Exploring the Activity of an Inhibitory Neurosteroid at GABAA Receptors

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Activity of an Inhibitory Neurosteroid at GABAA Receptors 1 Exploring the activity of an inhibitory neurosteroid at GABAA receptors Sandra Seljeset A thesis submitted to University College London for the Degree of Doctor of Philosophy November 2016 Department of Neuroscience, Physiology and Pharmacology University College London Gower Street WC1E 6BT 2 Declaration I, Sandra Seljeset, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I can confirm that this has been indicated in the thesis. 3 Abstract The GABAA receptor is the main mediator of inhibitory neurotransmission in the central nervous system. Its activity is regulated by various endogenous molecules that act either by directly modulating the receptor or by affecting the presynaptic release of GABA. Neurosteroids are an important class of endogenous modulators, and can either potentiate or inhibit GABAA receptor function. Whereas the binding site and physiological roles of the potentiating neurosteroids are well characterised, less is known about the role of inhibitory neurosteroids in modulating GABAA receptors. Using hippocampal cultures and recombinant GABAA receptors expressed in HEK cells, the binding and functional profile of the inhibitory neurosteroid pregnenolone sulphate (PS) were studied using whole-cell patch-clamp recordings. In HEK cells, PS inhibited steady-state GABA currents more than peak currents. Receptor subtype selectivity was minimal, except that the ρ1 receptor was largely insensitive. PS showed state-dependence but little voltage-sensitivity and did not compete with the open-channel blocker picrotoxinin for binding, suggesting that the channel pore is an unlikely binding site. By using ρ1-α1/β2/γ2L receptor chimeras and point mutations, the binding site for PS was probed. All chimeras and mutants remained sensitive to PS, raising the question as to whether modulation could be due to indirect interactions between PS and the cell membrane. In hippocampal neurones, the major postsynaptic effect of PS was to increase the IPSC decay rate. However, PS also increased GABA release by activating presynaptic TRPM3 receptors. Upon block of TRPM3, GABA release was reduced by PS due to potentiation of presynaptic Kir2 channel activity. In conclusion, PS directly modulates GABAA receptor kinetics by speeding up current decay at both neuronal and recombinant receptors. At inhibitory synapses, PS can enhance or inhibit GABA release by acting at TRPM3 or Kir2 channels respectively. 4 Acknowledgements Firstly, I would like to thank my supervisor and mentor, Prof. Trevor Smart, whose enduring support and positivity have helped me complete this PhD. I would also like to thank the Wellcome Trust for providing the financial support to complete this project. Many thanks goes to all the members of the Smart lab, past and present, for being a great source of support and entertainment for which I will always be grateful. I would especially like to thank Mike and Duncan for their help with the molecular biology work, and Phil for always being of assistance when my rig or U-tube misbehaved! I am also grateful to Laura for all her help and assistance with the hippocampal cultures. A special thanks goes to Damian for invaluable feedback, guidance and support, and for joining me in those daily tea breaks! I would also like to thank my lovely friends and family. I will forever be grateful to my trumpet teacher Matt for turning my postgraduate student years into a musical adventure that I will never forget, and the members of UCLU Concert Band and SWON who have been like a family to me, providing a great source of support and fun over the past few years. Finally, the biggest of thanks are owed to my best friends Adam, Hazel, Liam and Sam for their love, encouragement and support, and for always being there for me. 5 Contents Declaration ........................................................................................................ 2 Abstract ............................................................................................................. 3 Acknowledgements .......................................................................................... 4 Contents ............................................................................................................ 5 List of figures .................................................................................................... 9 List of tables .................................................................................................... 13 List of equations ............................................................................................. 13 List of abbreviations ....................................................................................... 14 Chapter 1: Introduction .................................................................................. 18 1.1. GABAA receptors .................................................................................... 18 1.1.1. GABAA receptor structure and distribution ....................................... 18 1.1.2. Assembly and trafficking of GABAA receptors .................................. 25 1.1.3. Tonic and phasic inhibition mediated by GABAA receptors .............. 27 1.1.4. GABAA receptor pharmacology and modulation by endogenous ligands ....................................................................................................... 32 1.2. Neurosteroids ......................................................................................... 39 1.2.1. Neurosteroid synthesis, metabolism and expression in the brain .... 40 1.2.2. Molecular targets of inhibitory neurosteroids ................................... 45 1.2.3. Inhibitory neurosteroids and the GABAA receptors .......................... 