Architecture Day 2020 Unveils Willow Cove, Tiger Lake and Xe Architectures, Introduces New Transistor Technology As Intel Advances Its Six Pillars of Innovation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fact Sheet: the Next Generation of Computing Has Arrived
News Fact Sheet The Next Generation of Computing Has Arrived: Performance to Power Amazing Experiences The new 5th Generation Intel® Core™ processor family is Intel’s latest wave of 14nm processors, delivering improved system and graphics performance, more natural and immersive user experiences, and enabling longer battery life compared to previous generations. The release of the 5th Generation Intel Core technology includes 14 new processors for consumers and businesses, including 10 new 15W processors with Intel® HD Graphics and four new 28W products with Intel® Iris™ Graphics. The 5th Generation Intel Core processor is purpose-built for the next generation of compute devices offering a thinner, lighter and more efficient experience across diverse form factors, including traditional notebooks, 2 in 1s, Ultrabooks™, Chromebooks, all-in-one desktop PCs and mini PCs. With the 5th Generation Intel Core processor availability, the “Broadwell” microarchitecture is expected to be the fastest mobile transition in company history to offer consumers a broad selection and availability of devices. Intel also started shipping its next generation 14nm processor for tablets, codenamed “Cherry Trail”, to device manufacturers. The new system on a chip (SoC) offers 64-bit computing, improved graphics with Intel® Generation 8-LP graphics, great performance and battery life for mainstream tablets. The platform offers world-class modem capabilities with LTE-Advanced on Intel® XMM™ 726x platform, which supports Cat-6 speeds and carrier aggregation. Customers will introduce new products based on this platform starting in the first half of this year. Key benefits of the 5th Generation Intel Core family and the next-generation 14nm processor for tablets include: Powerful Performance. -
Intel® Architecture Instruction Set Extensions and Future Features Programming Reference
Intel® Architecture Instruction Set Extensions and Future Features Programming Reference 319433-037 MAY 2019 Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn more at intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifica- tions. Current characterized errata are available on request. This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1- 800-548-4725, or by visiting http://www.intel.com/design/literature.htm. Intel, the Intel logo, Intel Deep Learning Boost, Intel DL Boost, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S. -
GPU Developments 2018
GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR. -
1 Intel CEO Remarks Pat Gelsinger Q2'21 Earnings Webcast July 22
Intel CEO Remarks Pat Gelsinger Q2’21 Earnings Webcast July 22, 2021 Good afternoon, everyone. Thanks for joining our second-quarter earnings call. It’s a thrilling time for both the semiconductor industry and for Intel. We're seeing unprecedented demand as the digitization of everything is accelerated by the superpowers of AI, pervasive connectivity, cloud-to-edge infrastructure and increasingly ubiquitous compute. Our depth and breadth of software, silicon and platforms, and packaging and process, combined with our at-scale manufacturing, uniquely positions Intel to capitalize on this vast growth opportunity. Our Q2 results, which exceeded our top and bottom line expectations, reflect the strength of the industry, the demand for our products, as well as the superb execution of our factory network. As I’ve said before, we are only in the early innings of what is likely to be a decade of sustained growth across the industry. Our momentum is building as once again we beat expectations and raise our full-year revenue and EPS guidance. Since laying out our IDM 2.0 strategy in March, we feel increasingly confident that we're moving the company forward toward our goal of delivering leadership products in every category in which we compete. While we have work to do, we are making strides to renew our execution machine: 7nm is progressing very well. We’ve launched new innovative products, established Intel Foundry Services, and made operational and organizational changes to lay the foundation needed to win in the next phase of our company’s great history. Here at Intel, we’re proud of our past, pragmatic about the work ahead, but, most importantly, confident in our future. -
