And a Host List of These Parasites
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Two New Species of Genus Mediorhynchus Van Cleave, 1916 from Birds of Karachi
Pakistan J. Zool., vol. 36(2), pp. 139-142, 2004. Two New Species of Genus Mediorhynchus Van Cleave, 1916 from Birds of Karachi ALY KHAN, FATIMA MUJIB BILQEES AND MUTI-UR-REHMAN Crop Diseases Research Institute, PARC, University of Karachi, Karachi-75270 (AK), Department of Parasitology, Faculty of Health Sciences, Baqai Medical University, Karachi-74600 (FMB) and Pakistan Ship Owners, Govt. College, North Nazimabad, Karachi-74700, Pakistan (MR) Abstract.- Two new species of Mediorhynchus Van Cleave, 1916 viz ., M. fatimaae in Eagle ( Burastur teesa ) and M. nickoli in Kite ( Milvus migrans migrans ) have been discovered. M. fatimaae , new species is distinguished mainly by a unique proboscis armature 10-12 longitudinal rows having 7-8 hooks and 10 longitudinal rows having 7-8 spines and eggs measuring 0.041-0.045 by 0.015-0.018. M. nickoli n.sp., possesses 10 longitudinal rows having 7-8 hooks and six longitudinal rows having 6-8 spines and eggs measuring 0.046-0.051 by 0.0076-0.015. This is the first record of Mediorhynchus from Pakistan. Keywords: Birds, Mediorhynchus , Karachi, Pakistan. INTRODUCTION No. of hosts examined 10 No. of specimens recovered 4 male, 8 female from one host. lthough literature on acanthocephalan A parasites of birds is fairly extensive, only few reports about these worms from birds are available in Pakistan (Khan and Bilqees, 1998; Khan et al ., 2001, 2002). In the present paper two new species of Acanthocephala are described, which are new to science. MATERIALS AND METHODS The acanthocephala were fixed in FAA (formalin, acetic acid and 50, ethanol 5:3:92) for 24 hours. -
(FNP) Bonny Island, Rivers State, Nigeria
Biodiversity Assessment of Finima Nature Park (FNP) Bonny Island, Rivers State, Nigeria October, 2019 Finima Nature Park Biodiversity Assessment 2019 Table of Contents Preface .................................................................................................................................................................................... 4 Executive Summary ................................................................................................................................................................. 5 Wildlife and Mammals ............................................................................................................................................................ 7 1.0 Introduction ............................................................................................................................................................ 8 2.0 Methods Employed in this FNP Mammal Study ..................................................................................................... 8 3.0 Results and Discussion .......................................................................................................................................... 10 3.1 Highlights of the Survey ........................................................................................................................................ 17 4.0 Towards Remediation of the Problems that Mammals and other Wildlife now Face or May Face in the Future, in the FNP and Environs ................................................................................................................................................... -
Importance of Tactile and Visual Stimuli of Eggs and Nest for Termination of Egg Laying of Red Junglefowl
