Simulation Engineer 3Dexperience User Role

Total Page:16

File Type:pdf, Size:1020Kb

Simulation Engineer 3Dexperience User Role SIMULATION ENGINEER 3DEXPERIENCE USER ROLE ASSESS STRUCTURAL Design Simulation powered by proven world-class Abaqus Realistic Simulation INTEGRITY OF PRODUCTS technology in a seamless, intuitive, and modern user interface within the WITH POWERFUL 3DEXPERIENCE® platform. FINITE ELEMENT BASED Simulation Engineer provides a broad environment to conduct structural static, frequency, SIMULATION TECHNIQUES buckling, modal dynamic response, and structural thermal simulation of parts and assemblies TO GUIDE DESIGN within the 3DEXPERIENCE platform to the SolidWorks community. It boosts innovation in DECISIONS product engineering and fosters collaboration in an intuitive environment using state-of-the art Abaqus simulation technology. State of the art interaction between CAD and CAE With Simulation Engineer, users build simulation models directly on the design geometry. Tight associativity with SOLIDWORKS means that simulation and CAD always remain synchronized even after design changes. It provides access to advanced simulation technology within a consistent and intuitive interface. To go even further, a unique workflow leverages the SolidWorks Simulation nonlinear studies information into 3DEXPERIENCE so users can complete quickly and easily the simulation set-up for a productive user experience. Material thickness of tube after hydroforming Simulation Review application offers Web based visualization of the geometry and simulation results for a unique collaborative experience around Simulation assets. Key Functionalities Simulation Engineer delivers proven world-class Abaqus technology in a seamless and powerful user interface on the 3DEXPERIENCE platform so that design engineers can get the benefits of virtual testing for informed technical decisions- SOLIDWORKS Simulation study and Simulation Engineer makings. It offers: Simulation management and collaboration leveraging • Analysis of sequential loading events (multi-step analysis) the 3DEXPERIENCE platform • Linear and nonlinear structural static analysis 3DEXPERIENCE® Simulation Engineer is available as a Cloud solution to provide increased flexibility and fast deployment. • Thermal and sequential thermal-structural analysis Total Cost of Ownership is improved by reducing requirements • Dynamic response analysis including frequency, modal transient for computing and storage, as well as facility and human and modal harmonic analysis resources costs, empowering enterprises of all sizes to access • Advanced nonlinear material options including engineering powerful simulation capabilities. plasticity for metals and hyperelasticity for rubber Simulation is managed as a core value of the 3DEXPERIENCE • Simulates realistic behavior under a variety of structural loading platform through the capture, management, and re-use of and boundary conditions simulation data allowing it to become a true corporate asset. The 3D Space of the 3DEXPERIENCE platform offers simplified • Robust meshing tools, including rule-based meshing, with 2D and powerful management of data and content for all users. and 3D elements The embedded 3D Search enables engineers to easily find data • Advanced capabilities for deformable, intermittent contact such as geometry, material and simulation models improving (surface pairs, automatic detection, general contact and productivity. initialization) between parts and assemblies High performance results visualization, particularly for • A wide selection of connection and connector options for very large models modeling fasteners and mechanisms High performance visualization tools support efficient post- • Local or cloud computing (with Credit compute) for efficient small processing of large-scale simulation data with local or on-cloud to large models virtual testing environment for rendering and visualization computation. • Efficient post processing tools to interpret and understand Simulation Engineer enables interrogation of realistic simulation product behavior or registered trademarks commercial are 3D VIA, 3DSWYM, BIOVIA, NETVIBES, IFWE and 3DEXCITE EXALEAD, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, CATIA, the 3DS logo, icon, , the Compass results with speed, clarity, and control for enhanced decision making during the engineering process. EXPERIENCE® 3D Our 3DEXPERIENCE® platform powers our brand applications, serving 12 industries, and provides a rich portfolio of industry solution experiences. Dassault Systèmes, the 3DEXPERIENCE® Company, provides business and people with virtual universes to imagine sustainable innovations. Its world-leading solutions transform the way products are designed, produced, and supported. Dassault Systèmes’ collaborative solutions foster social innovation, expanding possibilities for the virtual world to improve the real world. The group brings value to over 210,000 customers of all sizes in all industries in more than 140 countries. For more information, visit www.3ds.com. ©2017 Dassault Systèmes. All rights reserved. Systèmes. ©2017 Dassault Systèmes owners. Use of any Dassault owned by their respective are All other trademarks other countries. and/or States # B 322 306 440), or its subsidiaries in the United Register Commercial (Versailles européenne” “société a French Systèmes, of Dassault trademarks approval. written their express is subject to or its subsidiaries trademarks Americas Europe/Middle East/Africa Asia-Pacific Dassault Systèmes Dassault Systèmes Dassault Systèmes K.K. 175 Wyman Street 10, rue Marcel Dassault ThinkPark Tower Waltham, Massachusetts CS 40501 2-1-1 Osaki, Shinagawa-ku, 02451-1223 78946 Vélizy-Villacoublay Cedex Tokyo 141-6020 USA France Japan.