2021 Proxy Statement
2021 Proxy Statement Notice of Annual Stockholders’ Meeting Investor Engagement To see how we responded to your Who We Met With feedback, see page 41. Total Contacted Total Engaged Director Engaged 50.4% 39.5% 29.7% O/S O/S O/S Intel’s outstanding shares (o/s) caculated as of September 30,2020 We are proud of our long-standing and robust investor engagement program. Our integrated outreach team, led by our Investor Relations group, Corporate Responsibility office, Human Resources office, and Corporate Secretary office, engages proactively with our stockholders, maintaining a two-way, year-round governance calendar as shown in this graphic. During 2020, our engagement program addressed our executive compensation program, corporate governance best practices, our Board’s operation and experience, and our commitment to addressing environmental and social responsibility issues that are critical to our business. Through direct participation in our engagement efforts and through briefings from our engagement teams, our directors are able to monitor developments in corporate governance and social responsibility and benefit from our stockholders’ perspectives on these topics. In consultation with our Board, we seek to thoughtfully adopt and apply developing practices in a manner that best supports our business and our culture. Summer Winter Review annual meeting Incorporate input results to determine from investor meetings Annual appropriate next into annual meeting planning steps, and prioritize and enhance governance Stockholders’ post annual meeting and compensation investor engagement practices and disclosures Meeting focus areas when warranted Fall Spring Hold post- Conduct pre-annual annual meeting meeting investor meetings investor meetings to solicit feedback and report to the to answer questions and Board, Compensation understand investor Committee, and Corporate views on proxy Governance and Nominating matters Committee Additional detail on specific topics and initiatives we have adopted is discussed under “Investor Engagement” on page 40. -
Motherboards, Processors, and Memory
220-1001 COPYRIGHTED MATERIAL c01.indd 03/23/2019 Page 1 Chapter Motherboards, Processors, and Memory THE FOLLOWING COMPTIA A+ 220-1001 OBJECTIVES ARE COVERED IN THIS CHAPTER: ✓ 3.3 Given a scenario, install RAM types. ■ RAM types ■ SODIMM ■ DDR2 ■ DDR3 ■ DDR4 ■ Single channel ■ Dual channel ■ Triple channel ■ Error correcting ■ Parity vs. non-parity ✓ 3.5 Given a scenario, install and configure motherboards, CPUs, and add-on cards. ■ Motherboard form factor ■ ATX ■ mATX ■ ITX ■ mITX ■ Motherboard connectors types ■ PCI ■ PCIe ■ Riser card ■ Socket types c01.indd 03/23/2019 Page 3 ■ SATA ■ IDE ■ Front panel connector ■ Internal USB connector ■ BIOS/UEFI settings ■ Boot options ■ Firmware upgrades ■ Security settings ■ Interface configurations ■ Security ■ Passwords ■ Drive encryption ■ TPM ■ LoJack ■ Secure boot ■ CMOS battery ■ CPU features ■ Single-core ■ Multicore ■ Virtual technology ■ Hyperthreading ■ Speeds ■ Overclocking ■ Integrated GPU ■ Compatibility ■ AMD ■ Intel ■ Cooling mechanism ■ Fans ■ Heat sink ■ Liquid ■ Thermal paste c01.indd 03/23/2019 Page 4 A personal computer (PC) is a computing device made up of many distinct electronic components that all function together in order to accomplish some useful task, such as adding up the numbers in a spreadsheet or helping you to write a letter. Note that this defi nition describes a computer as having many distinct parts that work together. Most PCs today are modular. That is, they have components that can be removed and replaced with another component of the same function but with different specifi cations in order to improve performance. Each component has a specifi c function. Much of the computing industry today is focused on smaller devices, such as laptops, tablets, and smartphones. -
Intel 2019 Year Book
