Universidad Politécnica De Madrid Effect of Short-Term Fasting Prior to Slaughter on Welfare and Meat Quality of Rainbow Trout

Total Page:16

File Type:pdf, Size:1020Kb

Universidad Politécnica De Madrid Effect of Short-Term Fasting Prior to Slaughter on Welfare and Meat Quality of Rainbow Trout ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS UNIVERSIDAD POLITÉCNICA DE MADRID EFFECT OF SHORT-TERM FASTING PRIOR TO SLAUGHTER ON WELFARE AND MEAT QUALITY OF RAINBOW TROUT (Oncorhynchus mykiss) TESIS DOCTORAL JAVIER LÓPEZ LUNA Ingeniero Agrónomo 2013 ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS UNIVERSIDAD POLITÉCNICA DE MADRID EFFECT OF SHORT-TERM FASTING PRIOR TO SLAUGHTER ON WELFARE AND MEAT QUALITY OF RAINBOW TROUT (Oncorhynchus mykiss) JAVIER LÓPEZ LUNA Ingeniero Agrónomo Director de la Tesis Morris Villarroel Robinson Dr. en Biología ACKNOWLEDGEMENTS First, I would like to express my sincere gratitude to my supervisor, Dr. Morris Villarroel Robinson for his support and guidance during the last four years, for generously sharing his knowledge and time and for being patient with my questions. I am really grateful to all those who helped me during my PhD study. Many people have made invaluable contributions, both directly and indirectly to my research. These include Francisco Berdejo and the colleagues who participated in the trials of this Thesis. Teachers and members of the Departamento Producción Animal (ETSI Agrónomos, UPM), Fernando Torrent and members of the Piscifactoría (ETSI Montes, UPM), Miguel Ángel Ibáñez (Departamento de Estadística y Métodos de Gestión en la Agricultura (ETSI Agrónomos, UPM), Jesús de la Fuente and members of the Departamento de Producción Animal (Facultad de Veterinaria, UCM) and Pilar Barreiro and Adolfo Moya (Departamento de Ingeniería Rural, ETSI Agrónomos, UPM). This Thesis was made possible with a grant from the Ministerio de Ciencia e Innovación, project AGL2010-19479. III AGRADECIMIENTOS En primer lugar quisiera agradecer a mi tutor Morris Villarroel Robinson todo el apoyo y la confianza prestados durante el periodo de doctorado en la UPM, por su ayuda personal y técnica. Gracias por ser tan buen consejero. Gracias también a Francisco Berdejo y a todos los compañeros que tomaron parte en la realización de las pruebas de esta Tesis, a los profesores y personal del Departamento de Producción Animal de la ETSI Agrónomos, a Fernando Torrent y personal de la Piscifactoría de la ETSI Montes, a Miguel Ángel Ibáñez del Departamento de Estadística y Métodos de Gestión en Agricultura de la ETSI Agrónomos, a Jesús de la Fuente y personal del Departamento de Producción Animal de la Facultad de Veterinaria (UCM) y a Pilar Barreiro y Adolfo Moya del Departamento de Ingeniería Rural de la ETSI Agrónomos. Las pruebas experimentales que componen esta Tesis Doctoral han sido realizadas gracias al proyecto AGL2010-19479 del Ministerio de Ciencia e Innovación. V TABLE OF CONTENTS ACKNOWLEDGEMENTS ...................................................................................................... III AGRADECIMIENTOS ............................................................................................................. V LIST OF FIGURES .................................................................................................................. XI LIST OF TABLES ............................................................................................................... XVII LIST OF ABBREVIATIONS ................................................................................................ XIX SUMMARY ............................................................................................................................ XXI RESUMEN ........................................................................................................................... XXIII INTRODUCTION 1. The importance of aquaculture .............................................................................................. 3 1.1. Aquaculture in Spain ...................................................................................................... 4 1.2. Trout ............................................................................................................................... 5 2. Stress and welfare ................................................................................................................. 6 2.1. Animal welfare ............................................................................................................... 6 2.2. Fish welfare .................................................................................................................... 8 3. Pre-slaughter handling ......................................................................................................... 10 3.1. Fasting .......................................................................................................................... 10 3.2. Hour of slaughter .......................................................................................................... 13 3.3. Water temperature ........................................................................................................ 14 4. How to measure welfare ...................................................................................................... 15 4.1. Biometric indicators ..................................................................................................... 15 4.2. Stress indicators............................................................................................................ 16 4.3. Haematological indicators ............................................................................................ 17 4.3.1. Plasma cortisol ...................................................................................................... 19 4.3.2. Plasma glucose ...................................................................................................... 