47 1.2.4. Inhibitory neurosteroids in health and disease ................................. 50 1.3. Project aims ............................................................................................ 53 Chapter 2: Methods ........................................................................................ 56 2.1. HEK293 cell culture ................................................................................ 56 2.2. HEK cell transfection .............................................................................. 56 2.3. Reagents ................................................................................................ 58 2.4. Site-directed mutagenesis and DNA ...................................................... 58 2.5. Hippocampal cell culture ........................................................................ 60 6 2.6. Patch-clamp electrophysiology ............................................................... 61 2.7. Homology modelling ............................................................................... 64 2.8. Data analysis and statistics .................................................................... 64 2.8.1. Analysis of HEK cell recordings ....................................................... 64 2.8.2. Analysis of hippocampal neurone recordings .................................. 66 2.8.3. Statistics .......................................................................................... 67 Chapter 3: Modulation by pregnenolone sulphate of recombinant GABAA receptors expressed in HEK cells ................................................................. 68 3.1. Introduction ............................................................................................. 68 3.2. Results ................................................................................................... 71 3.2.1. PS is a negative allosteric modulator of the α1β2γ2L receptor ........ 71 3.2.2. Pre-applying PS does not increase inhibition ................................... 75 3.2.3. Antagonism by PS at α1β2γ2L is activation-dependent but only weakly voltage-sensitive ............................................................................ 77 3.2.4. PS and PTX do not compete for binding at α1β2γ2L ....................... 80 3.2.5. PS shows no antagonist activity when applied internally via the patch pipette ........................................................................................................ 82 3.2.6. Does PS show any receptor subtype selectivity? ............................ 84 3.2.7. Does PS act as a negative allosteric modulator at receptors that typically exist outside the synapse? ........................................................... 90 3.2.8. PS acts as an antagonist at β3 homomers ...................................... 93 3.2.9. Inhibition by PS at slower- and faster-desensitising GABAA receptor mutants ...................................................................................................... 95 3.3. Discussion .............................................................................................. 98 3.3.1. The mode of inhibition by PS of GABAA receptors ........................... 98 3.3.2. PS exhibits little receptor subtype selectivity at recombinant GABAA receptors expressed in HEK cells ............................................................ 101 3.3.3. PS can antagonise a ‘tonic’ GABA current at the α4β2δ receptor in HEK cells ................................................................................................. 104 3.3.4. The potency of PS may be affected by the kinetics of the GABAA receptor.................................................................................................... 104 3.4. Conclusion ...........................................................................................
Recommended publications
  • Electrophysiologic Evidence for Increased Endogenous Gabaergic but Not Glycinergic Inhibitory Tone in the Rat Spinal Nerve Ligation Model of Neuropathy Vesa K
    Anesthesiology 2001; 94:333–9 © 2001 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Electrophysiologic Evidence for Increased Endogenous GABAergic but Not Glycinergic Inhibitory Tone in the Rat Spinal Nerve Ligation Model of Neuropathy Vesa K. Kontinen, M.D., Ph.D.,* Louise C. Stanfa, Ph.D.,† Amlan Basu,‡ Anthony H. Dickenson, Ph.D.§ Background: Changes in the inhibitory activity mediated by There is evidence that both GABA and glycinergic inter- ␥-aminobutyric acid (GABA) and glycine, acting at spinal GABA A neurons are preferentially associated with the control of receptors and strychnine-sensitive glycine receptors, are of in- 6–9 terest in the development of neuropathic pain. There is ana- low-threshold afferent input to the spinal cord. Con- Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/94/2/333/402482/0000542-200102000-00024.pdf by guest on 29 September 2021 tomic evidence for changes in these transmitter systems after sistent with this, intrathecal administration of the 10 nerve injuries, and blocking either GABAA or glycine receptors GABAA-receptor antagonist bicuculline or the glycine- has been shown to produce allodynia-like behavior in awake receptor antagonist strychnine10,11 produces segmen- normal animals. tally localized tactile allodynia-like behavior in conscious Methods: In this study, the possible changes in GABAergic and glycinergic inhibitory activity in the spinal nerve ligation rats and increased responses to mechanical stimulation 12 model of neuropathic pain were studied by comparing the in anesthetized cats. Intrathecal strychnine has also effects of the GABAA-receptor antagonist bicuculline and the been shown to produce in anesthetized rats reflex re- glycine-receptor antagonist strychnine in neuropathic rats to sponses similar to those produced by nociceptive stim- their effects in sham-operated and nonoperated control rats.