The Auk 112(2):483-488, 1995 IMPORTANCE OF TACTILE AND VISUAL STIMULI OF EGGS AND NEST FOR TERMINATION OF EGG LAYING OF RED JUNGLEFOWL THEO MEIJER Departmentof Ethology,University of BieIefeld,P.O. Box100131, 33501Bielefeld, Germany ABSTRACT.--Experimentswere conductedto separatethe influence of tactile and visual stimuli emanating from the nest or eggs on the development of incubation behavior, the terminationof egg laying, and the determinationof clutchsize. Red Junglefowl (Gallus gallus spadiceus)hens, whose eggswere left inside the nest (experiment 1), receivedboth tactile and visualinformation, remained in the nestbox longer,and stoppedlaying after eight days (or sixeggs). Sixteen or 17females incubated. Leaving only the firstegg in the nest(experiment 2) gavesimilar results. When the eggslaid were placedunder a wire-meshbasket (experiment 3) suchthat the hen couldsee but not touchthe accumulatingeggs, laying stopped two days (or one egg) later than in experiment1, and mosthens "incubated"on the empty nestuntil the nestbox wasremoved. Surprisingly, when eggswere continuallyremoved (experiment 4), hensalso incubated progressively more, stopped laying after two weeks(or nine eggs), and then sat on the empty nest for one or more days. Stimulation of the brood patch by the nest alone led to more incubationand to termination of egg laying. Visual stimuli alone providedby eggsaccelerated both processesand were sufficientfor one-half of the hens to maintainfull incubationbehavior. Red Junglefowl do not appearto judgeclutch size visually. Received9 December1993, accepted25 February1994. DURING THE BREEDINGSEASON, a female has to nest. The few experimentsby which tactile in- make two important "decisions":when to start formation coming from the brood patch was laying, and when to stop laying. -
Some Parasites of the Common Crow, Corvus Brachyrhynchos Brehm, from Ohio1' 2
SOME PARASITES OF THE COMMON CROW, CORVUS BRACHYRHYNCHOS BREHM, FROM OHIO1' 2 JOSEPH JONES, JR. Biology Department, Saint Augustine's College, Raleigh, North Carolina ABSTRACT Thirty-one species of parasites were taken from 339 common crows over a twenty- month period in Ohio. Of these, nine are new host records: the cestodes Orthoskrjabinia rostellata and Hymenolepis serpentulus; the nematodes Physocephalus sexalatus, Splendido- filaria quiscali, and Splendidofilaria flexivaginalis; and the arachnids Laminosioptes hymenop- terus, Syringophilus bipectinatus, Analges corvinus, and Gabucinia delibata. Twelve parasites not previously reported from the crow in Ohio were also recognized. Two tables, one showing the incidence and intensity of parasitism in the common crow in Ohio, the other listing previous published and unpublished records of common crow parasites, are included. INTRODUCTION Although the crow is of common and widespread occurrence east of the Rockies, no comprehensive, year-round study of parasitism in this bird has been reported. Surveys of parasites of common crows, collected for the most part during the winter season, have been made by Ward (1934), Morgan and Waller (1941), and Daly (1959). In addition, records of parasitism in the common crow, reported as a part of general surveys of bird parasites, are included in publications by Ransom (1909), Mayhew (1925), Cram (1927), Canavan (1929), Rankin (1946), Denton and Byrd (1951), Mawson (1956; 1957), Robinson (1954; 1955). This paper contains the results of a two-year study made in Ohio, during which 339 crows were examined for internal and external parasites. MATERIALS AND METHODS Juvenile and adult crows were shot in the field and wrapped individually in paper bags prior to transportation to the laboratory. -
Platypus Collins, L.R
AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March. -
Hungary & Transylvania
Although we had many exciting birds, the ‘Bird of the trip’ was Wallcreeper in 2015. (János Oláh) HUNGARY & TRANSYLVANIA 14 – 23 MAY 2015 LEADER: JÁNOS OLÁH Central and Eastern Europe has a great variety of bird species including lots of special ones but at the same time also offers a fantastic variety of different habitats and scenery as well as the long and exciting history of the area. Birdquest has operated tours to Hungary since 1991, being one of the few pioneers to enter the eastern block. The tour itinerary has been changed a few times but nowadays the combination of Hungary and Transylvania seems to be a settled and well established one and offers an amazing list of European birds. This tour is a very good introduction to birders visiting Europe for the first time but also offers some difficult-to-see birds for those who birded the continent before. We had several tour highlights on this recent tour but