in the thoracic cavity are highly variable in terms significativamente en función de sus conexiones. of their communications. Thirty Thiel-embalmed Treinta cadáveres embalsamados con la técnica de cadavers were dissected (18 females and 12 males), Thiel fueron disecados (18 mujeres, 12 hombres), con ranging in age from 48 to 98 years old (mean edades comprendidas entre 48 y 98 años (media 81.3±12.40). The lungs, heart, thoracic aorta, 81.3±12.40). Los pulmones, el corazón, la aorta oesophagus and parietal pleura were removed torácica, el esófago y la pleura parietal fueron carefully to expose the azygos, hemiazygos, accessory cuidadosamente retirados para permitir la visualización hemiazygos veins and thoracic duct. In most de las venas ácigos, hemiácigos y hemiácigos specimens (21) intervertebral veins were connected accesoria así como el conducto torácico. En la directly to the azygos venous systems rather than the mayoría de los especímenes (21) se encontró que las proximal end of the posterior intercostal veins. This venas intervertebrales estaban directamente presentation was observed to be more common on the conectadas con el sistema venoso ácigos en vez de right side, but not at all vertebral levels.
    [Show full text]