List of Finite Element Software Packages ­ Wikipedia, the Free Encyclopedia List of Finite Element Software Packages from Wikipedia, the Free Encyclopedia

Total Page:16

File Type:pdf, Size:1020Kb

List of Finite Element Software Packages ­ Wikipedia, the Free Encyclopedia List of Finite Element Software Packages from Wikipedia, the Free Encyclopedia 12/15/2015 List of finite element software packages ­ Wikipedia, the free encyclopedia List of finite element software packages From Wikipedia, the free encyclopedia This is a list of software packages that implement the finite element method for solving partial differential equations or aid in the pre­ and post­processing of finite element models. Free/Open source https://en.wikipedia.org/wiki/List_of_finite_element_software_packages 1/8 12/15/2015 List of finite element software packages ­ Wikipedia, the free encyclopedia Operating Name Description License System Multiplatform open source application for the solution of Linux, Agros2D GNU GPL physical problems Windows based on the Hermes library It is an Open Source FEA project. The solver uses a partially compatible ABAQUS Linux, CalculiX file format. The GNU GPL Windows pre/post­processor generates input data for many FEA and CFD applications is an Open Source software package for Civil and Structural Engineering finite Linux, Code Aster element analysis and GNU GPL FreeBSD numeric simulation in structural mechanics which is written in Python and Fortran is an Open Source software package C/C++ hp­ Mac OS X, Concepts GNU GPL FEM/DGFEM/BEM Windows library for elliptic equations Comprehensive set of tools for finite QPL up to element codes, release 7.2, Linux, Unix, deal.II scaling from laptops LGPL after Mac OS X, to clusters with that Windows 10,000+ cores. Written in C++. GPL Distributed and Version 2 Unified Numerics Linux, Unix, DUNE with Run­ Environment, written Mac OS X Time in C++ Exception Open source multiphysical simulation software developed by Finnish Linux, Mac Ministry of Elmer GPL OS X, Education's CSC, Windows written primarily in https://en.wikipedia.org/wiki/List_of_finite_element_software_packages 2/8 12/15/2015 List of finite element software packages ­ Wikipedia, the free encyclopedia written primarily in Fortran (written in Fortran90, C and C++) Subroutine system for the numerical solution of the incompressible FEATFLOW Non Navier­Stokes Fortran (http://www.featflow.de/en/software/featflow.html) Commercial equations in two and three space dimensions Easy to Use Matlab and Octave Linux, Unix, FEATool Non Multiphysics FEM Mac OS X, (http://www.precisesimulation.com/featool) Commercial Solver and GUI Windows Toolbox Linux, Mac Finite Elements for FEBio Custom OS X, Biomechanics Windows Software package developed by LGPL American and (Core) & Linux, Unix, European researchers FEniCS Project GPL/LGPL Mac OS X, with the goal to (Non­ Windows enable automated Core)[1] solution of differential equations Software written in C++ for rapid testing and finite element Linux, Mac simulations. The OS X, FreeFem++ GPL problem is defined in Windows, terms of its Solaris variational formulation A generic finite element library written in C++ with interfaces for Python, Unix, Mac GetFEM++ Matlab and Scilab. It LGPL OS X, focuses on modeling Windows of contact mechanics and discontinuities (e.g. cracks). Modular C/C++ library for rapid Linux, Unix, development of Hermes Project LGPL Mac OS X, space­ and space­time Windows adaptive hp­FEM solvers 2D/3D open source C++ FEM codes Linux, Unix, https://en.wikipedia.org/wiki/List_of_finite_element_software_packages 3/8 12/15/2015 List of finite element software packages ­ Wikipedia, the free