YEARBOOK 2019 POWERING THE FUTURE Our 2019 yearbook invites you to look back and reflect on a memorable year for Intel. TABLE OF CONTENTS 2019 kicked off with the announcement of our new p4 New CEO. Evolving culture. Expanded ambitions. chief executive, Bob Swan. It was followed by a stream of notable news: product announcements, technology p6 More data. More storage. More processing. breakthroughs, new customers and partnerships, p10 Innovation for the PC user experience and important moves to evolve Intel’s culture as the company entered its sixth decade. p12 Self-driving cars hit the road p2 p16 AI unlocks the power of data It’s a privilege to tell the Intel story in all its complexity and humanity. Looking through these pages, the p18 Helping customers push boundaries breadth and depth of what we’ve achieved in 12 p22 More supply to meet strong demand months is substantial, as is the strong foundation we’ve built for even greater impact in the future. p26 Next-gen hardware and software to unlock it p28 Tech’s future: Inventing and investing I hope you enjoy this colorful look at what’s possible when more than 100,000 individuals from every p32 Reinforcing the nature of Moore’s Law corner of the globe unite to change the world – p34 Building for the smarter future through technologies that make a positive difference to our customers, to society, and to people’s lives. — Claire Dixon, Chief Communications Officer NEW CEO. EVOLVING CULTURE. EXPANDED AMBITIONS. 2019 was an important year in Intel’s transformation, with a new chief executive officer, ambitious business priorities, an aspirational culture evolution, and a farewell to Focal. -
Intel® Architecture Instruction Set Extensions and Future Features Programming Reference
Intel® Architecture Instruction Set Extensions and Future Features Programming Reference 319433-041 OCTOBER 2020 Intel technologies may require enabled hardware, software or service activation. No product or component can be absolutely secure. Your costs and results may vary. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. All product plans and roadmaps are subject to change without notice. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are not “commercial” names and not intended to function as trademarks. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be ob- tained by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm. Copyright © 2020, Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. -
Lecture Note 7. IA: History and Features
System Programming Lecture Note 7. IA: History and Features October 30, 2020 Jongmoo Choi Dept. of Software Dankook University http://embedded.dankook.ac.kr/~choijm (Copyright © 2020 by Jongmoo Choi, All Rights Reserved. Distribution requires permission) Objectives Discuss Issues on ISA (Instruction Set Architecture) ü Opcode and operand addressing modes Apprehend how ISA affects system program ü Context switch, memory alignment, stack overflow protection Describe the history of IA (Intel Architecture) Grasp the key technologies in recent IA ü Pipeline and Moore’s law Refer to Chapter 3, 4 in the CSAPP and Intel SW Developer Manual 2 Issues on ISA (1/2) Consideration on ISA (Instruction Set Architecture) asm_sum: addl $1, %ecx movl -4(%ebx, %ebp, 4), %eax call func1 leave ü opcode issues § how many? (add vs. inc è RISC vs. CISC) § multi functions? (SISD vs. SIMD vs. MIMD …) ü operand issues § fixed vs. variable operands f bits n bits n bits n bits § fixed: how many? opcode operand 1 operand 2 operand 3 § operand addressing modes f bits n bits n bits ü performance issues opcode operand 1 operand 2 § pipeline f bits n bits § superscalar opcode operand 1 § multicore 3 Issues on ISA (2/2) Features of IA (Intel Architecture) ü Basically CISC (Complex Instruction Set Computing) § Variable length instruction § Variable number of operands (0~3) § Diverse operand addressing modes § Stack based function call § Supporting SIMD (Single Instruction Multiple Data) ü Try to take advantage of RISC (Reduced Instruction Set Computing) § Micro-operations -
DARC: Design and Evaluation of an I/O Controller for Data Protection
DARC: Design and Evaluation of an I/O Controller for Data Protection ∗ ∗ Markos Fountoulakis , Manolis Marazakis, Michail D. Flouris, and Angelos Bilas Institute of Computer Science (ICS) Foundation for Research and Technology - Hellas (FORTH) N. Plastira 100, Vassilika Vouton, Heraklion, GR-70013, Greece {mfundul,maraz,flouris,bilas}@ics.forth.gr ABSTRACT tualization, versioning, data protection, error detection, I/O Lately, with increasing disk capacities, there is increased performance concern about protection from data errors, beyond masking of device failures. In this paper, we present a prototype I/O 1. INTRODUCTION stack for storage controllers that encompasses two data pro- tection features: (a) persistent checksums to protect data at- In the last three decades