Recommended publications
  • AALTO UNIVERSITY School of Engineering Engineering Design and Production
    AALTO UNIVERSITY School of Engineering Engineering Design and Production Kaur Jaakma Engineering Data Management Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Technology Espoo, 29 December 2011 Supervisor: Professor (pro tem) Jari Juhanko Instructor: Andrea Buda, M.Sc. AALTO UNIVERSITY ABSTRACT OF THE MASTER’S THESIS SCHOOLS OF TECHNOLOGY PO Box 11000, FI-00076 AALTO http://www.aalto.fi Author: Kaur Jaakma Title: Engineering Data Management School: School of Engineering Department: Department of Engineering Design and Production Professorship: Machine Design Code: Kon-41 Supervisor: Professor (pro tem) Jari Juhanko Instructor: Andrea Buda, M. Sc. Abstract: To support design decisions in the product development process, companies are increasingly relying on computer aided simulations. However, investments in simulation technologies can not translate directly into benefit without implementing a system able to capture knowledge and value out of each simulation performed. To implement the switch from traditional product development to Simulation Based Design (SBD) and product development, a system that can efficiently manage simulation data is needed. Common situation in industry is to store everything related to simulations in the analyst’s computer or in a shared folder. Currently only CAE (Computer Aided Engineering) departments in aerospace and automotive OEMs are early adopters of SDM (Simulation Data Management) technology. Commercial SDM systems are developed to suits the needs of big enterprises with repetitive processes and product with broadly similar geometries. The cost for deployment and maintenance of this kind of system represents a barrier for small and mid-size companies. The larger companies might not benefit from a system developed and tuned for the needs of the early adopters mentioned above.
    [Show full text]
  • Development of a Coupling Approach for Multi-Physics Analyses of Fusion Reactors
    Development of a coupling approach for multi-physics analyses of fusion reactors Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) bei der Fakultat¨ fur¨ Maschinenbau des Karlsruher Instituts fur¨ Technologie (KIT) genehmigte DISSERTATION von Yuefeng Qiu Datum der mundlichen¨ Prufung:¨ 12. 05. 2016 Referent: Prof. Dr. Stieglitz Korreferent: Prof. Dr. Moslang¨ This document is licensed under the Creative Commons Attribution – Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ Abstract Fusion reactors are complex systems which are built of many complex components and sub-systems with irregular geometries. Their design involves many interdependent multi- physics problems which require coupled neutronic, thermal hydraulic (TH) and structural mechanical (SM) analyses. In this work, an integrated system has been developed to achieve coupled multi-physics analyses of complex fusion reactor systems. An advanced Monte Carlo (MC) modeling approach has been first developed for converting complex models to MC models with hybrid constructive solid and unstructured mesh geometries. A Tessellation-Tetrahedralization approach has been proposed for generating accurate and efficient unstructured meshes for describing MC models. For coupled multi-physics analyses, a high-fidelity coupling approach has been developed for the physical conservative data mapping from MC meshes to TH and SM meshes. Interfaces have been implemented for the MC codes MCNP5/6, TRIPOLI-4 and Geant4, the CFD codes CFX and Fluent, and the FE analysis platform ANSYS Workbench. Furthermore, these approaches have been implemented and integrated into the SALOME simulation platform. Therefore, a coupling system has been developed, which covers the entire analysis cycle of CAD design, neutronic, TH and SM analyses.
