First Detection of Gongylonema Species in Geotrupes Mutator in Europe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linking Behavior, Co-Infection Patterns, and Viral Infection Risk with the Whole Gastrointestinal Helminth Community Structure in Mastomys Natalensis
ORIGINAL RESEARCH published: 17 August 2021 doi: 10.3389/fvets.2021.669058 Linking Behavior, Co-infection Patterns, and Viral Infection Risk With the Whole Gastrointestinal Helminth Community Structure in Mastomys natalensis Bram Vanden Broecke 1*, Lisse Bernaerts 1, Alexis Ribas 2, Vincent Sluydts 1, Ladslaus Mnyone 3, Erik Matthysen 1 and Herwig Leirs 1 1 Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium, 2 Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, IRBio (Research Institute of Biodiversity), University of Barcelona, Barcelona, Spain, 3 Pest Management Center, Sokoine University of Agriculture, Morogoro, Tanzania Edited by: Yadong Zheng, Infection probability, load, and community structure of helminths varies strongly between Lanzhou Institute of Veterinary and within animal populations. This can be ascribed to environmental stochasticity Research (CAAS), China or due to individual characteristics of the host such as their age or sex. Other, but Reviewed by: Mario Garrido, understudied, factors are the hosts’ behavior and co-infection patterns. In this study, we Ben-Gurion University of the used the multimammate mouse (Mastomys natalensis) as a model system to investigate Negev, Israel Si-Yang Huang, how the hosts’ sex, age, exploration behavior, and viral infection history affects their Yangzhou University, China infection risk, parasitic load, and community structure of gastrointestinal helminths. We Hannah Rose Vineer, hypothesized that the hosts’ exploration behavior would play a key role in the risk for University of Liverpool, United Kingdom infection by different gastrointestinal helminths, whereby highly explorative individuals *Correspondence: would have a higher infection risk leading to a wider diversity of helminths and a larger Bram Vanden Broecke load compared to less explorative individuals. -
Bibliography
Bibliography [1] Manual of Veterinary Parasitological Labora Visser (1991); Ferdinand Enke Verlag, Stutt tory Techniques, Reference Book 418 (1987); gart, Germany HMSO Copyright Unit, Norwich, UK [13] G. Uilenberg; Centre de cooperation interna [2] Currem Veterinary Therapy 3: Food Animal tionale en recherche agronomique pour le Practice/J.L. Howard (1993); W.B. Saunders developpement (CIRAD) et Departement Company, Philadelphia, Pennsylvania, USA d'Elevage et de Medicine Veterinaire (EMVT), [3] Helminths, Arthropods and Protozoa of Maison-Alfort Cedex, France Domesticated Animals/E.].L. Soulsby (1982); [14] Veterinary ProtozoologylN.D. Levine (1985); Balliere Tindall, Division of Cassell Ltd.; Lon The Iowa State University Press, Ames, Iowa, don, UK USA [4] F. Hörchner, A.O. Heydorn, E. Schein, D. [15] Utrecht University, Department of Parasitolo Mehlitz, Institut für Parasitologie und gy and Tropical Veterinary Medicine, Utrecht, Tropenveterinärmedizin, Berlin, Germany The Netherlands [5] Veterinary Helminthology/R.K. Reinecke (1983); [16] Manual of Tropical Veterinary Parasitolo Blackwell Wissenschafts-Verlag, Berlin, Ger gyltranslated by M. Shah-Fischer and R.R. Say many (1989); CAB International, Oxon, UK [6] Parasites of Cattle (1981); Merck & Co., Inc., [17] ILRAD (1989) Annual Repqrt of the Interna Rahway N]., . USA tional Laboratory for Research on Animal Dis [7] Diagnose und Therapie der Parasiten von eases; International Laboratory for Research Haus-, Nutz- und HeimtierenlH. Mehlhorn, D. on Animal Diseases, Nairobi, Kenya Düwel und W. Raether (1986); Gustav Fischer [18] Helminthes et Helminthoses des Ruminants Verlag, Sruttgart, Germany Domestiques d'Afrique Tropicale/M. Graber er [8] S. Geerts, Prince Leopold Institute of Tropical C. Perrotin (1983); Les Editions du Point Medicine, Antwerp, Belgium Veterinaire, Maisons-Alfort, France [9] Traite d'Helminthologie Medicale et Yethi· [19] Veterinary Parasitology/G.M. -
Comparative Genomics of the Major Parasitic Worms
