NYSDOH Uninsured Care Programs Covered Services and ADAP
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table 2. 2012 AGS Beers Criteria for Potentially
Table 2. 2012 AGS Beers Criteria for Potentially Inappropriate Medication Use in Older Adults Strength of Organ System/ Recommendat Quality of Recomm Therapeutic Category/Drug(s) Rationale ion Evidence endation References Anticholinergics (excludes TCAs) First-generation antihistamines Highly anticholinergic; Avoid Hydroxyzin Strong Agostini 2001 (as single agent or as part of clearance reduced with e and Boustani 2007 combination products) advanced age, and promethazi Guaiana 2010 Brompheniramine tolerance develops ne: high; Han 2001 Carbinoxamine when used as hypnotic; All others: Rudolph 2008 Chlorpheniramine increased risk of moderate Clemastine confusion, dry mouth, Cyproheptadine constipation, and other Dexbrompheniramine anticholinergic Dexchlorpheniramine effects/toxicity. Diphenhydramine (oral) Doxylamine Use of diphenhydramine in Hydroxyzine special situations such Promethazine as acute treatment of Triprolidine severe allergic reaction may be appropriate. Antiparkinson agents Not recommended for Avoid Moderate Strong Rudolph 2008 Benztropine (oral) prevention of Trihexyphenidyl extrapyramidal symptoms with antipsychotics; more effective agents available for treatment of Parkinson disease. Antispasmodics Highly anticholinergic, Avoid Moderate Strong Lechevallier- Belladonna alkaloids uncertain except in Michel 2005 Clidinium-chlordiazepoxide effectiveness. short-term Rudolph 2008 Dicyclomine palliative Hyoscyamine care to Propantheline decrease Scopolamine oral secretions. Antithrombotics Dipyridamole, oral short-acting* May -
Crofelemer Oral Delayed Release Tablet
Contains Nonbinding Recommendations Draft – Not for Implementation Draft Guidance on Crofelemer This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA, or the Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the Office of Generic Drugs. Active Ingredient: Crofelemer Dosage Form; Route: Tablet, delayed release; oral Strength: 125 mg Recommendations for the Assessment of Identity and Quality of Botanical Raw Material (BRM): Crofelemer is a botanical drug derived from BRM, the crude red latex of Croton lechleri Müll. Arg. [Fam. Euphorbiacae], which is also called dragon’s blood (sangre de drago). Generic drug applicants should use the same plant species and perform BRM assessment: 1. Crofelemer BRM should be collected from the crude red latex of Croton lechleri. The plant species should be correctly identified and authenticated based on techniques such as macroscopic/microscopic and/or analysis of genetic material. 2. Crude red latex as BRM should be collected from the mature tree with defined eco- geographic regions (EGRs). Implementing and enforcing established good agricultural and collection practice (GACP) procedures will minimize variations in BRM and ensure batch- to-batch consistency of crofelemer. 3. BRMs should be analyzed for their crofelemer content, total phenolics and taspine content, as well as heavy metals and pesticides. Recommendations for Demonstrating API Sameness: API sameness can be established by showing equivalence between Test API and API from the reference listed drug (RLD) product with the three criteria described in detail below. -
Optum Essential Health Benefits Enhanced Formulary PDL January
PENICILLINS ketorolac tromethamineQL GENERIC mefenamic acid amoxicillin/clavulanate potassium nabumetone amoxicillin/clavulanate potassium ER naproxen January 2016 ampicillin naproxen sodium ampicillin sodium naproxen sodium CR ESSENTIAL HEALTH BENEFITS ampicillin-sulbactam naproxen sodium ER ENHANCED PREFERRED DRUG LIST nafcillin sodium naproxen DR The Optum Preferred Drug List is a guide identifying oxacillin sodium oxaprozin preferred brand-name medicines within select penicillin G potassium piroxicam therapeutic categories. The Preferred Drug List may piperacillin sodium/ tazobactam sulindac not include all drugs covered by your