    [Show full text]
  • Book of Abstracts
    Book of abstracts 9th PhD Seminar on Wind Energy in Europe September 18-20, 2013 Uppsala University Campus Gotland, Sweden Campus Gotland WIND ENERGY Book of abstracts of 9th PhD Seminar on Wind Energy in Europe Uppsala University Campus Gotland, Sweden Campus Gotland, Wind Energy 621 67 Visby PREFACE The wind energy field is becoming more and more important in relation with future challenges of switching the world energy system to renewables. Therefore it is of high importance that tomorrow’s researchers in the field from all over the word meet and discuss future challenges. The 9th annual EAWE PhD seminar is in 2013 organized by Uppsala University Campus Gotland. This is a very suitable place for this event since it combines a unique historical environment with a sustainable profile and a long tradition of wind energy. Today about 45% of the energy consumption is locally produced by wind energy. Uppsala University Campus Gotland also has more than 10 years experience of teaching and research in the field with a focus on wind power project development. The aim with this seminar is to improve the international communication and information sharing of ongoing activities as well as simplify contact building between young researchers. It is also a perfect opportunity for PhD students to practice and improve their presentation and discussion skills. Associate Professor Stefan Ivanell Director, Wind Energy Uppsala University, Campus Gotland Book of abstracts of 9th PhD Seminar on Wind Energy in Europe September 18-20, 2013, Uppsala University Campus Gotland, Sweden TABLE OF CONTENTS ROTOR & WAKE AERODYNAMICS UNDERSTANDING THE WIND TURBINE BREAKDOWN MECHANISM WITH CFD M.
    [Show full text]
  • NX Advanced Simulation
    NX NX Advanced Simulation fact sheet Siemens PLM Software www.siemens.com/nx Summary NX™ Advanced Simulation software combines the power of an integrated NX Nastran® desktop solver with NX Advanced FEM, a comprehensive suite of multi-CAD FE model creation and results visualization tools. Extensive geometry creation, idealization and abstraction capabilities enable the rapid development of complex 3D mathematical models that allow design decisions to be based on insight into real product performance. NX Advanced Simulation enables a true multi-physics environment via tight integration with NX Nastran as well as other industry standard solvers such as Abaqus, Ansys, MSC Nastran and LS-Dyna. Benefits NX Advanced FEM includes the fundamental modeling functions of automatic and manual mesh Build models faster with embedded generation, application of loads and boundary conditions and model development and checking. NX tools for 3D geometry creation, Advanced FEM includes Assembly FEM technology, a distributed model approach to handle large editing and abstraction FEM assemblies. A robust set of visualization tools generates displays quickly, lets you view multiple Make design changes easily with results simultaneously and enables you to easily print the display. In addition, extensive post- Synchronous Technology for quick what-if analysis processing functions enable review and export of analysis results to spreadsheets and provide Enable faster collaboration between extensive graphing tools for gaining an understanding of results. Post-processing also supports analysts and design engineers with the export of JT™ data for collaboration across the enterprise with JT2Go and Teamcenter® for geometry associativity lifecycle visualization software. •Knowledge of design changes •“On-demand” FE model updates NX Advanced FEM provides seamless, transparent based on design geometry support for a number of industry-standard changes solvers, such as NX Nastran, MSC Nastran, Manage and share your CAE data Ansys and Abaqus.