Comparative genomics of the major parasitic worms International Helminth Genomes Consortium Supplementary Information Introduction ............................................................................................................................... 4 Contributions from Consortium members ..................................................................................... 5 Methods .................................................................................................................................... 6 1 Sample collection and preparation ................................................................................................................. 6 2.1 Data production, Wellcome Trust Sanger Institute (WTSI) ........................................................................ 12 DNA template preparation and sequencing................................................................................................. 12 Genome assembly ........................................................................................................................................ 13 Assembly QC ................................................................................................................................................. 14 Gene prediction ............................................................................................................................................ 15 Contamination screening ............................................................................................................................ -
The Influence of Human Settlements on Gastrointestinal Helminths of Wild Monkey Populations in Their Natural Habitat
The influence of human settlements on gastrointestinal helminths of wild monkey populations in their natural habitat Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) – Universitätsbereich genehmigte DISSERTATION von Dipl. Biol. Alexandra Mücke geboren in Germersheim Dekan: Prof. Dr. Martin Bastmeyer Referent: Prof. Dr. Horst F. Taraschewski 1. Korreferent: Prof. Dr. Eckhard W. Heymann 2. Korreferent: Prof. Dr. Doris Wedlich Tag der mündlichen Prüfung: 16.12.2011 To Maya Index of Contents I Index of Contents Index of Tables ..............................................................................................III Index of Figures............................................................................................. IV Abstract .......................................................................................................... VI Zusammenfassung........................................................................................VII Introduction ......................................................................................................1 1.1 Why study primate parasites?...................................................................................2 1.2 Objectives of the study and thesis outline ................................................................4 Literature Review.............................................................................................7 2.1 Parasites -
Early Developmental Stages of Nematodes Occurring in Swine
EARLY DEVELOPMENTAL STAGES OF NEMATODES OCCURRING IN SWINE By JOSEPH E. ALICATA Junior Zoolofllst Zoological Division Bureau of Animal Industry UNITED STATES DEPARTMENT OF AGRICULTURE, WASHINGTON, D. C. Technical Bulletin No. 489 December 1935 UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D. C. EARLY DEVELOPMENTAL STAGES OF NEMATODES OCCURRING IN SWINE By JOSEPH E. ALICATA Junior zoologist, Zoological Division, Bureau of Animal Industry CONTENTS Page Morphological and experimental data—Con. Page Introduction 1 Ascaridae. _ 44 Historical résumé 2 Ascaris suum Goeze, 1782 44 General remarks on life histories of groups Trichuridae 47 studied _. 4 Trichuris suis (Schrank, 1788) A. J. Abbreviations and symbols used in illus- Smith, 1908 47 trations __ 5 Trichostrongylidae 51 Morphological and experimental data 5 HyostrongylîLS rubidus (Hassall and Spiruridae 5 Stiles, 1892) HaU,.1921 51 Gongylonema pulchrum Molin, 1857.. 5 Strongylidae. _— — .-. 68 Oesophagostomum dentatum (Ru- Ascarops strongylina (Rudolphi, 1819) dolphi, 1803) Molin, 1861 68 Alicata and Mclntosh, 1933 21 Stephanurus dentatus Diesing, 1839..- 73 Physocephalus sexalatus (Molin, 1860) Strongyloididae 79 Diesing, 1861 27 Strongyloides ransomi Schwartz and Metastrongyhdae 33 AUcata, 1930. 79 Metastrongylus salmi Gedoelst, 1923— 33 Comparative morphology of eggs and third- Metastrongylus elongattbs (Dujardin, stage larvae of some nematodes occurring 1845) Railliet and Henry, 1911 37 in swine 85 Choerostrongylus pudendotectus (Wos- Summary 87 tokow, 1905) Skrjabin, 1924 41 Literature cited 89 INTRODUCTION The object of this bulletin is to present the result^ of an investiga- tion on the early developmental stages of nematodes of common occur- rence in domestic swine. Observations on the stages in the definitive host of two of the nematodes, Gongylonema pulchrum and Hyostrongy- lus rubidus, are only briefly given, however, since little is known of these stages in these nematodes. -