20 4.3.3. Plasma lactate ........................................................................................................ 21 4.3.4. Haematocrit ........................................................................................................... 21 4.3.5. Leucocytes ............................................................................................................. 22 4.4. Metabolic indicators ..................................................................................................... 22 4.4.1. Liver and muscle glycogen ................................................................................... 22 4.4.2. R-value (IMP/ATP ratio) ...................................................................................... 23 5. Product quality .................................................................................................................... 24 5.1. Muscle pH .................................................................................................................... 26 5.2. Rigor mortis ................................................................................................................. 27 VII 5.3. Water holding capacity ................................................................................................. 30 5.4. Meat colour .................................................................................................................. 32 6. Objectives ............................................................................................................................ 34 MATERIAL AND METHODS 1. Installations and fish material ............................................................................................. 37 2. Experimental design ............................................................................................................ 38 3. Slaughtering and sampling procedures................................................................................ 39 3.1. Biometric indicators ..................................................................................................... 40 3.2. Haematological indicators ............................................................................................ 40 3.2.1. Plasma cortisol ...................................................................................................... 40 3.2.2. Plasma glucose ...................................................................................................... 41 3.2.3. Plasma lactate ........................................................................................................ 41 3.2.4. Red and white cells ............................................................................................... 42 3.3. Metabolic indicators ..................................................................................................... 43 3.3.1. Liver and muscle glycogen ................................................................................... 43 3.3.2. R-value (IMP/ATP ratio) ...................................................................................... 43 3.4. Product quality ............................................................................................................. 44 3.4.1. Muscle pH ............................................................................................................. 44 3.4.2. Rigor mortis .......................................................................................................... 44 3.4.3. Water holding capacity .......................................................................................... 45 3.4.4. Meat colour ........................................................................................................... 46 4. Statistics .............................................................................................................................
Recommended publications
  • The First Record of Color and Area of Diplodus Vulgaris by Using Computer-Based Image Analysis
    MedDocs Publishers ISSN: 2640-1223 Journal of Veterinary Medicine and Animal Sciences Open Access | Research Article The First Record of Color and Area of Diplodus vulgaris by Using Computer-Based Image Analysis Zayde AYVAZ*; Hasan Huseyin ATAR 1Department of Marine Technology Engineering, Canakkale Onsekiz Mart University, Turkey. 2Ankara University Agriculture Faculty, Department of Fisheries and Aquaculture, Turkey. *Corresponding Author(s): Zayde AYVAZ Abstract Department of Marine Technology Engineering, Objective: Determination of the morphological charac- Canakkale Onsekiz Mart University, Turkey. teristics of fish species is essential for the correct identifica- Tel: +90-218-00-18-16002; tion. The most important of these morphological features is undoubtedly the color properties. The determination of col- Email: [email protected] or characteristics by Computer-Based Image Analysis (CBI) rather than individual identification gives more objective and consistent results. In this study, color and area analy- Received: Oct 30, 2020 sis of Diplodus vulgaris, which color and area characteristics have not previously determined by Computer-Based Imag- Accepted: Dec 27, 2020 ing Systems (CBI), was performed. Published Online: Dec 30, 2020 Methods: Twelve fresh samples were used for the study. Journal: Journal of Veterinary Medicine and Animal Sciences For color and area analysis CBI system was used. A color ref- Publisher: MedDocs Publishers LLC erence card was put to determine the color, and the L*, a*, Online edition: http://meddocsonline.org/ and b* values were 66.49, -0.57, and 0.18, respectively. A 16 cm2 reference square was utilized for area analysis. The Copyright: © AYVAZ Z (2020). This Article is two-image method was carried out with computer software distributed under the terms of Creative Commons (LensEye).