    [Show full text]
  • NX Advanced Simulation Integrating FE Modeling and Simulation Streamlines Product Development Process
    Siemens PLM Software NX Advanced Simulation Integrating FE modeling and simulation streamlines product development process Benefits A modern CAE environment unique from all other finite element (FE) • Speed simulation processes NX™ Advanced Simulation software is a preprocessors is its superior geometry by up to 70 percent modern, multidiscipline computer-aided foundation that enables intuitive geometry engineering (CAE) environment for editing and analysis model associativity to • Perform accurate, reliable advanced analysts, workgroups and design- multi-computer-aided design (CAD) data. structural analysis with ers that need to deliver high-quality perfor- The tight integration of a powerful geome- integrated NX Nastran mance insights in a timely fashion to drive try engine with robust analysis modeling solver product decisions. NX Advanced Simulation commands is the key to reducing modeling • Increase product quality by integrates best-in-class analysis modeling time by up to 70 percent compared to rapidly simulating design with the power of an integrated NX traditional FE modeling tools. tradeoff studies Nastran® desktop solver for basic structural Enabling fast, intuitive geometry editing analysis. NX Advanced Simulation also • Lower overall product NX Advanced Simulation is built on the forms the foundation on which you can development costs by same leading geometry foundation that perform additional solutions for advanced reducing costly, late design powers NX. By using NX Advanced structural, thermal, flow, engineering opti- change
    [Show full text]
  • Abaqus for CATIA V5
    Abaqus for CATIA V5 R21 CATIA V5 Integration • Temperature-dependent material properties • Thermal properties Integration Features • Linear elasticity • Availability of linear and nonlinear static, dynamic, and thermal • Metal plasticity (isotropic, kinematic, or analysis capabilities within the CATIA V5 environment Johnson-Cook hardening) • Complete geometric associativity • Hyperelasticity • Support for Knowledgeware, publications, and results sensors • Abaqus material user subroutine • Model optimization using the PEO workbench • Abaqus heat generation user subroutine • Support for analysis assembly • Composite properties imported from the CATIA Composite • Complete support for CATIA V5 groups Design workbench • Support for many CATIA V5 advanced connections • Orthotropic composite layups for shell modeling • Visual Basic scripting capabilities for automated workflows • 3-D orthotropic material properties • Gasket material properties Operating Systems • Windows/x86-32 and Windows/x86-64 operating systems Loads (Windows XP Professional SP2, Windows XP Professional x64, • Load application using tabular and smooth-step amplitudes Windows Vista, Windows 7) • Forces and moments can follow nodal rotation • Data mapping available for pressure, heat flux, thermal Abaqus Workbenches film condition, and temperature • Nonlinear Structural Analysis workbench for static, • Imported loads from GPS analysis frequency-extraction, and explicit dynamic simulations • Cartesian, cylindrical, and spherical local coordinate • Thermal Analysis workbench for
    [Show full text]
  • Cranfield University Laszlo Hetey Idealisation Error
    CRANFIELD UNIVERSITY LASZLO HETEY IDEALISATION ERROR CONTROL FOR AEROSPACE VIRTUAL STRUCTURAL TESTING SCHOOL OF ENGINEERING PhD THESIS CRANFIELD UNIVERSITY SCHOOL OF ENGINEERING PHD THESIS Academic Year 2008 - 2009 LASZLO HETEY IDEALISATION ERROR CONTROL FOR AEROSPACE VIRTUAL STRUCTURAL TESTING Supervisor: Dr. James Campbell March 2009 © Cranfield University 2009. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. ABSTRACT This thesis addresses idealisation error control for the nonlinear finite element method. The focus is on accurate failure prediction of mid-size aerospace structures. The objective is the development of technologies that shorten the certification process of new airplanes, by replacing expensive and time consuming testing with reliable calculation methods. The SAFESA (Safe Structural Analysis) approach was applied to the collapse analyses of stiffened metal panels. ABAQUS/Standard was thereby the utilised nonlinear solver. Because the original SAFESA procedure is tailored for linear analyses, the methodology needed an update. The first analysis case is a stiffened panel compression test which was arranged as a lecture demonstration at Cranfield University. The analysis behaviour is highly nonlinear due to the thin-walled properties of the panel. The second analysis investigates an Airbus compression panel. Until failure, the panel behaves geometrically less complicated because the major load bearing parts are thick-walled and bend smoothly. The main research work is the critical analysis of important modelling assumptions concerning the used material model, boundary conditions and geometrical imperfections. In both cases, the method helped to identify idealisation errors and to build a reliable FEM model. In order to deal with the nonlinear error sources, minor extensions to the original method had to be made.