Differing Effects of Standard and Harsh Nucleic Acid Extraction Procedures on Diagnostic Helminth Real-Time Pcrs Applied to Human Stool Samples
pathogens Article Differing Effects of Standard and Harsh Nucleic Acid Extraction Procedures on Diagnostic Helminth Real-Time PCRs Applied to Human Stool Samples Tanja Hoffmann 1, Andreas Hahn 2 , Jaco J. Verweij 3 ,Gérard Leboulle 4, Olfert Landt 4, Christina Strube 5 , Simone Kann 6, Denise Dekker 7 , Jürgen May 7 , Hagen Frickmann 1,2,† and Ulrike Loderstädt 8,*,† 1 Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany; [email protected] (T.H.); [email protected] or [email protected] (H.F.) 2 Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany; [email protected] 3 Laboratory for Medical Microbiology and Immunology, Elisabeth Tweesteden Hospital, 5042 AD Tilburg, The Netherlands; [email protected] 4 TIB MOLBIOL, 12103 Berlin, Germany; [email protected] (G.L.); [email protected] (O.L.) 5 Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; [email protected] 6 Medical Mission Institute, 97074 Würzburg, Germany; [email protected] 7 Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany; [email protected] (D.D.); [email protected] (J.M.) Citation: Hoffmann, T.; Hahn, A.; 8 Department of Hospital Hygiene & Infectious Diseases, University Medicine Göttingen, Verweij, J.J.; Leboulle, G.; Landt, O.; 37075 Göttingen, Germany Strube, C.; Kann, S.; Dekker, D.; * Correspondence: [email protected] May, J.; Frickmann, H.; et al. Differing † Hagen Frickmann and Ulrike Loderstädt contributed equally to this work. Effects of Standard and Harsh Nucleic Acid Extraction Procedures Abstract: This study aimed to assess standard and harsher nucleic acid extraction schemes for on Diagnostic Helminth Real-Time diagnostic helminth real-time PCR approaches from stool samples. -
And a Host List of These Parasites
Onderstepoort Journal of Veterinary Research, 74:315–337 (2007) A check list of the helminths of guineafowls (Numididae) and a host list of these parasites K. JUNKER and J. BOOMKER* Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria Private Bag X04, Onderstepoort, 0110 South Africa ABSTRACT JUNKER, K. & BOOMKER, J. 2007. A check list of the helminths of guineafowls (Numididae) and a host list of these parasites. Onderstepoort Journal of Veterinary Research, 74:315–337 Published and personal records have been compiled into a reference list of the helminth parasites of guineafowls. Where data on other avian hosts was available these have been included for complete- ness’ sake and to give an indication of host range. The parasite list for the Helmeted guineafowls, Numida meleagris, includes five species of acanthocephalans, all belonging to a single genus, three trematodes belonging to three different genera, 34 cestodes representing 15 genera, and 35 nema- todes belonging to 17 genera. The list for the Crested guineafowls, Guttera edouardi, contains a sin- gle acanthocephalan together with 10 cestode species belonging to seven genera, and three nema- tode species belonging to three different genera. Records for two cestode species from genera and two nematode species belonging to a single genus have been found for the guineafowl genus Acryllium. Of the 70 helminths listed for N. meleagris, 29 have been recorded from domestic chick- ens. Keywords: Acanthocephalans, cestodes, check list, guineafowls, host list, nematodes, trematodes INTRODUCTION into the southern Mediterranean region several mil- lennia before turkeys and hundreds of years before Guineafowls (Numididae) originated on the African junglefowls from which today’s domestic chickens continent, and with the exception of an isolated pop- were derived. -
Larva Migrans Importance Larva Migrans Is a Group of Clinical Syndromes That Result from the Movement of Overview Parasite Larvae Through Host Tissues