    [Show full text]
  • Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’H, F
    Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’h, F. and Albouy, C. 2016. Forecasting fine- scale changes in the food-web structure of coastal marine communities under climate change. – Ecography doi: 10.1111/ecog.01937 Supplementary material Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change by Hattab et al. Appendix 1 List of coastal exploited marine species considered in this study Species Genus Order Family Class Trophic guild Auxis rochei rochei (Risso, 1810) Auxis Perciformes Scombridae Actinopterygii Top predators Balistes capriscus Gmelin, 1789 Balistes Tetraodontiformes Balistidae Actinopterygii Macro-carnivorous Boops boops (Linnaeus, 1758) Boops Perciformes Sparidae Actinopterygii Basal species Carcharhinus plumbeus (Nardo, 1827) Carcharhinus Carcharhiniformes Carcharhinidae Elasmobranchii Top predators Dasyatis pastinaca (Linnaeus, 1758) Dasyatis Rajiformes Dasyatidae Elasmobranchii Top predators Dentex dentex (Linnaeus, 1758) Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Dentex maroccanus Valenciennes, 1830 Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Diplodus annularis (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Forage species Diplodus sargus sargus (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Macro-carnivorous (Geoffroy Saint- Diplodus vulgaris Hilaire, 1817) Diplodus Perciformes Sparidae Actinopterygii Basal species Engraulis encrasicolus (Linnaeus, 1758) Engraulis
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Ioides Species Kazuhiro Takagi, Kunihiko Fujii, Ken-Ichi Yamazaki, Naoki Harada and Akio Iwasaki Download PDF (313.9 KB) View HTML
    Aquaculture Journals – Table of Contents With the financial support of Flemish Interuniversity Councel Aquaculture Journals – Table of Contents September 2012 Information of interest !! Animal Feed Science and Technology * Antimicrobial Agents and Chemotherapy Applied and Environmental Microbiology Applied Microbiology and Biotechnology Aqua Aquaculture * Aquaculture Economics & Management Aquacultural Engineering * Aquaculture International * Aquaculture Nutrition * Aquaculture Research * Current Opinion in Microbiology * Diseases of Aquatic Organisms * Fish & Shellfish Immunology * Fisheries Science * Hydrobiologia * Indian Journal of Fisheries International Journal of Aquatic Science Journal of Applied Ichthyology * Journal of Applied Microbiology * Journal of Applied Phycology Journal of Aquaculture Research and Development Journal of Experimental Marine Biology and Ecology * Journal of Fish Biology Journal of Fish Diseases * Journal of Invertebrate Pathology* Journal of Microbial Ecology* Aquaculture Journals Page: 1 of 331 Aquaculture Journals – Table of Contents Journal of Microbiological Methods Journal of Shellfish Research Journal of the World Aquaculture Society Letters in Applied Microbiology * Marine Biology * Marine Biotechnology * Nippon Suisan Gakkaishi Reviews in Aquaculture Trends in Biotechnology * Trends in Microbiology * * full text available Aquaculture Journals Page: 2 of 331 Aquaculture Journals – Table of Contents BibMail Information of Interest - September, 2012 Abstracts of papers presented at the XV International
    [Show full text]
  • Authorship, Availability and Validity of Fish Names Described By
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie A [Biologie] Jahr/Year: 2008 Band/Volume: NS_1_A Autor(en)/Author(s): Fricke Ronald Artikel/Article: Authorship, availability and validity of fish names described by Peter (Pehr) Simon ForssSSkål and Johann ChrisStian FabricCiusS in the ‘Descriptiones animaliumÂ’ by CarsSten Nniebuhr in 1775 (Pisces) 1-76 Stuttgarter Beiträge zur Naturkunde A, Neue Serie 1: 1–76; Stuttgart, 30.IV.2008. 1 Authorship, availability and validity of fish names described by PETER (PEHR ) SIMON FOR ss KÅL and JOHANN CHRI S TIAN FABRI C IU S in the ‘Descriptiones animalium’ by CAR S TEN NIEBUHR in 1775 (Pisces) RONALD FRI C KE Abstract The work of PETER (PEHR ) SIMON FOR ss KÅL , which has greatly influenced Mediterranean, African and Indo-Pa- cific ichthyology, has been published posthumously by CAR S TEN NIEBUHR in 1775. FOR ss KÅL left small sheets with manuscript descriptions and names of various fish taxa, which were later compiled and edited by JOHANN CHRI S TIAN FABRI C IU S . Authorship, availability and validity of the fish names published by NIEBUHR (1775a) are examined and discussed in the present paper. Several subsequent authors used FOR ss KÅL ’s fish descriptions to interpret, redescribe or rename fish species. These include BROU ss ONET (1782), BONNATERRE (1788), GMELIN (1789), WALBAUM (1792), LA C E P ÈDE (1798–1803), BLO C H & SC HNEIDER (1801), GEO ff ROY SAINT -HILAIRE (1809, 1827), CUVIER (1819), RÜ pp ELL (1828–1830, 1835–1838), CUVIER & VALEN C IENNE S (1835), BLEEKER (1862), and KLUNZIN G ER (1871).