    [Show full text]
  • Simulation Comparison Between PTC/Creo and Professional CAE
    2017 International Conference on Mechanical and Mechatronics Engineering (ICMME 2017) ISBN: 978-1-60595-440-0 Simulation Comparison Between PTC/Creo and Professional CAE Software Li-xin WANG*, Jun-hui LIU and Lin-kai CHEN School of Mechanical Engineering, Zhengzhou University, Henan Zhengzhou 450001, China *Corresponding author Keywords: PTC/Creo, Mechanism analysis, Structure analysis, Adams, Ansys. Abstract. CAE is an indispensable tool for mechanical design engineers, and is widely used in product development process. This paper discuss the differences and linkages of the two most commonly used mechanism simulation and strength calculation in the design process. For the same model respectively, simulations using PTC/Creo Vs. Ansys and PTC/Creo Vs. MSC Adams are conducted. The results show that PTC/Creo software is simple to use, easy to modify and accurate enough upon the simulation. However, it is a bit rougher and shallower than the professional CAE software .So, for mechanical design engineers, PTC/Creo simulation tools should be preferred, and the profound analysis should be the duty of professional CAE engineers. Introduction With the development and popularization of CAD technology, three-dimensional software design is more and more commonly used in modern mechanical design. At present, the general understanding is that CAD software is responsible for three-dimensional modeling of parts, components and machine assembly, and static interference analysis. Although CAD software also provides integrated CAE tools (mechanism simulation, structural analysis, thermal analysis, etc.). However, most people are accustomed to the simplified model, and export the model to the professional finite element analysis software (Ansys, Nastran, Abaqus) and virtual prototyping software (MSC.Adams, LMS Virtual.Lab, etc.) for analysis.
    [Show full text]
  • An Evaluation of Associative Interface for Solidworks and ABAQUS/CAE Hung-Peng Li and Goang-Ding Shyu Baker Hughes Inc
    An Evaluation of Associative Interface for SolidWorks and ABAQUS/CAE Hung-Peng Li and Goang-Ding Shyu Baker Hughes Inc. Abstract: In the modern design and manufacturing world, shorter development cycle times are being demanded. In addition, engineers are being asked to perform more analyses and studies to improve their products. To meet the challenge, engineers will seek more ways to increase robustness and productivity. With the continued integration of computational tools, such as the associative import between SolidWorks and Abaqus/CAE, it is possible to analyze and reiterate designs, materials, and structures in a more productive and efficient fashion. With the assistance of the associative interface capability, one can quickly update design changes into the ABAQUS finite element (FE) pre-processing tool with just one click. This associative importing feature allows tremendous time savings and avoids time-consuming repetitions and mistakes in creating new FE meshes and models for newly imported modified geometries and designs. This new capability allows Abaqus/CAE to update the imported geometries in real time and also to retain the majority of FE analysis model features, such as partitions and meshing seeds, contact interactions, applied loads, and boundary conditions. It also provides the advantage of creating multiple FE models with a reasonable effort for parametric or sensitivity studies to account for design and manufacturing variations, for example, the imperfections of eccentricity and ovality on the effect of collapse pressures. A wide variety of completion tools were evaluated. The interfaces and the process of the associative function between SolidWorks and Abaqus/CAE will be shown. The summary and conclusion including pros and cons will be discussed.
    [Show full text]
  • ANSYS/LS-DYNA Version 5.7" Dated January 18, 2002'
    SOFTWARE RELEASE NOTICE 1. SRN Number: 1 (1_i i- - s 0,j - _2'ii 2. Project Title: Analysis of the HI-STORM Project No. Cask S ystem 20-01405-041 l 4Sh#Ucf-z-7 &ft 3. SRN Title: ANSYS / LS-DYNA, version 5.7 4. Originator/Requestor: P. A. Cox Date: 02/26/01 5. Summary of Actions * Release of new software O Release of modified software: 0 Enhancements made 0 Corrections made 0 Change of access software 0 Software Retirement | 6. Persons Authorized Access Name Read Only/Read- Addition/Change/D Write elete P. A. Cox R-W A Asad Chowdhury R-Wy A Janet Banda R9 4/c S-3 -2cy A 7. Element Manager Approva / Date: 8. Remarks: CNWRA Form TOP-6 (05/98) SOFTWARE SUMMARY FORM 01. Summary Date: 02. Summary prepared by (Name and phone) 03. Summary Action: 02/26/01 P. A. Cox, 522-2315 _ __ __ __ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ N E W 04. Software Date: 05. Short Title: ANSYS / LS-DYNA released 02/01 06. Software Title: ANSYS I LS-DYNA, version 5.7 07. Internal Software ID: 08. Software Type: 09. Processing Mode: 10. Application Area [l Automated Data System l Interactive a. General: * Scientific/Engineering El Auxiliary Analyses EComputer Program [1 Batch El Total System PA El Subsystem PA El Other El Subroutine/Module * Combination b. Specific: Structural Dynamics 11. Submitting Organization and Address: 12. Technical Contact(s) and Phone: CNWRA/SwRl P.