prescription sodium tolmetin sodium drug benefit. Generic medicines are available within many of the therapeutic categories listed, in addition piperacillin sodium/tazobactam Fenoprofen Calcium sodium to categories not listed, and should be considered Meclofenamate Sodium piperacillin/tazobactam as the first line of prescribing. Tolmetin Sodium Amoxicillin/Clavulanate Potassium LOW COST GENERIC PREFERRED For benefit coverage or restrictions please check indomethacin your benefit plan document(s). This listing is revised Augmentin meloxicam periodically as new drugs and new prescribing LOW COST GENERIC naproxen kit information becomes available. It is recommended amoxicillin that you bring this list of medications when you or a dicloxacillin sodium CARDIOVASCULAR covered family member sees a physician or other penicillin v potassium ACE-INHIBITORS healthcare provider. GENERIC QUINOLONES captopril ANTI-INFECTIVES -
KALETRA (Lopinavir/Ritonavir)
HIGHLIGHTS OF PRESCRIBING INFORMATION CONTRAINDICATIONS These highlights do not include all the information needed to use • Hypersensitivity to KALETRA (e.g., toxic epidermal necrolysis, Stevens- KALETRA safely and effectively. See full prescribing information for Johnson syndrome, erythema multiforme, urticaria, angioedema) or any of KALETRA. its ingredients, including ritonavir. (4) • Co-administration with drugs highly dependent on CYP3A for clearance KALETRA (lopinavir and ritonavir) tablet, for oral use and for which elevated plasma levels may result in serious and/or life- KALETRA (lopinavir and ritonavir) oral solution threatening events. (4) Initial U.S. Approval: 2000 • Co-administration with potent CYP3A inducers where significantly reduced lopinavir plasma concentrations may be associated with the potential for RECENT MAJOR CHANGES loss of virologic response and possible resistance and cross resistance. (4) Contraindications (4) 12/2019 WARNINGS AND PRECAUTIONS The following have been observed in patients receiving KALETRA: INDICATIONS AND USAGE • The concomitant use of KALETRA and certain other drugs may result in KALETRA is an HIV-1 protease inhibitor indicated in combination with other known or potentially significant drug interactions. Consult the full antiretroviral agents for the treatment of HIV-1 infection in adults and prescribing information prior to and during treatment for potential drug pediatric patients (14 days and older). (1) interactions. (5.1, 7.3) • Toxicity in preterm neonates: KALETRA oral solution should not be used DOSAGE AND ADMINISTRATION in preterm neonates in the immediate postnatal period because of possible Tablets: May be taken with or without food, swallowed whole and not toxicities. A safe and effective dose of KALETRA oral solution in this chewed, broken, or crushed. -
Hepatitis C Agents Therapeutic Class Review
Hepatitis C Agents Therapeutic Class Review (TCR) November 2, 2018 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, digital scanning, or via any information storage or retrieval system without the express written consent of Magellan Rx Management. All requests for permission should be mailed to: Magellan Rx Management Attention: Legal Department 6950 Columbia Gateway Drive Columbia, Maryland 21046 The materials contained herein represent the opinions of the collective authors and editors and should not be construed to be the official representation of any professional organization or group, any state Pharmacy and Therapeutics committee, any state Medicaid Agency, or any other clinical committee. This material is not intended to be relied upon as medical advice for specific medical cases and nothing contained herein should be relied upon by any patient, medical professional or layperson seeking information about a specific course of treatment for a specific medical condition. All readers of this material are responsible for independently obtaining medical advice and guidance from their own physician and/or other medical professional in regard to the best course of treatment for their specific medical condition. This publication, inclusive of all forms contained herein, is intended to be educational in nature and is intended to be used for informational purposes only. Send comments and suggestions to [email protected]. Proprietary Information. Restricted Access – Do not disseminate or copy without approval. © 2004–2018 Magellan Rx Management. All Rights Reserved. FDA-APPROVED INDICATIONS Drug Mfr FDA-Approved Indications Interferons peginterferon alfa-2a Genentech Chronic hepatitis C (CHC) 1 (Pegasys®) . -