    [Show full text]
  • Potential Therapeutic Benefit of Low Dose Naltrexone in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
    Potential Therapeutic Benefit of Low Dose Naltrexone in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Role of Transient Receptor Potential Melastatin 3 Ion Channels in Pathophysiology and Treatment. Author Cabanas, Helene, Muraki, Katsuhiko, Eaton-Fitch, Natalie, Staines, Donald Ross, Marshall- Gradisnik, Sonya Published 2021 Journal Title Frontiers in Immunology Version Version of Record (VoR) DOI https://doi.org/10.3389/fimmu.2021.687806 Copyright Statement © 2021 Cabanas, Muraki, Eaton-Fitch, Staines and Marshall-Gradisnik. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Downloaded from http://hdl.handle.net/10072/406897 Griffith Research Online https://research-repository.griffith.edu.au ORIGINAL RESEARCH published: 13 July 2021 doi: 10.3389/fimmu.2021.687806 Potential Therapeutic Benefitof Low Dose Naltrexone in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Role of Transient Receptor Potential Melastatin 3 Ion Channels in Pathophysiology and Treatment Edited by: Helene Cabanas 1,2*, Katsuhiko Muraki 2,3, Natalie Eaton-Fitch 1,2, Donald Ross Staines 1,2 Jorge Matias-Guiu, 1,2 Complutense University and Sonya Marshall-Gradisnik
    [Show full text]
  • The Pharmacologist 2 0 0 6 December
    Vol. 48 Number 4 The Pharmacologist 2 0 0 6 December 2006 YEAR IN REVIEW The Presidential Torch is passed from James E. Experimental Biology 2006 in San Francisco Barrett to Elaine Sanders-Bush ASPET Members attend the 15th World Congress in China Young Scientists at EB 2006 ASPET Awards Winners at EB 2006 Inside this Issue: ASPET Election Online EB ’07 Program Grid Neuropharmacology Division Mixer at SFN 2006 New England Chapter Meeting Summary SEPS Meeting Summary and Abstracts MAPS Meeting Summary and Abstracts Call for Late-Breaking Abstracts for EB‘07 A Publication of the American Society for 121 Pharmacology and Experimental Therapeutics - ASPET Volume 48 Number 4, 2006 The Pharmacologist is published and distributed by the American Society for Pharmacology and Experimental Therapeutics. The Editor PHARMACOLOGIST Suzie Thompson EDITORIAL ADVISORY BOARD Bryan F. Cox, Ph.D. News Ronald N. Hines, Ph.D. Terrence J. Monks, Ph.D. 2006 Year in Review page 123 COUNCIL . President Contributors for 2006 . page 124 Elaine Sanders-Bush, Ph.D. Election 2007 . President-Elect page 126 Kenneth P. Minneman, Ph.D. EB 2007 Program Grid . page 130 Past President James E. Barrett, Ph.D. Features Secretary/Treasurer Lynn Wecker, Ph.D. Secretary/Treasurer-Elect Journals . Annette E. Fleckenstein, Ph.D. page 132 Past Secretary/Treasurer Public Affairs & Government Relations . page 134 Patricia K. Sonsalla, Ph.D. Division News Councilors Bryan F. Cox, Ph.D. Division for Neuropharmacology . page 136 Ronald N. Hines, Ph.D. Centennial Update . Terrence J. Monks, Ph.D. page 137 Chair, Board of Publications Trustees Members in the News .
    [Show full text]
  • Amnestic Concentrations of Sevoflurane Inhibit Synaptic
    Anesthesiology 2008; 108:447–56 Copyright © 2008, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Amnestic Concentrations of Sevoflurane Inhibit Synaptic Plasticity of Hippocampal CA1 Neurons through ␥-Aminobutyric Acid–mediated Mechanisms Junko Ishizeki, M.D.,* Koichi Nishikawa, M.D., Ph.D.,† Kazuhiro Kubo, M.D.,‡ Shigeru Saito, M.D., Ph.D.,§ Fumio Goto, M.D., Ph.D.࿣ Background: The cellular mechanisms of anesthetic-induced for surgical procedures do not have recollection of ac- amnesia are still poorly understood. The current study exam- tually being awake despite being awake and cooperative ined sevoflurane at various concentrations in the CA1 region of during the procedure.1 Galinkin et al.2 compared sub- rat hippocampal slices for effects on excitatory synaptic trans- Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/108/3/447/366512/0000542-200803000-00017.pdf by guest on 29 September 2021 mission and on long-term potentiation (LTP), as a possible jective, psychomotor, cognitive, and analgesic effects of mechanism contributing to anesthetic-induced loss of recall. sevoflurane (0.3% and 0.6%) with those of nitrous oxide Methods: Population spikes and field excitatory postsynaptic at equal minimum alveolar concentrations (MACs) in potentials were recorded using extracellular electrodes after healthy volunteers. They found that sevoflurane pro- electrical stimulation of Schaffer-collateral-commissural fiber inputs. Paired pulse facilitation was used as a measure of pre- duced a greater degree of amnesia and psychomotor synaptic effects of the anesthetic. LTP was induced using tetanic impairment than did an equal MAC of nitrous oxide but stimulation (100 Hz, 1 s). Sevoflurane at concentrations from had no analgesic actions.