    [Show full text]
  • Edad Y Crecimiento Del Sargo Picudo "Diplodus Puntazzo" (Cetti, 1777) Y
    RTÍCULOSARTÍCULOSARTÍCULOSARTÍCULOSARTÍCULOSARTÍCULOSARTÍCULOS ARTÍCULOS EDAD Y CRECIMIENTO DEL SARGO PICUDO DIPLODUS PUNTAZZO (CETTI, 1777) Y DEL SARGO BREADO DIPLODUS CERVINUS CERVINUS (LOWE, 1838) EN AGUAS DE GRAN CANARIA En el presente trabajo, se determinó la edad y el crecimiento del sargo Rosa María Domínguez picudo Diplodus puntazzo y del sargo breado Diplodus cervinus cervi- Seoane nus en la isla de Gran Canaria. Los otolitos presentaron el patrón de anillos de crecimiento típico de los peces teleosteos; formándose cada año dos anillos, uno de crecimiento rápido y otro de crecimiento lento. Los ejemplares de sargo picudo presentaron edades comprendidas en- tre 0 y 10 años y los ejemplares de sargo breado entre 0 y 17 años. Los parámetros de la curva de crecimiento de Von Bertalanffy fueron: L∞= –1 541 mm, k = 0.182 años y t0 = –2,531 años para el sargo picudo y –1 L∞= 593 mm, k = 0.157 años y t0 = –0.192 años para el sargo breado. El retrocálculo demostró la validez del uso de los otolitos para estimar la edad y el crecimiento. In the present work, age and growth of the Sharpsnout seabream Diplodus puntazzo and Zebra seabream Diplodus cervinus cervinus from the Gran Canaria island were studied. Otoliths showed the ring pattern common to teleost fishes. One year growth was made up of one opaque and one translucent ring. Individuals of D. puntazzo aged 0 to 10 years and individuals of D. cervinus cervinus aged 0 to 17 years were found. The parameters of the von Bertalanfy growth equation were: L∞= 541 mm, –1 k = 0.182 year and t0 = –2,531 years for all individuals of D.
    [Show full text]
  • Sperm Competition and Sex Change: a Comparative Analysis Across Fishes
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2007.00050.x SPERM COMPETITION AND SEX CHANGE: A COMPARATIVE ANALYSIS ACROSS FISHES Philip P. Molloy,1,2,3 Nicholas B. Goodwin,1,4 Isabelle M. Cot ˆ e, ´ 3,5 John D. Reynolds,3,6 Matthew J. G. Gage1,7 1Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom 2E-mail: [email protected] 3Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada 4E-mail: [email protected] 5E-mail: [email protected] 6E-mail: [email protected] 7E-mail: [email protected] Received October 2, 2006 Accepted October 26, 2006 Current theory to explain the adaptive significance of sex change over gonochorism predicts that female-first sex change could be adaptive when relative reproductive success increases at a faster rate with body size for males than for females. A faster rate of reproductive gain with body size can occur if larger males are more effective in controlling females and excluding competitors from fertilizations. The most simple consequence of this theoretical scenario, based on sexual allocation theory, is that natural breeding sex ratios are expected to be female biased in female-first sex changers, because average male fecundity will exceed that of females. A second prediction is that the intensity of sperm competition is expected to be lower in female-first sex-changing species because larger males should be able to more completely monopolize females and therefore reduce male–male competition during spawning.