encyclopedia C++ FEM codes Linux, Unix, jFEM developed for GNU GPL Mac OS X, nanophotonics by (Windows, Jeffrey M. McMahon but [2][3] unsupported) Framework for building multi­ BSD Linux, Kratos disciplinary finite licenses Windows element programs Electromagnetic Linux, Mac simulation software MaxFEM GPL OS X, based on the finite Windows element method MoFEM (JosePH) is a finite element analysis Unix, Linux, MoFEM JosePH code tailored for the LGPL solution of multi­ Mac OS X physics problems Multiphysics Object Oriented Simulation Environment ­ an object oriented C++ Unix, Linux, MOOSE finite element LGPL Mac OS X framework for rapid development of tightly coupled multiphysics solvers Object Oriented Finite GPL Unix, OOFEM EleMent solver, Version 2 Windows written in C++ Originally for CFD only, but now includes finite OpenFOAM (Field Operation And Manipulation) element analysis GPL Unix, Linux through tetrahedral decomposition of arbitrary grids is an Open System for Earthquake Non Unix, Linux, OpenSees Engineering Commercial Windows Simulation SfePy (http://sfepy.org/doc­ devel/index.html) is a software for solving systems of coupled partial differential equations (PDEs) by the finite element method in 2D and 3D. SfePy (http://sfepy.org/doc­devel/index.html) It can be viewed both BSD Unix, Linux, https://en.wikipedia.org/wiki/List_of_finite_element_software_packages 4/8 12/15/2015 List of finite element software packages ­ Wikipedia, the free encyclopedia SfePy (http://sfepy.org/doc­devel/index.html) It can be viewed both BSD Unix, Linux, as black­box PDE Windows solver, and as a Python package which can be used for building custom applications. The time demanding parts implemented in C/Cython.[4] Primary applications are computational fluid dynamics and GNU aerodynamic shape Lesser [5] Unix, Linux, optimization, but General SU2 code OS X, has been extended to Public Windows treat more general License, equations such as version 2.1 electrodynamics and chemically reacting flows. Freeware finite element package; The present version Z88Aurora V3 offers, in addition to static strength analysis modules such as non­ Linux, Z88/Z88Aurora linear strength Custom Windows, calculations (large Mac OS X displacements), simulations with non­ linear materials, natural frequency and static thermal analysis. Proprietary/Commercial Abaqus: Advanced Franco­USA software from SIMULIA, owned by Dassault Systemes. ADINA: finite element software for structural, fluid, heat transfer, electromagnetic, and multiphysics problems, including fluid­structure interaction and thermo­mechanical coupling Advance Design: BIM software for FEM structural analysis, including international design eurocodes, a solution developed by GRAITEC. ALGOR: USA software from Autodesk. (Renamed to Simulation Multiphysics.) Altair HyperWorks: A full CAE program suite (including pre/post­processor, Solvers, Optimization solver, parameter study solver) ANSA: An advanced CAE pre­processing software for complete model build up. ANSYS: Mostly CFD, this US­developed software provides a CAE environment AutoForm: Swiss origin German software for Sheet metal forming process chain CFD­FASTRAN: A commercial Computational Fluid Dynamics (CFD) software package developed by ESI Group for aerodynamic and aerothermodynamic applications. It employs https://en.wikipedia.org/wiki/List_of_finite_element_software_packages 5/8 12/15/2015 List of finite element software packages ­ Wikipedia, the free encyclopedia multiple moving body capability for simulating problems such as missile launch, maneuvering and staging, and aircraft flight dynamics and store separation. Computers and Structures: Berkeley, California­based