    [Show full text]
  • A Potential Approach for Treating Pain by Augmenting Glycine-Mediated Spinal Neurotransmission and Blunting Central Nociceptive Signaling
    biomolecules Review Inhibition of Glycine Re-Uptake: A Potential Approach for Treating Pain by Augmenting Glycine-Mediated Spinal Neurotransmission and Blunting Central Nociceptive Signaling Christopher L. Cioffi Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA; christopher.cioffi@acphs.edu; Tel.: +1-518-694-7224 Abstract: Among the myriad of cellular and molecular processes identified as contributing to patho- logical pain, disinhibition of spinal cord nociceptive signaling to higher cortical centers plays a critical role. Importantly, evidence suggests that impaired glycinergic neurotransmission develops in the dorsal horn of the spinal cord in inflammatory and neuropathic pain models and is a key maladaptive mechanism causing mechanical hyperalgesia and allodynia. Thus, it has been hypothesized that pharmacological agents capable of augmenting glycinergic tone within the dorsal horn may be able to blunt or block aberrant nociceptor signaling to the brain and serve as a novel class of analgesics for various pathological pain states. Indeed, drugs that enhance dysfunctional glycinergic transmission, and in particular inhibitors of the glycine transporters (GlyT1 and GlyT2), are generating widespread + − interest as a potential class of novel analgesics. The GlyTs are Na /Cl -dependent transporters of the solute carrier 6 (SLC6) family and it has been proposed that the inhibition of them presents a Citation: Cioffi, C.L. Inhibition of possible mechanism
    [Show full text]
  • Picrotoxin-Like Channel Blockers of GABAA Receptors
    COMMENTARY Picrotoxin-like channel blockers of GABAA receptors Richard W. Olsen* Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California, Los Angeles, CA 90095-1735 icrotoxin (PTX) is the prototypic vous system. Instead of an acetylcholine antagonist of GABAA receptors (ACh) target, the cage convulsants are (GABARs), the primary media- noncompetitive GABAR antagonists act- tors of inhibitory neurotransmis- ing at the PTX site: they inhibit GABAR Psion (rapid and tonic) in the nervous currents and synapses in mammalian neu- system. Picrotoxinin (Fig. 1A), the active rons and inhibit [3H]dihydropicrotoxinin ingredient in this plant convulsant, struc- binding to GABAR sites in brain mem- turally does not resemble GABA, a sim- branes (7, 9). A potent example, t-butyl ple, small amino acid, but it is a polycylic bicyclophosphorothionate, is a major re- compound with no nitrogen atom. The search tool used to assay GABARs by compound somehow prevents ion flow radio-ligand binding (10). through the chloride channel activated by This drug target appears to be the site GABA in the GABAR, a member of the of action of the experimental convulsant cys-loop, ligand-gated ion channel super- pentylenetetrazol (1, 4) and numerous family. Unlike the competitive GABAR polychlorinated hydrocarbon insecticides, antagonist bicuculline, PTX is clearly a including dieldrin, lindane, and fipronil, noncompetitive antagonist (NCA), acting compounds that have been applied in not at the GABA recognition site but per- huge amounts to the environment with haps within the ion channel. Thus PTX major agricultural economic impact (2). ͞ appears to be an excellent example of al- Some of the other potent toxicants insec- losteric modulation, which is extremely ticides were also radiolabeled and used to important in protein function in general characterize receptor action, allowing and especially for GABAR (1).