there has been a dramatic in- rest from silent errors and (b) block-level versioning to allow crease of storage density in magnetic and optical media, protection from user errors. Although these techniques have which has led to significantly lower cost per capacity unit. been previously used either at the device level (checksums) Today, most I/O stacks already encompass RAID features or at the host (versioning), in this work we implement these for protecting from device failures. However, recent stud- features in the storage controller, which allows us to use ies of large magnetic disk populations indicate that there any type of storage devices as well as any type of host I/O is also a significant failure rate of hardware and software stack. The main challenge in our approach is to deal with components in the I/O path, many of which are silent until persistent metadata in the controller I/O path. -
EARNINGS Presentation Disclosures
Q2 2020 EARNINGS Presentation Disclosures This presentation contains non-GAAP financial measures. Earnings per share (EPS), gross margin, and operating margin are presented on a non- GAAP basis unless otherwise indicated, and this presentation also includes a non-GAAP free cash flow (FCF) measure. The Appendix provides a reconciliation of these measures to the most directly comparable GAAP financial measure. The non-GAAP financial measures disclosed by Intel should not be considered a substitute for, or superior to, the financial measures prepared in accordance with GAAP. Please refer to “Explanation of Non-GAAP Measures” in Intel's quarterly earnings release for a detailed explanation of the adjustments made to the comparable GAAP measures, the ways management uses the non-GAAP measures, and the reasons why management believes the non-GAAP measures provide investors with useful supplemental information. Statements in this presentation that refer to business outlook, future plans, and expectations are forward-looking statements that involve a number of risks and uncertainties. Words such as "anticipate," "expect," "intend," "goals," "plans," "believe," "seek," "estimate," "continue,“ “committed,” “on-track,” ”positioned,” “launching,” "may," "will," “would,” "should," “could,” and variations of such words and similar expressions are intended to identify such forward-looking statements. Statements that refer to or are based on estimates, forecasts, projections, uncertain events or assumptions, including statements relating to total addressable market (TAM) or market opportunity, future products and technology and the expected availability and benefits of such products and technology, including our 10nm and 7nm process technologies, products, and product designs, and anticipated trends in our businesses or the markets relevant to them, also identify forward-looking statements. -
The Intel X86 Microarchitectures Map Version 3.4
The Intel x86 Microarchitectures Map Version 3.4 Willamette (2000, 180 nm) Skylake (2015, 14 nm to 14 nm++) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P6 (1995, 0.50 to 0.35 μm) Series: Alternative Names: i686 Alternative Names: NetBurst, Pentium 4, Pentium IV, P4, , Pentium 4 180 nm Alternative Names: SKL (Desktop and Mobile), SKX (Server) (Note : all U and Y processors are MCPs) Alternative Names: iAPX 386, 386, i386 P5 (1993, 0.80 to 0.35 μm) • 16-bit data bus: Series: Pentium Pro (used in desktops and servers) Series: Series: Series: Alternative Names: Pentium, 8086 (iAPX 86) Variant: Klamath (1997, 0.35 μm) • Desktop: Pentium 4 1.x (except those with a suffix), Pentium 4 2.0 • Desktop: Desktop 6th Generation Core i5 (i5-6xxx, S-H, 14 nm) • Desktop/Server: i386DX 80586, 586, i586 • 8-bit data bus: Alternative Names: Pentium II, PII • Desktop lower-performance: Celeron 1.x (where x is a single digit between 5-9, except Celeron 1.6 SL7EZ, • Desktop higher-performance: Desktop 6th Generation Core i7 (i7-6xxx, S-H , 14 nm), Desktop 7th Generation Core i7 X (i7-7xxxX, X, 14 nm+), • Desktop lower-performance: i386SX Series: 8088 (iAPX 88) Series: Pentium II 233/266/300 steppings C0 and C1 (Klamath, used in desktops) Willamette-128), Celeron 2.0 SL68F Desktop 7th Generation Core i9 X (i9-7xxxXE, i9-7xxxX, X, 14 nm+), Desktop 9th Generation Core i7 X (i7-9xxxX, X, 14 nm++), Desktop 9th • Mobile: i386SL, 80376, i386EX, • Desktop/Server: P5, P54C New instructions: Deschutes (1998, 0.25 to 0.18 μm) • Server: Foster (Xeon), Foster-MP (Xeon)