producers of SAP2000, CSiBridge, ETABS, SAFE, PERFORM­3D, and CSiCOL COMSOL Multiphysics COMSOL Multiphysics Finite Element Analysis Software formerly Femlab CosmosWorks CST Studio Suite DIANA FEA: designed by TNO DIANA BV in the Netherlands, linear and non­linear analysis of engineering structures such as dams, bridges, tunnels and underground structures, oil and gas installations. Diffpack Software for finite element analysis and partial differential equations Extreme Loading for Structures: Software made by Applied Science International for non­linear dynamic structural analysis, progressive collapse, blast, seismic, impact and other loading. FEDEM: FEDEM is a simulation software for mechanical multibody systems[6] FEFLOW: simulates groundwater flow, mass transfer and heat transfer in porous media Femap, Siemens PLM Software: A pre and post processor for Windows FEMtools, Dynamic Design Solutions: A toolbox for static and dynamic simulation, verification, validation and updating of finite element models. Includes also modules for structural optimization and for obtaining experimental reference data. Flexcom, Finite element package used in the offshore oil and gas industry. Developed by MCS Kenny. FlexPDE GTSTRUDL, INTEGRAPH System: Structural Design and Analysis Language FEM System developed by MIT and GATECH, used in Energy and Offshore structural designs HydroGeoSphere: A 3D control­volume finite element hydrologic model, simulating surface and subsurface water flow and solute and thermal energy transport HyperSizer, design software specializing in composite materials; integrates with other software IES VisualAnalysis, Easy to use structural analysis and design tool for frames, trusses, tanks, foundations, more. Web site.[7] IMPETUS Afea Solver: An explicit general purpose simulation software from IMPETUS Afea[8] Jupiter Designer developed by TechnoStar Co. Ltd., headquartered in Tokyo, Japan. Jupiter designer is a FEA software developed for CAE engineers.[9] JMAG, Japanese software LS­DYNA, LSTC ­ Livermore Software Technology Corporation LUSAS: UK Software MADYMO: TASS ­ TNO Automotive Safety Solutions MSC Marc: Advanced, nonlinear FEA solver from MSC Software MultiMech: Multiscale Structural Finite Element Analysis Nastran: USA software, from MSC Software NEi Fusion, NEi Software: 3D CAD modeler + Nastran FEA NEi Nastran, NEi Software: General purpose Finite Element Analysis NEi Works: Embedded Nastran for SolidWorks users Pam­Crash: Used for crash simulation and the design of occupant
Recommended publications
  • Reference Manual Ii
    GiD The universal, adaptative and user friendly pre and postprocessing system for computer analysis in science and engineering Reference Manual ii Table of Contents Chapters Pag. 1 INTRODUCTION 1 1.1 What's GiD 1 1.2 GiD Manuals 1 2 GENERAL ASPECTS 3 2.1 GiD Basics 3 2.2 Invoking GiD 4 2.2.1 First start 4 2.2.2 Command line flags 5 2.2.3 Command line extra file 6 2.2.4 Settings 6 2.3 User Interface 7 2.3.1 Top menu 9 2.3.2 Toolbars 9 2.3.3 Command line 12 2.3.4 Status and Information 13 2.3.5 Right buttons 13 2.3.6 Mouse operations 13 2.3.7 Classic GiD theme 14 2.4 User Basics 16 2.4.1 Point definition 16 2.4.1.1 Picking in the graphical window 17 2.4.1.2 Entering points by coordinates 17 2.4.1.2.1 Local-global coordinates 17 2.4.1.2.2 Cylindrical coordinates 18 2.4.1.2.3 Spherical coordinates 18 2.4.1.3 Base 19 2.4.1.4 Selecting an existing point 19 2.4.1.5 Point in line 19 2.4.1.6 Point in surface 19 2.4.1.7 Tangent in line 19 2.4.1.8 Normal in surface 19 2.4.1.9 Arc center 19 2.4.1.10 Grid 20 2.4.2 Entity selection 20 2.4.3 Escape 21 2.5 Files Menu 22 2.5.1 New 22 2.5.2 Open 22 2.5.3 Open multiple..