    [Show full text]
  • Pharmacological Modulation of Processes Contributing to Spinal Hyperexcitability: Electrophysiological Studies in the Rat
    Pharmacological modulation of processes contributing to spinal hyperexcitability: electrophysiological studies in the rat. By Katherine J Carpenter A thesis submitted to the University of London for the degree of Doctor of Philosophy Department of Pharmacology University College London Gower Street London WC1E6BT ProQuest Number: U642184 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U642184 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Two of the most effective analgesic strategies in man are (i) blockade of the NMDA receptor for glutamate, which plays a major role in nociceptive transmission and (ii) augmentation of inhibitory systems, exemplified by the use of ketamine and the opioids respectively. Both are, however, are associated with side effects. Potential novel analgesic targets are investigated here using in vivo electrophysiology in the anaesthetised rat with pharmacological manipulation of spinal neuronal transmission. Three different approaches were used to target NMDA receptors: (i) glycine site antagonists (Mrz 2/571 and Mrz 2/579), (ii) antagonists selective for receptors containing the NR2B subunit (ifenprodil and ACEA-1244), (iii) elevating the levels of N-acetyl-aspartyl- glutamate (NAAG), an endogenous peptide, by inhibition of its degradative enzyme.
    [Show full text]
  • Outcome of Different Therapeutic Interventions in Mild COVID-19 Patients in a Single OPD Clinic of West Bengal: a Retrospective Study
    medRxiv preprint doi: https://doi.org/10.1101/2021.03.08.21252883; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license . Title page Outcome of Different Therapeutic Interventions in Mild COVID-19 Patients in a Single OPD Clinic of West Bengal: A Retrospective study Running Title: Mild COVID-19 and the Buffet of Treatments: A case series Sayak Roy1, Shambo Samrat Samajdar2, Santanu K Tripathi3, Shatavisa Mukherjee4, Kingshuk Bhattacharjee5 1. Consultant Physician, Dept. of Internal Medicine, Medica Superspeciality Hospital, Kolkata; ORCID ID: https://orcid.org/0000-0002-6185-9375 2. Senior Resident, Dept of Clinical & Experimental Pharmacology, School of Tropical Medicine, Kolkata. 3. Dean (Academics) and Head, Dept of Pharmacology, Netaji Subhash Medical College & Hospital, Bihta, Patna 4. PhD Research Scholar, Dept of Clinical & Experimental Pharmacology, School of Tropical Medicine, Kolkata. ORCID ID: https://orcid.org/0000-0001-9524-1525 5. Independent Biostatistician, Kolkata Corresponding Author: Dr. Sayak Roy 609, G.T.Road, Battala, Serampore, Hooghly, WB, India; PIN – 712201 Email: [email protected] Words: 1906 Tables: 2 References: 20 Informed Consent and Institutional ethical clearance: Taken Conflicts of interest: None Funding: None Acknowledgement: None Data availability: Available on request with the corresponding author NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2021.03.08.21252883; this version posted March 12, 2021.
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • 268 Part 522—Implantation Or Injectable Dosage Form
    § 520.2645 21 CFR Ch. I (4–1–18 Edition) (ii) Indications for use. For the control 522.82 Aminopropazine. of American foulbrood (Paenibacillus 522.84 Beta-aminopropionitrile. larvae). 522.88 Amoxicillin. 522.90 Ampicillin injectable dosage forms. (iii) Limitations. The drug should be 522.90a Ampicillin trihydrate suspension. fed early in the spring or fall and con- 522.90b Ampicillin trihydrate powder for in- sumed by the bees before the main jection. honey flow begins, to avoid contamina- 522.90c Ampicillin sodium. tion of production honey. Complete 522.144 Arsenamide. treatments at least 4 weeks before 522.147 Atipamezole. main honey flow. 522.150 Azaperone. 522.161 Betamethasone. [40 FR 13838, Mar. 27, 1975, as amended at 50 522.163 Betamethasone dipropionate and FR 49841, Dec. 5, 1985; 59 FR 14365, Mar. 28, betamethasone sodium phosphate aque- 1994; 62 FR 39443, July 23, 1997; 68 FR 24879, ous suspension. May 9, 2003; 70 FR 69439, Nov. 16, 2005; 73 FR 522.167 Betamethasone sodium phosphate 76946, Dec. 18, 2008; 75 FR 76259, Dec. 8, 2010; and betamethasone acetate. 76 FR 59024, Sept. 23, 2011; 77 FR 29217, May 522.204 Boldenone. 17, 2012; 79 FR 37620, July 2, 2014; 79 FR 53136, 522.224 Bupivacaine. Sept. 8, 2014; 79 FR 64116, Oct. 28, 2014; 80 FR 522.230 Buprenorphine. 34278, June 16, 2015; 81 FR 48702, July 26, 2016] 522.234 Butamisole. 522.246 Butorphanol. § 520.2645 Tylvalosin. 522.275 N-Butylscopolammonium. 522.300 Carfentanil. (a) Specifications. Granules containing 522.304 Carprofen. 62.5 percent tylvalosin (w/w) as 522.311 Cefovecin.