Larva Migrans Importance Larva migrans is a group of clinical syndromes that result from the movement of Overview parasite larvae through host tissues. The symptoms vary with the location and extent of the migration. Organisms may travel through the skin (cutaneous larva migrans) or internal organs (visceral larva migrans). Some larvae invade the eye (ocular larva migrans). Each form of the disease can be caused by a number of organisms. The Last Updated: December 2013 syndromes are loosely defined and the list of causative agents varies with the author. Cutaneous Larva Migrans Larval migration in the skin of the host causes cutaneous larva migrans. These infections are often acquired by skin contact with environmental sources of larvae, such as the soil. The larvae cause a pruritic, migrating dermatitis as they travel through the skin. Many of these infections are self-limiting. Animal hookworms are the most common cause of cutaneous larva migrans in humans. Ancylostoma braziliense is the most important species. Less often, cutaneous larva migrans is caused by A. caninum, A.,ceylanicum, A. tubaeforme, Uncinaria stenocephala or Bunostomum phlebotomum. In their usual hosts, the entry of hookworm larvae into the skin is followed by penetration of the dermis. In the dermis, the larvae enter via veins or lymphatic vessels, eventually reach the blood, and migrate through the lungs before reaching the intestines, where they mature into adults. In abnormal hosts such as humans, zoonotic hookworms can enter the epidermis, but most species cannot readily penetrate the dermis. Instead, these larvae remain trapped in the skin. and migrate for a time in the epidermis before dying. -
Appendix I. Therapeutic Recommendations (Reprinted from the Medical Letter) the Medical Letter® on Drugs and Therapeutics
Appendix I. Therapeutic Recommendations (Reprinted from The Medical Letter) The Medical Letter® On Drugs and Therapeutics Published by The Medical Letter, Inc .• 1000 Main Street, New Rochelle, NY. 10801 • A Nonprofit Publication Vol. 35 (Issue 911) December 10, 1993 DRUGS FOR PARASITIC INFECTIONS Parasitic infections are found throughout the world. With increasing travel, immigration, use of immunosuppressive drugs, and the spread of AIDS, physicians anywhere may see infections caused by previously unfamiliar parasites. The table below lists first-choice and alternative drugs for most parasitic infections. Adverse effects of antiparasitic drugs are listed on page 120. For information on the safety of antiparasitic drugs in pregnancy, see The Medical Letter Handbook of Antimicrobial Therapy, 1992, page 151. DRUGS FOR TREATMENT OF PARASITIC INFECTIONS Infection Drug Adult Dosage* Pediatric Dosage* AMEBIASIS (Entamoeba histolytica) a.ymptomatlc Drug of choice: lodoquinol' 650 mg tid x 20d 30-40 mg/kg/d in 3 doses x 20d OR Paromomycin 25-30 mg/kg/d in 3 doses x 7d 25-30 mg/kg/d in 3 doses x 7d Alternative: Diloxanide furoate' 500 mg tid x 10d 20 mg/kg/d in 3 doses x 10d mild to mod.rat. Int•• tlnal dl••••• Drugs of choice:3 Metronidazole 750 mg tid x 10d 35-50 mg/kg/d in 3 doses x 10d OR Tinidazole' 2 grams/d x 3d 50 mg/kg (max. 2 grams) qd x 3d s.v.r. Int•• tlnal dis.as. Drugs of choice:3 Metronidazole 750 mg tid x 10d 35-50 mg/kg/d in 3 doses x 10d OR Tinidazole' 600 mg bid x 5d 50 mg/kg (max. -
U.S. National Animal Parasite Collection Records
U.S. National Animal Parasite Collection Records 1767-2003 Figure 1. USDA-ARS Animal Parasitology Institute logo Collection 223 167 Linear Feet United States Department of Agriculture National Agricultural Library Special Collections 10301 Baltimore Avenue Beltsville, MD 20705 Table of Contents Container List.................................................................................................................................. 2 Series I. Parasite Illustrations. 1767-1971. 46 boxes. ................................................................ 2 Subseries I.A. Standard-size Illustrations. 1767-1963. 26 boxes. ...................................................... 2 Subseries I.B. Oversize Illustrations. 20 boxes. ................................................................................ 97 Series II. Parasite Photographic Materials. 1902-1977. 51 boxes. ....................................... 114 Subseries II.A. Lantern Slides. 1906-1940, undated. 9 boxes. ...................................................... 114 Subseries II.B. Glass Plate Negatives. 1902-1938, undated. 31 boxes. ......................................... 115 Subseries II.C. Glass Exhibit Plates. Undated. 3 boxes. ................................................................ 117 Subseries II.D. Parasite Photographs. 1909-1965, undated. 6 boxes. ............................................ 117 Subseries II.E. Publication Process Galleys and Negatives. 1955. 2 boxes. .................................. 124 Series III. History of the Animal Parasite -