    [Show full text]
  • Fenics-Shells Release 2018.1.0
    FEniCS-Shells Release 2018.1.0 Aug 02, 2021 Contents 1 Subpackages 1 2 Module contents 13 3 Documented demos 15 4 FEniCS-Shells 61 Bibliography 65 Python Module Index 67 Index 69 i ii CHAPTER 1 Subpackages 1.1 fenics_shells.analytical package 1.1.1 Submodules 1.1.2 fenics_shells.analytical.lovadina_clamped module Analytical solution for clamped Reissner-Mindlin plate problem from Lovadina et al. 1.1.3 fenics_shells.analytical.simply_supported module Analytical solution for simply-supported Reissner-Mindlin square plate under a uniform transverse load. 1.1.4 fenics_shells.analytical.vonkarman_heated module Analytical solution for elliptic orthotropic von Karman plate with lenticular thickness subject to a uniform field of inelastic curvatures. fenics_shells.analytical.vonkarman_heated.analytical_solution(Ai, Di, a_rad, b_rad) 1 FEniCS-Shells, Release 2018.1.0 1.1.5 Module contents 1.2 fenics_shells.common package 1.2.1 Submodules 1.2.2 fenics_shells.common.constitutive_models module fenics_shells.common.constitutive_models.psi_M(k, **kwargs) Returns bending moment energy density calculated from the curvature k using: Isotropic case: .. math:: D = frac{E*t^3}{24(1 - nu^2)} W_m(k, ldots) = D*((1 - nu)*tr(k**2) + nu*(tr(k))**2) Parameters • k – Curvature, typically UFL form with shape (2,2) (tensor). • **kwargs – Isotropic case: E: Young’s modulus, Constant or Expression. nu: Poisson’s ratio, Constant or Expression. t: Thickness, Constant or Expression. Returns UFL form of bending stress tensor with shape (2,2) (tensor). fenics_shells.common.constitutive_models.psi_N(e, **kwargs) Returns membrane energy density calculated from e using: Isotropic case: .. math:: B = frac{E*t}{2(1 - nu^2)} N(e, ldots) = B(1 - nu)e + nu mathrm{tr}(e)I Parameters • e – Membrane strain, typically UFL form with shape (2,2) (tensor).
    [Show full text]
  • 4 Chapter Four Modelling of Lspmsm Using Jmag ( Fem
    © ABDULAZIZ SALEH MILHEM 2017 iii This Thesis is dedicated to The soul of my Father My Dear Mother My Wife My Children Shahd, Omar and Noor My Holy Homeland Palestine iv ACKNOWLEDGMENTS All praise and glory to Allah the most merciful, the most beneficent, who gave me the health, strength, and courage to complete my Master’s degree. I would like to express my deep appreciation to my advisor Prof. Zakariya Al-Hamouz for giving me the opportunity to become one of his students. I thank him for his efficient and constant support, help, motivation, and immense knowledge. His precious advices and thorough guidance played a critical role in completing this thesis. I also would like to extend my appreciation to my dissertation committee members Prof. Mohammed Abido and Prof. Ibrahim El-Amin for their insightful comments, support, and profitable questions which incented me to enhance my work. I would like to thank our research group members supervised by Prof. Zakariya Al- Hamouz, they include Mr. Luqman Marraba for his massive support and help, Mr. Khalid Baradiah and Mr. Ibrahim Hussein. I am very grateful to Mr. Osama Hussain the General Manager and Mr. Samir Al-Hourani the Procurement Manager from Al-Osais Contracting Co. for their continuous support and understanding during the study period. I am thankful to the King Fahd University of Petroleum and Minerals (KFUPM) for providing me with the research facilities, precious resources and an environment conducive to intellectual growth for my master research v TABLE OF CONTENTS ACKNOWLEDGMENTS ........................................................................................................ V TABLE OF CONTENTS ........................................................................................................ VI LIST OF TABLES..................................................................................................................
    [Show full text]
  • Femap Version 11 Fact Sheet
    Femap version 11 Benefits Summary • Significant time savings with Femap™ software version 11 from Siemens PLM Software is the latest results data management release of the robust finite element modeling pre- and post-processor for and post-processing engineering simulation and analysis. Femap works in combination with a • Faster model manipulation wide variety of finite element analysis solvers, including the industry- with improved graphics leading NX™ Nastran® application, also from Siemens PLM Software. performance • Easier confidential transfer of The latest release of Femap, version 11, helps improve your productivity model structural data using through more efficient post-processing by allowing separate external results the external superelement files to attach to the Femap database for data access. Graphics performance method has also been improved significantly particularly when displaying and • Increased productivity when rotating large models. Pre-processing now includes the ability to create updating or remeshing surface geometry from legacy shell element models facilitating modeling legacy shell element models updates and changes. Post-processing now includes a streamlined • Better results comprehension XY plotting capability that expedites results review and comprehension through improved XY of model behavior. plotting Version 11 extends the scope of simulation with support for external Features superelement creation and subsequent assembly analysis that allow suppliers • External results data file to transfer model data confidentially. Femap 11 ships with NX Nastran 8.5 attachment to the Femap and brings numerous enhancements that serve to strengthen NX Nastran database integration. In addition, there are many other customer-driven enhancements • Use of graphics memory that included in this latest version of Femap.