MSM Cross Reference Antihistamine Decongestant 20100701 Final Posted
MISSISSIPPI DIVISION OF MEDICAID Antihistamine/Decongestant Product and Active Ingredient Cross-Reference List The agents listed below are the antihistamine/decongestant drug products listed in the Mississippi Medicaid Preferred Drug List (PDL). This is a cross-reference between the drug product name and its active ingredients to reference the antihistamine/decongestant portion of the PDL. For more information concerning the PDL, including non- preferred agents, the OTC formulary, and other specifics, please visit our website at www.medicaid.ms.gov. List Effective 07/16/10 Therapeutic Class Active Ingredients Preferred Non-Preferred ANTIHISTAMINES - 1ST GENERATION BROMPHENIRAMINE MALEATE BPM BROMAX BROMPHENIRAMINE MALEATE J-TAN PD BROMSPIRO LODRANE 24 LOHIST 12HR VAZOL BROMPHENIRAMINE TANNATE BROMPHENIRAMINE TANNATE J-TAN P-TEX BROMPHENIRAMINE/DIPHENHYDRAM ALA-HIST CARBINOXAMINE MALEATE CARBINOXAMINE MALEATE PALGIC CHLORPHENIRAMINE MALEATE CHLORPHENIRAMINE MALEATE CPM 12 CHLORPHENIRAMINE TANNATE ED CHLORPED ED-CHLOR-TAN MYCI CHLOR-TAN MYCI CHLORPED PEDIAPHYL TANAHIST-PD CLEMASTINE FUMARATE CLEMASTINE FUMARATE CYPROHEPTADINE HCL CYPROHEPTADINE HCL DEXCHLORPHENIRAMINE MALEATE DEXCHLORPHENIRAMINE MALEATE DIPHENHYDRAMINE HCL ALLERGY MEDICINE ALLERGY RELIEF BANOPHEN BENADRYL BENADRYL ALLERGY CHILDREN'S ALLERGY CHILDREN'S COLD & ALLERGY COMPLETE ALLERGY DIPHEDRYL DIPHENDRYL DIPHENHIST DIPHENHYDRAMINE HCL DYTUSS GENAHIST HYDRAMINE MEDI-PHEDRYL PHARBEDRYL Q-DRYL QUENALIN SILADRYL SILPHEN DIPHENHYDRAMINE TANNATE DIPHENMAX DOXYLAMINE SUCCINATE -
Outcome of Different Therapeutic Interventions in Mild COVID-19 Patients in a Single OPD Clinic of West Bengal: a Retrospective Study
medRxiv preprint doi: https://doi.org/10.1101/2021.03.08.21252883; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license . Title page Outcome of Different Therapeutic Interventions in Mild COVID-19 Patients in a Single OPD Clinic of West Bengal: A Retrospective study Running Title: Mild COVID-19 and the Buffet of Treatments: A case series Sayak Roy1, Shambo Samrat Samajdar2, Santanu K Tripathi3, Shatavisa Mukherjee4, Kingshuk Bhattacharjee5 1. Consultant Physician, Dept. of Internal Medicine, Medica Superspeciality Hospital, Kolkata; ORCID ID: https://orcid.org/0000-0002-6185-9375 2. Senior Resident, Dept of Clinical & Experimental Pharmacology, School of Tropical Medicine, Kolkata. 3. Dean (Academics) and Head, Dept of Pharmacology, Netaji Subhash Medical College & Hospital, Bihta, Patna 4. PhD Research Scholar, Dept of Clinical & Experimental Pharmacology, School of Tropical Medicine, Kolkata. ORCID ID: https://orcid.org/0000-0001-9524-1525 5. Independent Biostatistician, Kolkata Corresponding Author: Dr. Sayak Roy 609, G.T.Road, Battala, Serampore, Hooghly, WB, India; PIN – 712201 Email: [email protected] Words: 1906 Tables: 2 References: 20 Informed Consent and Institutional ethical clearance: Taken Conflicts of interest: None Funding: None Acknowledgement: None Data availability: Available on request with the corresponding author NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2021.03.08.21252883; this version posted March 12, 2021. -
Penetration of Synthetic Corticosteroids Into Human Aqueous Humour