    [Show full text]
  • NX Advanced FEM Integrating Geometry and FE Modeling to Streamline the Product Development Process
    Siemens PLM Software NX Advanced FEM Integrating geometry and FE modeling to streamline the product development process Benefits Summary Providing finite element modeling for • Speed simulation processes NX™ Advanced FEM software is a modern, experienced CAE analysts by up to 70 percent multidiscipline computer-aided engineering Using NX Advanced FEM drastically reduces (CAE) environment for advanced analysts, the time you spend preparing simulation • Increase product quality by workgroups and designers that need to models. NX delivers all the advanced mesh- rapidly simulating design deliver high-quality performance insights in ing, boundary conditions and solver tradeoff studies a timely fashion to drive product decisions. interfaces that experienced analysts expect • Lower overall product NX Advanced FEM includes a full suite of and need to perform high-end analysis. development costs by direct geometry modeling and editing However, what makes NX Advanced FEM reducing costly, late design tools, and forms the analysis modeling unique from all other finite element (FE) change orders foundation on which you can pre- and post- preprocessors is its superior geometry foun- process analysis models for structural, dation that enables intuitive geometry • Efficiently manage large, thermal, flow, engineering optimization editing and analysis model associativity to complex analysis models and multiphysics analyses. NX Advanced multi-computer-aided design (CAD) data. • Capture and automate best FEM speeds CAE processes with a bi-direc- The tight integration of a powerful geome- practices and commonly tional analysis model to design geometry try engine with robust analysis modeling used processes association that enables users to rapidly commands is the key to reducing modeling update an analysis model when the base time by up to 70 percent compared to tradi- • Pre- and postprocess design changes.
    [Show full text]
  • Solder Joints at Delphi
    2 INSIGHTS 10 2007 Dassault Systèmes Realistic Simulation Magazine Distributed Memory Parallel Enables Faster Turnaround adidas Builds Better Running Shoe It’s All in the Solder Joints at Delphi Glass Service Improve BV Optimizes Bottle Forming Contents INSIGHTS October/November 2007 10 9 14 Inside This Issue 10 Cover Story 9 Solution Update 14 Customer Case Study It’s All in the Solder Joints at Delphi Distributed Memory Parallel Enables adidas Builds Better Running Faster Turnaround Time Shoe from Inside Out In Each Issue 3 Executive Letter 13 Electronics Strategy Colin Mercer, Vice President, Realistic Simulation Strategy for the INSIGHTS is published by Product Development High Tech Industry Dassault Systèmes Simulia Corp. Rising Sun MiIls 166 Valley Street 4 In The News 16 Academic Update Providence, RI 02909-2499 Industry Press Coverage University of Alaska Researchers Tel. +1 401 276 4400 • • Fax. +1 401 276 4408 • Team SIMULIA Tackles the Model Tire-Snow Interaction [email protected] Pan-Mass Challenge • New SIMULIA Academic Website www.simulia.com • KTM Sportmotorcycle’s RC8 Superbike Gets Ready for the Street Editor: 17 Alliances Updates Tim Webb • Automatic Meshing Improves Glass • Enhanced Powertrain Noise and Forming Analysis Vibration Analysis with Abaqus and Associate Editor: Lisa Miller • Realistic Simulation—A Winning Edge for AVL EXCITE Sports Equipment Designers • Intel Creates Program to Simplify Contributors: Cluster Deployment Harun Bayraktar, Vladimir Belsky, Dermot O’Brien & Paul Jukes (JPK), 6 Customer Spotlight David Cadge, Dr. Mahesh K. Chengalva (Delphi), Massimo Donatellis (Pirelli JP Kenny Pioneers FEA Software Use 18 Events Tyre SpA), Karen Donovan, in Gas Field Projects • Abaqus Regional Users’ Meetings Matt Dunbar, Brad Heers, Dr.
    [Show full text]