    [Show full text]
  • AALTO UNIVERSITY School of Engineering Engineering Design and Production
    AALTO UNIVERSITY School of Engineering Engineering Design and Production Kaur Jaakma Engineering Data Management Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Technology Espoo, 29 December 2011 Supervisor: Professor (pro tem) Jari Juhanko Instructor: Andrea Buda, M.Sc. AALTO UNIVERSITY ABSTRACT OF THE MASTER’S THESIS SCHOOLS OF TECHNOLOGY PO Box 11000, FI-00076 AALTO http://www.aalto.fi Author: Kaur Jaakma Title: Engineering Data Management School: School of Engineering Department: Department of Engineering Design and Production Professorship: Machine Design Code: Kon-41 Supervisor: Professor (pro tem) Jari Juhanko Instructor: Andrea Buda, M. Sc. Abstract: To support design decisions in the product development process, companies are increasingly relying on computer aided simulations. However, investments in simulation technologies can not translate directly into benefit without implementing a system able to capture knowledge and value out of each simulation performed. To implement the switch from traditional product development to Simulation Based Design (SBD) and product development, a system that can efficiently manage simulation data is needed. Common situation in industry is to store everything related to simulations in the analyst’s computer or in a shared folder. Currently only CAE (Computer Aided Engineering) departments in aerospace and automotive OEMs are early adopters of SDM (Simulation Data Management) technology. Commercial SDM systems are developed to suits the needs of big enterprises with repetitive processes and product with broadly similar geometries. The cost for deployment and maintenance of this kind of system represents a barrier for small and mid-size companies. The larger companies might not benefit from a system developed and tuned for the needs of the early adopters mentioned above.
    [Show full text]
  • Fenics-HPC: Automated Predictive High-Performance Finite Element
    FEniCS-HPC: Automated predictive high-performance finite element computing with applications in aerodynamics Johan Hoffman1, Johan Jansson2, and Niclas Jansson3 1 Computational Technology Laboratory, School of Computer Science and Communication, KTH, Stockholm, Sweden and BCAM - Basque Center for Applied Mathematics, Bilbao, Spain [email protected] 2 BCAM - Basque Center for Applied Mathematics, Bilbao, Spain and Computational Technology Laboratory, School of Computer Science and Communication, KTH, Stockholm, Sweden [email protected] 3 RIKEN Advanced Institute for Computational Science, Kobe, Japan [email protected] Abstract. Developing multiphysics finite element methods (FEM) and scalable HPC implementations can be very challenging in terms of soft- ware complexity and performance, even more so with the addition of goal-oriented adaptive mesh refinement. To manage the complexity we in this work present general adaptive stabilized methods with automated implementation in the FEniCS-HPC automated open source software framework. This allows taking the weak form of a partial differential equation (PDE) as input in near-mathematical notation and automati- cally generating the low-level implementation source code and auxiliary equations and quantities necessary for the adaptivity. We demonstrate new optimal strong scaling results for the whole adaptive framework applied to turbulent flow on massively parallel architectures down to 25000 vertices per core with ca. 5000 cores with the MPI-based PETSc backend and for assembly down to 500 vertices per core with ca. 20000 cores with the PGAS-based JANPACK backend. As a demonstration of the high impact of the combination of the scalability together with the adaptive methodology allowing prediction of gross quantities in turbulent flow we present an application in aerodynamics of a full DLR-F11 aircraft in connection with the HiLift-PW2 benchmarking workshop with good match to experiments.