    [Show full text]
  • Is Artificial Habitat Diversity a Key to Restoring Nurseries for Juvenile Coastal Fish? Ex Situ Experiments on Habitat Selection and Survival of Juvenile Seabreams
    1 Restoration Ecology Archimer September 2019, Volume 27, Issue 5, Pages 1155-1165 https://doi.org/10.1111/rec.12948 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00488/59952/ Is artificial habitat diversity a key to restoring nurseries for juvenile coastal fish? Ex situ experiments on habitat selection and survival of juvenile seabreams Mercader Manon 1, 2, * , Blazy Christophe 1, 2, Di Pane Julien 3, Devissi Camille 1, 2, Mercière Alexandre 1, 2, Cheminée Adrien 1, 2, 4, Thiriet Pierre 5, 6, Pastor Jérémy 1, 2, Crec'Hriou Romain 1, 2, Verdoit-‐jarraya Marion 1, 2, Lenfant Philippe 1, 2 1 Centre de Formation et de Recherche sur les Environnements MéditerranéensUniversité Perpignan Via Domitia UMR 5110, F‐66860 Perpignan ,France 2 Centre de Formation et de Recherche sur les Environnements MéditerranéensCNRS UMR 5110, F‐ 66860 Perpignan, France 3 Ifremer—Institut Français de Recherche pour l'Exploitation de la Mer 62200 Boulogne‐sur‐Mer, France 4 Septentrion EnvironnementPort des Goudes 13008 Marseille, France 5 UMS PATRINAT (AFB, CNRS, MNHN)Muséum National d'Histoire Naturelle CP 41—Maison Buffon, 36 rue Geoffroy Saint‐Hilaire 75231 Paris Cedex 05 France 6 Station Marine de DinardMuséum National d'Histoire Naturelle 38 rue de Port Blanc 35800 Dinard ,France * Corresponding author : Manon Mercader, email address : [email protected] Abstract : Man‐made infrastructures have become ubiquitous components of coastal landscapes, leading to habitat modification that affects the abundance and diversity of marine organisms. Marine coastal fish have a complex life cycle requiring different essential habitats. One of these habitats is known as a nursery, a place where juveniles can settle in large numbers, survive, and grow to contribute to the adult population.
    [Show full text]
  • The Reproductive Biology of Diplodus Sargus Sargus in the Gulf of Tunis (Central Mediterranean)
    SCIENTIA MARINA 71(3) September 2007, 461-469, Barcelona (Spain) ISSN: 0214-8358 The reproductive biology of Diplodus sargus sargus in the Gulf of Tunis (central Mediterranean) NEJLA MOUINE 1, PATRICE FRANCOUR 2, MOHAMED-HÉDI KTARI 1 and NADIA CHAKROUN-MARZOUK 1 1 Laboratoire de Biologie animale, Faculté des Sciences de Tunis, Campus universitaire, 2092 Tunis El Manar, Tunisie. E-mail : [email protected] 2 EA 3156 Gestion de la Biodiversité. Faculté des Sciences. Université de Nice-Sophia Antipolis. 06108 Nice cedex 2. France. SUMMARY: The sexual activity of Diplodus sargus sargus in the Gulf of Tunis takes place from January to May. Spawning occurs in spring (March to May), as the water temperature rises from 15 to 18°C, just after the winter minimum. The spawn- ing period increases as the latitude decreases. The overall male to female ratio was statistically different from unity. Size at sexual maturity (TL50) was 21 cm (4 years old). The length-weight relationship for all individuals was described by the fol- lowing parameters: a = 0.015 and b = 3.051. D. s. sargus from the Gulf of Tunis is a rudimentary hermaphrodite with par- tial protandry. Keywords: Diplodus sargus, reproduction, hermaphroditism, protandry, length-weight relationship, Tunisia. RESUMEN: BIOLOGÍA REPRODUCTIVA DE DIPLODUS SARGUS SARGUS EN EL GOLFO DE TÚNEZ (MEDITERRÁNEO). – La actividad sexual de Diplodus sargus sargus del golfo de Túnez tiene lugar de enero a mayo. La puesta tiene lugar en primavera (marzo a mayo), cuando la temperatura del agua sube de 15 a 18°C, justo tras el mínimo invernal. A medida que la latitud decrece se observa un periodo reproductivo progresivamente más extenso.