    [Show full text]
  • Antinociceptive Activity of a Neurosteroid Tetrahydrodeoxycorticosterone (5Cx-Pregnan-3Cx-21-Diol-20-One) and Its Possible Mechanism(S) of Action
    Indian Journal of Experimental Biology Vol. 39, December 2001, pp. 1299-1301 Antinociceptive activity of a neurosteroid tetrahydrodeoxycorticosterone (5cx-pregnan-3cx-21-diol-20-one) and its possible mechanism(s) of action P K Mediratta, M Gambhir, K K Sharma & M Ray Department of Pharmacology, University College of Medical Sciences and GTB Hospital, Delhi II 0095, India Fax: 91-11-2299495; E-mail: [email protected]/[email protected] Received 9 Apri/2001; revised 2 July 2001 The present study investigates the effects of a neurosteroid tetrahydrodeoxycorticosterone (5a-pregnan-3a-21-diol-20- one) in two experimental models of pain sensitivity in mice. Tetrahydrodeoxycorticosterone (2.5, 5 mg!kg, ip) dose dependently decreased the licking response in formalin test and increased the tail flick latency (TFL) in tail flick test. Bicuculline (2 mg/kg, ip), a GABAA receptor antagonist blocked the antinociceptive effect of tetrahydrodeoxy­ corticosterone in TFL test but failed to modulate licking response in formalin test. Naloxone (I mglkg, ip), an opioid antagonist effectively attenuated the analgesic effect of tetrahydrodeoxycorticosterone in both the models. Tetrahydrodeoxycorticosterone pretreatment potentiated the anti nociceptive response of morphine, an opioid compound and nimodipine, a calcium channel blocker in formalin as well as TFL test. Thus, tetrahydrodeoxycorticosterone exerts an analgesic effect, which may be mediated by modulating GABA-ergic and/or opioid-ergic mechanisms and voltage-gated calcium channels. It is now well known that some of the steroids like Allopregnanolone has been shown to exhibit progesterone can act on central nervous system (CNS) antinociceptive effect against an aversive thermal to produce a number of endocrine and behavioral stimulus 10 and in a rat mechanical visceral pain 11 effects.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0171347 A1 Matsumoto (43) Pub
    US 2003.0171347A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0171347 A1 Matsumoto (43) Pub. Date: Sep. 11, 2003 (54) SIGMA RECEPTOR ANTAGONISTS HAVING Publication Classification ANT-COCANE PROPERTIES AND USES THEREOF (51) Int. Cl." ......................... A61K 31/55; A61K 31/33; A61K 31/397; A61K 31/445; (76) Inventor: Rae R. Matsumoto, Edmond, OK (US) A61K 31/40; A61K 31/137 (52) U.S. Cl. .............. 514/183; 514/210.01; 514/217.12; Correspondence Address: 514/317; 514/408; 514/649 DUNLAP, CODDING & ROGERS PC. PO BOX 16370 OKLAHOMA CITY, OK 73114 (US) (57) ABSTRACT (21) Appl. No.: 10/178,859 The present invention relates to novel Sigma receptor antagonist compounds that have anti-cocaine properties. (22) Filed: Jun. 21, 2002 These Sigma receptor antagonists are useful in the treatment Related U.S. Application Data of cocaine overdose and addiction as well as movement disorders. The Sigma receptor antagonists of the present (63) Continuation of application No. 09/715,911, filed on invention may also be used in the treatment of neurological, Nov. 17, 2000, now abandoned, which is a continu psychiatric, gastrointestinal, cardiovascular, endocrine and ation of application No. 09/316,877, filed on May 21, immune System disorders as well as for imaging procedures. 1999, now abandoned. The present invention also relates to novel pharmaceutical compounds incorporating Sigma receptor antagonists which (60) Provisional application No. 60/086,550, filed on May can be used to treat overdose and addiction resulting from 21, 1998. the use of cocaine and/or other drugs of abuse.
    [Show full text]