    [Show full text]
  • Physics Editor Mac Crack Appl
    1 / 2 Physics Editor Mac Crack Appl This is a list of software packages that implement the finite element method for solving partial differential equations. Software, Features, Developer, Version, Released, License, Price, Platform. Agros2D, Multiplatform open source application for the solution of physical ... Yves Renard, Julien Pommier, 5.0, 2015-07, LGPL, Free, Unix, Mac OS X, .... For those who prefer to run Origin as an application on your Mac desktop without a reboot of the Mac OS, we suggest the following virtualization software:.. While having the same core (Unigine Engine), there are 3 SDK editions for ... Turnkey interactive 3D app development; Consulting; Software development; 3D .... Top Design Engineering Software: The 50 Best Design Tools and Apps for ... design with the intelligence of 3D direct modeling,” for Windows, Linux, and Mac users. ... COMSOL is a platform for physics-based modeling and simulation that serves as ... and tools for electrical, mechanical, fluid flow, and chemical applications .... Experience the world's most realistic and professional digital art & painting software for Mac and Windows, featuring ... Your original serial number will be required. ... Easy-access panels let you instantly adjust how paint is applied to the brush and how the paint ... 4 physical cores/8 logical cores or higher (recommended).. A dynamic soft-body physics vehicle simulator capable of doing just about anything. ... Popular user-defined tags for this product: Simulation .... Easy-to-Use, Powerful Tools for 3D Animation, GPU Rendering, VFX and Motion Design. ... Trapcode Suite 16 With New Physics, Magic Bullet Suite 14 With New Color Workflows Now ... Maxon Cinema 4D Immediately Available for M1-Powered Macs image ..
    [Show full text]
  • Development of a Coupling Approach for Multi-Physics Analyses of Fusion Reactors
    Development of a coupling approach for multi-physics analyses of fusion reactors Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) bei der Fakultat¨ fur¨ Maschinenbau des Karlsruher Instituts fur¨ Technologie (KIT) genehmigte DISSERTATION von Yuefeng Qiu Datum der mundlichen¨ Prufung:¨ 12. 05. 2016 Referent: Prof. Dr. Stieglitz Korreferent: Prof. Dr. Moslang¨ This document is licensed under the Creative Commons Attribution – Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ Abstract Fusion reactors are complex systems which are built of many complex components and sub-systems with irregular geometries. Their design involves many interdependent multi- physics problems which require coupled neutronic, thermal hydraulic (TH) and structural mechanical (SM) analyses. In this work, an integrated system has been developed to achieve coupled multi-physics analyses of complex fusion reactor systems. An advanced Monte Carlo (MC) modeling approach has been first developed for converting complex models to MC models with hybrid constructive solid and unstructured mesh geometries. A Tessellation-Tetrahedralization approach has been proposed for generating accurate and efficient unstructured meshes for describing MC models. For coupled multi-physics analyses, a high-fidelity coupling approach has been developed for the physical conservative data mapping from MC meshes to TH and SM meshes. Interfaces have been implemented for the MC codes MCNP5/6, TRIPOLI-4 and Geant4, the CFD codes CFX and Fluent, and the FE analysis platform ANSYS Workbench. Furthermore, these approaches have been implemented and integrated into the SALOME simulation platform. Therefore, a coupling system has been developed, which covers the entire analysis cycle of CAD design, neutronic, TH and SM analyses.