certainly the displaying Great Bustards, a majestic pair of Eastern Imperial Eagle, the mighty Saker, the handsome Red-footed Falcon, a hunting Peregrine, the shy Capercaillie, the elusive Little Crake and Corncrake, the enigmatic Ural Owl, the declining White-backed Woodpecker, the skulking River and Barred Warblers, a rare Sombre Tit, which was a write-in, the fluty Red-breasted and Collared Flycatchers and the stunning Wallcreeper will be long remembered. We recorded a total of 214 species on this short tour, which is a respectable tally for Europe. Amongst these we had 18 species of raptors, 6 species of owls, 9 species of woodpeckers and 15 species of warblers seen! Our mammal highlight was undoubtedly the superb views of Carpathian Brown Bears of which we saw ten on a single afternoon! 1 BirdQuest Tour Report: Hungary & Transylvania 2015 www.birdquest-tours.com We also had a nice overview of the different habitats of a Carpathian transect from the Great Hungarian Plain through the deciduous woodlands of the Carpathian foothills to the higher conifer-covered mountains. -
Tinamiformes – Falconiformes
LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma -
Epidemiology, Diagnosis and Control of Poultry Parasites
FAO Animal Health Manual No. 4 EPIDEMIOLOGY, DIAGNOSIS AND CONTROL OF POULTRY PARASITES Anders Permin Section for Parasitology Institute of Veterinary Microbiology The Royal Veterinary and Agricultural University Copenhagen, Denmark Jorgen W. Hansen FAO Animal Production and Health Division FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1998 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-27 ISBN 92-5-104215-2 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Information Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. C) FAO 1998 PREFACE Poultry products are one of the most important protein sources for man throughout the world and the poultry industry, particularly the commercial production systems have experienced a continuing growth during the last 20-30 years. The traditional extensive rural scavenging systems have not, however seen the same growth and are faced with serious management, nutritional and disease constraints. These include a number of parasites which are widely distributed in developing countries and contributing significantly to the low productivity of backyard flocks. -
Reproductive Ecology of Tibetan Eared Pheasant Crossoptilon Harmani in Scrub Environment, with Special Reference to the Effect of Food
Ibis (2003), 145, 657–666 Blackwell Publishing Ltd. Reproductive ecology of Tibetan Eared Pheasant Crossoptilon harmani in scrub environment, with special reference to the effect of food XIN LU1* & GUANG-MEI ZHENG2 1Department of Zoology, College of Life Sciences, Wuhan University, Wuhan 430072, China 2Department of Ecology, College of Life Sciences, Beijing Normal University, Beijing 100875, China We studied the nesting ecology of two groups of the endangered Tibetan Eared Pheasants Crossoptilon harmani in scrub environments near Lhasa, Tibet, during 1996 and 1999–2001. One group received artificial food from a nunnery prior to incubation whereas the other fed on natural food. This difference in the birds’ nutritional history allowed us to assess the effects of food on reproduction. Laying occurred between mid-April and early June, with a peak at the end of April or early May. Eggs were laid around noon. Adult females produced one clutch per year. Clutch size averaged 7.4 eggs (4–11). Incubation lasted 24–25 days. We observed a higher nesting success (67.7%) than reported for other eared pheasants. Pro- visioning had no significant effect on the timing of clutch initiation or nesting success, and a weak effect on egg size and clutch size (explaining 8.2% and 9.1% of the observed variation, respectively). These results were attributed to the observation that the unprovisioned birds had not experienced local food shortage before laying, despite spending more time feeding and less time resting than the provisioned birds. Nest-site selection by the pheasants was non-random with respect to environmental variables. Rock-cavities with an entrance aver- aging 0.32 m2 in size and not deeper than 1.5 m were greatly preferred as nest-sites. -