Eye (1990) 4, 526--530 Penetration of Synthetic Corticosteroids into Human Aqueous Humour C. N. 1. McGHEE,1.3 D. G. WATSON, 3 1. M. MIDGLEY, 3 M. 1. NOBLE, 2 G. N. DUTTON, z A. I. FERNl Glasgow Summary The penetration of prednisolone acetate (1%) and fluorometholone alcohol (0.1%) into human aqueous humour following topical application was determined using the very sensitive and specific technique of Gas Chromatography with Mass Spec trometry (GCMS). Prednisolone acetate afforded peak mean concentrations of 669.9 ng/ml within two hours and levels of 28.6 ng/ml in aqueous humour were detected almost 24 hours post application. The peak aqueous humour level of flu orometholone was S.lng/ml. The results are compared and contrasted with the absorption of dexamethasone alcohol (0.1%), betamethasone sodium phosphate (0.1 %) and prednisolone sodium phosphate (0.5%) into human aqueous humour. Topical corticosteroid preparations have been prednisolone acetate (1.0%) and fluorometh used widely in ophthalmology since the early alone alcohol (0.1 %) (preliminary results) 1960s and over the last 10 years the choice of into the aqueous humour of patients under preparations has become larger and more going elective cataract surgery. varied. Unfortunately, data on the intraocular penetration of these steroids in humans has SUbjects and Methods not paralleled the expansion in the number of Patients who were scheduled to undergo rou available preparations; indeed until recently, tine cataract surgery were recruited to the estimation of intraocular penetration has study and informed consent was obtained in been reliant upon extrapolation of data from all cases (n=88), Patients with corneal disease animal models (see Watson et ai., 1988, for or inflammatory ocular conditions which bibliography). -
Pharmacokinetic Drug–Drug Interactions Among Antiepileptic Drugs, Including CBD, Drugs Used to Treat COVID-19 and Nutrients
International Journal of Molecular Sciences Review Pharmacokinetic Drug–Drug Interactions among Antiepileptic Drugs, Including CBD, Drugs Used to Treat COVID-19 and Nutrients Marta Kara´zniewicz-Łada 1 , Anna K. Główka 2 , Aniceta A. Mikulska 1 and Franciszek K. Główka 1,* 1 Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Pozna´n,Poland; [email protected] (M.K.-Ł.); [email protected] (A.A.M.) 2 Department of Bromatology, Poznan University of Medical Sciences, 60-354 Pozna´n,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-(0)61-854-64-37 Abstract: Anti-epileptic drugs (AEDs) are an important group of drugs of several generations, rang- ing from the oldest phenobarbital (1912) to the most recent cenobamate (2019). Cannabidiol (CBD) is increasingly used to treat epilepsy. The outbreak of the SARS-CoV-2 pandemic in 2019 created new challenges in the effective treatment of epilepsy in COVID-19 patients. The purpose of this review is to present data from the last few years on drug–drug interactions among of AEDs, as well as AEDs with other drugs, nutrients and food. Literature data was collected mainly in PubMed, as well as google base. The most important pharmacokinetic parameters of the chosen 29 AEDs, mechanism of action and clinical application, as well as their biotransformation, are presented. We pay a special attention to the new potential interactions of the applied first-generation AEDs (carba- Citation: Kara´zniewicz-Łada,M.; mazepine, oxcarbazepine, phenytoin, phenobarbital and primidone), on decreased concentration Główka, A.K.; Mikulska, A.A.; of some medications (atazanavir and remdesivir), or their compositions (darunavir/cobicistat and Główka, F.K. -
Exploring the Activity of an Inhibitory Neurosteroid at GABAA Receptors