    [Show full text]
  • Massively Parallel Quadratic Programming Solvers with Applications in Mechanics
    Massively Parallel Quadratic Programming Solvers with Applications in Mechanics Ing. V´aclav Hapla Doctoral Thesis Department of Applied Mathematics Faculty of Electrical Engineering and Computer Science VSBˇ – Technical University of Ostrava Ostrava 2016 Abstract This thesis focuses on practical solution of large-scale contact problems of structure mechanics by means of a derived quadratic programming (QP) formulation. An approach proposed by professor Dost´al, combining a FETI-type non-overlapping domain decomposition method, the SMALBE algorithm based on augmented Lagrangians, and the MPRGP algorithm belonging to active set methods, has been adopted. This approach enjoys theoretically supported numerical scalability and a favourable potential for parallel scalability. The thesis consists of two parts: Background and Implementation. Background is devoted to rather theoretical aspects of QP and FETI, although tightly con- nected to practical implementation. Original topics include QP transforms, implicit orthonor- malization of equality constraints, and a minor modification of SMALBE shortening its termi- nation phase considerably. Second part, Implementation, deals with the massively parallel implementation of the afore- mentioned approach within PERMON, a new set of software libraries established by the author. The most important part, PERMON Solver Core, is formed mainly by the general-purpose QP solver PermonQP, and its extension PermonFLLOP providing support for domain decomposi- tion. These libraries make use of and extend PETSc, an open source software framework for numerical computing. Performance of PERMON is demonstrated on several numerical experi- ments. Keywords quadratic programming, QP, domain decomposition methods, FETI, augmented Lagrangian, SMALBE, MPRGP, contact problems, structure mechanics, PERMON, PermonQP, Permon- FLLOP, PETSc Abstrakt Tato dizertaˇcn´ıpr´ace se zamˇeˇruje na praktick´eˇreˇsen´ırozs´ahl´ych kontaktn´ıch ´uloh struktur´aln´ı mechaniky pˇres odvozenou ´ulohu kvadratick´eho programov´an´ı(QP).
    [Show full text]
  • Kustannustehokkaat Cad, Fem Ja Cam -Ohjelmat Tutkimus Saatavilla Olevista Ohjelmista Tammikuussa 2018
    OULUN YLIOPISTON KERTTU SAALASTI INSTITUUTIN JULKAISUJA 6/2018 Kustannustehokkaat Cad, Fem ja Cam -ohjelmat Tutkimus saatavilla olevista ohjelmista tammikuussa 2018 Terho Iso-Junno Tulevaisuuden tuotantoteknologiat FMT-tutkimusryhmä Terho Iso-Junno KUSTANNUSTEHOKKAAT CAD, FEM JA CAM -OHJELMAT Tutkimus saatavilla olevista ohjelmista tammikuussa 2018 OULUN YLIOPISTO Kerttu Saalasti Instituutin julkaisuja Tulevaisuuden tuotantoteknologiat (FMT) -tutkimusryhmä ISBN 978-952-62-2018-5 (painettu) ISBN 978-952-62-2019-2 (elektroninen) ISSN 2489-3501 (painettu) Terho Iso-Junno Kustannustehokkaat CAD, FEM ja CAM -ohjelmat. Tutkimus saatavilla olevista ohjelmista tammikuussa 2018. Oulun yliopiston Kerttu Saalasti Instituutti, Tulevaisuuden tuotantoteknologiat (FMT) -tutkimusryhmä Oulun yliopiston Kerttu Saalasti Instituutin julkaisuja 6/2018 Nivala Tiivistelmä Nykyaikaisessa tuotteen suunnittelussa ja valmistuksessa tietokoneohjelmat ovat avainasemassa olevia työkaluja. Kaupallisten ohjelmien lisenssihinnat voivat nousta korkeiksi ja olla hankinnan esteenä etenkin aloittelevilla yrityksillä. Tässä tutkimuk- sessa on kartoitettu kustannuksiltaan edullisia CAD, FEM ja CAM -ohjelmia, joita voisi käyttää yritystoiminnassa. CAD-ohjelmien puolella perinteisille 2D CAD-ohjelmille löytyy useita hyviä vaih- toehtoja. LibreCAD ja QCAD ovat helppokäyttöisiä ohjelmia perustason piirtämiseen. Solid Edge 2D Drafting on erittäin monipuolinen täysiverinen 2D CAD, joka perustuu parametriseen piirtämiseen. 3D CAD-ohjelmien puolella tarjonta on tasoltaan vaihtelevaa.