Bird Checklists of the World Country Or Region: Ghana
Avibase Page 1of 24 Col Location Date Start time Duration Distance Avibase - Bird Checklists of the World 1 Country or region: Ghana 2 Number of species: 773 3 Number of endemics: 0 4 Number of breeding endemics: 0 5 Number of globally threatened species: 26 6 Number of extinct species: 0 7 Number of introduced species: 1 8 Date last reviewed: 2019-11-10 9 10 Recommended citation: Lepage, D. 2021. Checklist of the birds of Ghana. Avibase, the world bird database. Retrieved from .https://avibase.bsc-eoc.org/checklist.jsp?lang=EN®ion=gh [26/09/2021]. Make your observations count! Submit your data to ebird. -
Thése REBBAH Abderraouf Chouaib Bibliothéque.Pdf
République Algérienne Démocratique et Populaire Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Université Larbi Ben M’hidi Oum El Bouaghi Faculté Des Sciences Exactes et des Sciences de la Nature et de la Vie Département des Sciences de la Nature et de la Vie Thèse Présentée en vue de l’obtention du diplôme Doctorat LMD en Sciences de la nature Option: Structure et dynamique des écosystèmes Théme INVENTAIRE ET ECOLOGIE DES OISEAUX FORESTIERS DE DJEBEL SIDI REGHIS (OUM EL BOUAGHI) Présentée par : Mr.REBBAH Abderraouf Chouaib Membres du Jury: Président: BELAIDI Abdelhakim Pr (Université Larbi Ben Mhidi, Oum El-Bouaghi). Promoteur : SAHEBMenouar Pr (Université Larbi Ben Mhidi, Oum El-Bouaghi). Examinateurs: ABABSA Labed Pr (Université Larbi Ben Mhidi, Oum El-Bouaghi). Examinateurs: HOUHAMDI Moussa Pr (Université de Guelma). Examinateurs: OUAKID Mohamed Laid Pr (Université d’Annaba). Année universitaire: 2018-2019 << ِ ِ أَﻟَْﻢ ﺗَ َﺮ أَ ﱠن ﱠاﻪﻠﻟَ ﻳُﺴَﺒِّ ُﺢ ﻟَﻪُ ﻣَ ْﻦ ﻓﻲ اﻟﺴﱠﻤَ َﺎوات َو ْاﻷَ ْر ِض َواﻟﻄﱠْﻴ ُﺮ ٍ ۖ◌ ِ ِ ۗ◌ ِ ِ ﺻَ ﺎ ﻓ ـﱠ ﺎ ت ُﻛ ﻞﱞ ﻗَ ْﺪ ﻋَ ﻠ ﻢَ ﺻَ َﻼ ﺗَ ﻪُ َو ﺗَ ْﺴ ﺒ ﻴ ﺤَ ﻪُ َو ﱠاﻪﻠﻟُ ﻋَﻠﻴﻢٌ ﺑﻤَﺎ ﻳَﻔْ َﻌﻠُ َﻮن >> ﺳﻮرة اﻟﻨﻮراﻷﻳﺔ 41 Dédicaces Je dédie ce travail à : A mes parents qui m’ont tout donné, et qui étaient toujours la à coté de moi dans chaque pats depuis le premier crie pour m’aidé, m’orienté avec leurs amour et leurs sacrifices, malgré les couts dures de la vie. Aucun hommage ne pourrait être à la hauteur de l’amour Dont ils ne cessent de me combler. -
Protozoal Management in Turkey Production Elle Chadwick, Phd July
Protozoal Management in Turkey Production Elle Chadwick, PhD July 10, 2020 (updated) The two turkey protozoa that cause significant animal welfare and economic distress include various Eimeria species of coccidia and Histomonas meleagridis (McDougald, 1998). For coccidia, oral ingestion of the organism allows for colonization and replication while fecal shedding passes the organism to another host. With Histomonas, once one turkey is infected it can pass Histomonas to its flock mates by cloacal contact. Outbreaks of coccidiosis followed by Histomonosis (blackhead disease) is commonly seen in the field but the relationship between the protozoa is not understood. Turkey fecal moisture, intestinal health and behavior changes due to coccidiosis could be increasing horizontal transmission of Histomonas. Clinical signs of coccidiosis, like macroscopic lesions in the intestines, are not necessarily evident but altered weight gain and feed conversion are (Madden and Ruff, 1979; Milbradt et al., 2014). Birds can become more vocal. Depending on the infective dose, strain of coccidia and immune response of the turkey, intestinal irritation leading to diarrhea can occur (Chapman, 2008; McDougald, 2013). Birds are also more susceptible to other infectious agents. This is potentially due to the damage the coccidia can cause on the mucosal lining of the intestines but studies on this interaction are limited (Ruff et al., 1981; Milbradt et al., 2014). Coccidia sporozoites penetrate the turkey intestinal mucosa and utilize the intestinal tract for replication and survival. Of the seven coccidia Eimeria species known for infecting turkeys, four are considered pathogenic (E. adenoeides, E. gallopavonis, E. meleagrimitis and E. dispersa) (Chapman, 2008; McDougald, 2013; Milbradt et al., 2014).