1 Exploring the activity of an inhibitory neurosteroid at GABAA receptors Sandra Seljeset A thesis submitted to University College London for the Degree of Doctor of Philosophy November 2016 Department of Neuroscience, Physiology and Pharmacology University College London Gower Street WC1E 6BT 2 Declaration I, Sandra Seljeset, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I can confirm that this has been indicated in the thesis. 3 Abstract The GABAA receptor is the main mediator of inhibitory neurotransmission in the central nervous system. Its activity is regulated by various endogenous molecules that act either by directly modulating the receptor or by affecting the presynaptic release of GABA. Neurosteroids are an important class of endogenous modulators, and can either potentiate or inhibit GABAA receptor function. Whereas the binding site and physiological roles of the potentiating neurosteroids are well characterised, less is known about the role of inhibitory neurosteroids in modulating GABAA receptors. Using hippocampal cultures and recombinant GABAA receptors expressed in HEK cells, the binding and functional profile of the inhibitory neurosteroid pregnenolone sulphate (PS) were studied using whole-cell patch-clamp recordings. In HEK cells, PS inhibited steady-state GABA currents more than peak currents. Receptor subtype selectivity was minimal, except that the ρ1 receptor was largely insensitive. PS showed state-dependence but little voltage-sensitivity and did not compete with the open-channel blocker picrotoxinin for binding, suggesting that the channel pore is an unlikely binding site. By using ρ1-α1/β2/γ2L receptor chimeras and point mutations, the binding site for PS was probed. -
Supplementary Information
Supplementary Information Network-based Drug Repurposing for Novel Coronavirus 2019-nCoV Yadi Zhou1,#, Yuan Hou1,#, Jiayu Shen1, Yin Huang1, William Martin1, Feixiong Cheng1-3,* 1Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA 3Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA #Equal contribution *Correspondence to: Feixiong Cheng, PhD Lerner Research Institute Cleveland Clinic Tel: +1-216-444-7654; Fax: +1-216-636-0009 Email: [email protected] Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. Supplementary Table S2. Protein sequence identities across 5 protein regions in 15 coronaviruses. Supplementary Table S3. HCoV-associated host proteins with references. Supplementary Table S4. Repurposable drugs predicted by network-based approaches. Supplementary Table S5. Network proximity results for 2,938 drugs against pan-human coronavirus (CoV) and individual CoVs. Supplementary Table S6. Network-predicted drug combinations for all the drug pairs from the top 16 high-confidence repurposable drugs. 1 Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. GenBank ID Coronavirus Identity % Host Location discovered MN908947 2019-nCoV[Wuhan-Hu-1] 100 Human China MN938384 2019-nCoV[HKU-SZ-002a] 99.99 Human China MN975262 -
Investigating the Inhibition Mechanism of L,D-Transpeptidase 5 from Mycobacterium Tuberculosis Using Computational Methods
INVESTIGATING THE INHIBITION MECHANISM OF L,D-TRANSPEPTIDASE 5 FROM MYCOBACTERIUM TUBERCULOSIS USING COMPUTATIONAL METHODS BY: GIDEON FEMI TOLUFASHE 216076453 Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Pharmaceutical Chemistry School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa. 2018 PREFACE The work described in this thesis was conducted at the Catalysis and Peptide Research Unit, Westville Campus, University of KwaZulu-Natal, Durban, South Africa, under the supervision of Dr Bahareh Honarparvar, Prof. H.G. Kruger and Dr G.E.M. Maguire. This work has not been submitted in any form for any degree or diploma to any institution, where use has been made of the work of others, it is duly acknowledged in the text. Supervisors: Dr B. Honarparvar Date 30/10/2018 Prof. H. G. Kruger________________ Date ___________ Dr. G.E.M Maguire_______________ Date ___________ As candidate’s supervisor I agree to the submission of this thesis. i DECLARATION DECLARATION I- PLAGIARISM I, Gideon Femi Tolufashe declare that (i). The research reports in this thesis, except where otherwise indicated, is my original work. (ii). This thesis has not been submitted for any degree or examination at any other university. (iii). This thesis does not contain other person’s data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. (iv). This thesis does not contain other person’s writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written, but the general information attributed to them has been referenced.