    [Show full text]
  • Universidade Federal Do Rio Grande Do Sul
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA FACULDADE DE ARQUITETURA PROGRAMA DE PÓS-GRADUAÇÃO EM DESIGN Eduardo da Cunda Fernandes DESIGN NO DESENVOLVIMENTO DE UM PROJETO DE INTERFACE: Aprimorando o processo de modelagem em programas de análise de estruturas tridimensionais por barras Dissertação de Mestrado Porto Alegre 2020 EDUARDO DA CUNDA FERNANDES Design no desenvolvimento de um projeto de interface: aprimorando o processo de modelagem em programas de estruturas tridimensionais por barras Dissertação apresentada ao Programa de Pós- Graduação em Design da Universidade Federal do Rio Grande do Sul, como requisito parcial à obtenção do título de Mestre em Design. Orientador: Prof. Dr. Fábio Gonçalves Teixeira Porto Alegre 2020 Catalogação da Publicação Fernandes, Eduardo da Cunda DESIGN NO DESENVOLVIMENTO DE UM PROJETO DEINTERFACE: Aprimorando o processo de modelagem em programas de análise de estruturas tridimensionais por barras / Eduardo da Cunda Fernandes. -- 2020. 230 f. Orientador: Fábio Gonçalves Teixeira. Dissertação (Mestrado) -- Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Programa de Pós- Graduação em Design, Porto Alegre, BR-RS, 2020. 1. Design de Interface. 2. Análise Estrutural. 3.Modelagem Preditiva do Comportamento Humano. 4.Heurísticas da Usabilidade. 5. KLM-GOMS. I. Teixeira, Fábio Gonçalves, orient. II. Título. FERNANDES, E. C. Design no desenvolvimento de um projeto de interface: aprimorando o processo de modelagem em programas de análise de estruturas tridimensionais por barras. 2020. 142 f. Dissertação (Mestrado em Design) – Escola de Engenharia / Faculdade de Arquitetura, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2020. Eduardo da Cunda Fernandes DESIGN NO DESENVOLVIMENTO DE UM PROJETO DED INTERFACE: aprimorando o processo de modelagem em programas de análise de estruturas tridimensionais por barras Esta Dissertação foi julgada adequada para a obtenção do Título de Mestre em Design, e aprovada em sua forma final pelo Programa de Pós-Graduação em Design da UFRGS.
    [Show full text]
  • Book of Abstracts
    Book of abstracts 9th PhD Seminar on Wind Energy in Europe September 18-20, 2013 Uppsala University Campus Gotland, Sweden Campus Gotland WIND ENERGY Book of abstracts of 9th PhD Seminar on Wind Energy in Europe Uppsala University Campus Gotland, Sweden Campus Gotland, Wind Energy 621 67 Visby PREFACE The wind energy field is becoming more and more important in relation with future challenges of switching the world energy system to renewables. Therefore it is of high importance that tomorrow’s researchers in the field from all over the word meet and discuss future challenges. The 9th annual EAWE PhD seminar is in 2013 organized by Uppsala University Campus Gotland. This is a very suitable place for this event since it combines a unique historical environment with a sustainable profile and a long tradition of wind energy. Today about 45% of the energy consumption is locally produced by wind energy. Uppsala University Campus Gotland also has more than 10 years experience of teaching and research in the field with a focus on wind power project development. The aim with this seminar is to improve the international communication and information sharing of ongoing activities as well as simplify contact building between young researchers. It is also a perfect opportunity for PhD students to practice and improve their presentation and discussion skills. Associate Professor Stefan Ivanell Director, Wind Energy Uppsala University, Campus Gotland Book of abstracts of 9th PhD Seminar on Wind Energy in Europe September 18-20, 2013, Uppsala University Campus Gotland, Sweden TABLE OF CONTENTS ROTOR & WAKE AERODYNAMICS UNDERSTANDING THE WIND TURBINE BREAKDOWN MECHANISM WITH CFD M.
    [Show full text]