Zoonotic Infections – an Overview
14.1 CHAPTER 14 Zoonotic infections – an overview John M. Goldsmid 14.1 INTRODUCTION Zoonotic infections can be defined as infections of animals that are naturally transmissible to humans. As such they are worldwide and often spread with humans through their companion and domestic animals. However, when humans move to new areas or come into contact with different animal species (eg moving into newly cleared natural forest areas), then new zoonoses may emerge or are recognised, and it is significant that many of the new or newly recognised emerging infections of humans are zoonotic in origin1. The probable reasons for the emergence of new zoonotic diseases are many and include, as described by McCarthy and Moore2 for the Helminth zoonoses: “changes in social, dietary or cultural mores, environmental changes, and the improved recognition of heretofore neglected infections often coupled with an improved ability to diagnose infection”. Zoonotic infections may be very localised in their distribution and often reflect particular associations between the natural reservoir hosts and humans – they are thus often influenced by human dietary habits, behaviour and relationships with different animal species. For the practising physician, the knowledge that a disease is zoonotic, is of particular significance in the differential diagnosis (hence the need in all history taking, of asking the question of contact with animals), and in the prevention and control of such diseases. A list of the more important/significant zoonotic infections is given in Table 1 which also outlines the aetiological agent of the disease; its usual animal reservoir host and rough geographical distribution. In some cases, where the vector may serve as a reservoir, it is included under reservoir hosts. -
Mammalian Gastrointestinal Parasites in Rainforest Remnants of Anamalai Hills, Western Ghats, India
Mammalian gastrointestinal parasites in rainforest remnants of Anamalai Hills, Western Ghats, India † DEBAPRIYO CHAKRABORTY , SHAIK HUSSAIN, DMAHENDAR REDDY, SACHIN RAUT, SUNIL TIWARI, VINOD KUMAR and GOVINDHASWAMY UMAPATHY* Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India *Corresponding author (Fax, 00-91-40-27160311; Email, [email protected]) †Present address: Department of Evolutionary Anthropology, Duke University and Duke Global Health Institute, Durham, NC, USA Habitat fragmentation is postulated to be a major factor influencing infectious disease dynamics in wildlife popula- tions and may also be responsible, at least in part, for the recent spurt in the emergence, or re-emergence, of infectious diseases in humans. The mechanism behind these relationships are poorly understood due to the lack of insights into the interacting local factors and insufficient baseline data in ecological parasitology of wildlife. Here, we studied the gastrointestinal parasites of nonhuman mammalian hosts living in 10 rainforest patches of the Anamalai Tiger Reserve, India. We examined 349 faecal samples of 17 mammalian species and successfully identified 24 gastroin- testinal parasite taxa including 1 protozoan, 2 trematode, 3 cestode and 18 nematode taxa. Twenty of these parasites are known parasites of humans. We also found that as much as 73% of all infected samples were infected by multiple parasites. In addition, the smallest and most fragmented forest patches recorded the highest parasite richness; the pattern across fragments, however, seemed to be less straightforward, suggesting potential interplay of local factors. [Chakraborty D, Hussain S, Reddy DM, Raut S, Tiwari S, Kumar V and Umapathy G 2015 Mammalian gastrointestinal parasites in rainforest remnants of Anamalai Hills, Western Ghats, India.