    [Show full text]
  • Diplodus Sargus): IMPLICATIONS for AQUACULTURE
    AGONISTIC BEHAVIOUR OF JUVENILE WHITE SEABREAM (Diplodus sargus): IMPLICATIONS FOR AQUACULTURE ANA SOFIA RIBEIRO GONÇALVES Tese de doutoramento em Ciência Animal 2012 ANA SOFIA RIBEIRO GONÇALVES AGONISTIC BEHAVIOUR OF JUVENILE WHITE SEABREAM (Diplodus sargus): IMPLICATIONS FOR AQUACULTURE Tese de Candidatura ao grau de Doutor em Ciência Animal, Especialidade em Sistemas de Produção, submetida ao Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto. Orientador – Doutor Vitor Carvalho Almada Professor Catedrático Instituto Superior de Psicologia Aplicada. Co-orientador – Doutora Liliana de Sousa Professor Associado Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto. Esta tese foi financiada pela Fundação para a Ciência e Tecnologia através de uma bolsa de doutoramento com a referência SFRH/BD/42226/2007 Agradecimentos Em primeiro lugar agradeço aos meus orientadores por todo o conhecimento que me transmitiram no decorrer do trabalho, pelas sugestões e críticas que amadureceram o trabalho e me ajudaram a crescer. Agradeço aos colegas por todas as leituras, sugestões e comentários. Obrigada também por toda a ajuda no mar. À minha família pelo apoio constante e pela paciência com que me ouviram falar de um tema que lhes era estranho. Aos amigos com quem partilhei algumas dúvidas e me devolveram bons conselhos. Contents Page List of publications ............................................................................................................. i Abstract ............................................................................................................................
    [Show full text]
  • Diplodus Argenteus (Silver Porgy)
    UWI The Online Guide to the Animals of Trinidad and Tobago Diversity Diplodus argenteus (Silver Porgy) Family: Sparidae (Seabream) Order: Perciformes (Perch and Allied Fish) Class: Actinopterygii (Ray-finned Fish) Fig. 1. Silver porgy, Diplodus argenteus. [http://www.mexican-fish.com/silver-porgy/ downloaded 23 October 2016] TRAITS. D. argenteus, known as the silver porgy or sea bream, averages 15-20cm in length and 0.5 kg weight. As its name states, this species has a silver sheen which appears metallic, with a very faint pattern of yellow and black stripes (Fig. 1). Its dorsal (upper) fin has about 12 spines, and the anal fin about 3 spines, as well as soft fin rays. Its pectoral and pelvic fins are tapered and its caudal (tail) fin is divided into a V-shape. At the base of the caudal fin is a relatively large black spot (Allfishingbuy.com, 2016). DISTRIBUTION. This species can be found between southeast Florida, USA, to Argentina, South America. They are native to the western and southern area of the Atlantic and to numerous countries such as Trinidad and Tobago, Brazil, Mexico and Jamaica, to name a few. Figure 2 shows the distribution of the silver porgy. However, its greatest population has currently been recorded to be near Cabo Frio, Brazil (Carpenter and Russell, 2014). HABITAT AND ECOLOGY. Like many reef-inhabiting fish, the silver porgy can be found in rocks and corals of most coastlines of their distribution, for example, the Bahamas shores, up to depths of no more than 100m. This allows them to scour the rocks and seabed for invertebrates such as crabs, molluscs and small fish.
    [Show full text]
  • Biology of the Annular Seabream, Diplodus Annularis (Sparidae), in Coastal Waters of the Canary Islands by J
    J. Appl. Ichthyol. 17 (2001), 121±125 Received: July 27, 1999 Ó 2001 Blackwell Wissenschafts-Verlag, Berlin Accepted: September 9, 1999 ISSN 0175±8659 Biology of the annular seabream, Diplodus annularis (Sparidae), in coastal waters of the Canary Islands By J. G. Pajuelo and J. M. Lorenzo Departamento de BiologõÂa, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Ta®ra, Las Palmas de Gran Canaria, Canary Islands, Spain Summary cial catches of the artisanal ¯eet between January and The biology of the Canary Islands annular seabream Diplodus December 1998, was studied. Fish were caught with pots annularis (Linnaeus 1758) was studied from samples collected deployed on the bottom at depths of 1±50 m o Gran Canaria between January and December 1998. Fish ranged from 82 to (Canary Islands). 209 mm total length in size and from 8.7 to 137.1 g in weight. Analysis of the samples was completed immediately after The mean length showed an increase with increasing water landing. For each individual, total length (TL) was measured depth. Males showed a negative allometric growth and females to the nearest mm and total weight (TW) to the nearest 0.1 g. isometric growth. The species was characterized by protandric The sex and the stage of maturation were determined hermaphroditism. The overall sex ratio was unbalanced in macroscopically and the weight of the gonads was measured favour of males (1 : 0.79). The reproductive season extended to the nearest 0.01 g. The stages of maturation were classi®ed from January to May, with a peak in spawning activity in as follows: I, immature; II, resting; III, ripe; IV, ripe and March±April.
    [Show full text]