Reproductive Ecology of Tibetan Eared Pheasant Crossoptilon Harmani in Scrub Environment, with Special Reference to the Effect of Food
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Importance of Tactile and Visual Stimuli of Eggs and Nest for Termination of Egg Laying of Red Junglefowl
The Auk 112(2):483-488, 1995 IMPORTANCE OF TACTILE AND VISUAL STIMULI OF EGGS AND NEST FOR TERMINATION OF EGG LAYING OF RED JUNGLEFOWL THEO MEIJER Departmentof Ethology,University of BieIefeld,P.O. Box100131, 33501Bielefeld, Germany ABSTRACT.--Experimentswere conductedto separatethe influence of tactile and visual stimuli emanating from the nest or eggs on the development of incubation behavior, the terminationof egg laying, and the determinationof clutchsize. Red Junglefowl (Gallus gallus spadiceus)hens, whose eggswere left inside the nest (experiment 1), receivedboth tactile and visualinformation, remained in the nestbox longer,and stoppedlaying after eight days (or sixeggs). Sixteen or 17females incubated. Leaving only the firstegg in the nest(experiment 2) gavesimilar results. When the eggslaid were placedunder a wire-meshbasket (experiment 3) suchthat the hen couldsee but not touchthe accumulatingeggs, laying stopped two days (or one egg) later than in experiment1, and mosthens "incubated"on the empty nestuntil the nestbox wasremoved. Surprisingly, when eggswere continuallyremoved (experiment 4), hensalso incubated progressively more, stopped laying after two weeks(or nine eggs), and then sat on the empty nest for one or more days. Stimulation of the brood patch by the nest alone led to more incubationand to termination of egg laying. Visual stimuli alone providedby eggsaccelerated both processesand were sufficientfor one-half of the hens to maintainfull incubationbehavior. Red Junglefowl do not appearto judgeclutch size visually. Received9 December1993, accepted25 February1994. DURING THE BREEDINGSEASON, a female has to nest. The few experimentsby which tactile in- make two important "decisions":when to start formation coming from the brood patch was laying, and when to stop laying. -
A Molecular Phylogeny of the Pheasants and Partridges Suggests That These Lineages Are Not Monophyletic R
Molecular Phylogenetics and Evolution Vol. 11, No. 1, February, pp. 38–54, 1999 Article ID mpev.1998.0562, available online at http://www.idealibrary.com on A Molecular Phylogeny of the Pheasants and Partridges Suggests That These Lineages Are Not Monophyletic R. T. Kimball,* E. L. Braun,*,† P. W. Zwartjes,* T. M. Crowe,‡,§ and J. D. Ligon* *Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131; †National Center for Genome Resources, 1800 Old Pecos Trail, Santa Fe, New Mexico 87505; ‡Percy FitzPatrick Institute, University of Capetown, Rondebosch, 7700, South Africa; and §Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024-5192 Received October 8, 1997; revised June 2, 1998 World partridges are smaller and widely distributed in Cytochrome b and D-loop nucleotide sequences were Asia, Africa, and Europe. Most partridge species are used to study patterns of molecular evolution and monochromatic and primarily dull colored. None exhib- phylogenetic relationships between the pheasants and its the extreme or highly specialized ornamentation the partridges, which are thought to form two closely characteristic of the pheasants. related monophyletic galliform lineages. Our analyses Although the order Galliformes is well defined, taxo- used 34 complete cytochrome b and 22 partial D-loop nomic relationships are less clear within the group sequences from the hypervariable domain I of the (Verheyen, 1956), due to the low variability in anatomi- D-loop, representing 20 pheasant species (15 genera) and 12 partridge species (5 genera). We performed cal and osteological traits (Blanchard, 1857, cited in parsimony, maximum likelihood, and distance analy- Verheyen, 1956; Lowe, 1938; Delacour, 1977). -
1471-2148-10-132.Pdf
Shen et al. BMC Evolutionary Biology 2010, 10:132 http://www.biomedcentral.com/1471-2148/10/132 RESEARCH ARTICLE Open Access AResearch mitogenomic article perspective on the ancient, rapid radiation in the Galliformes with an emphasis on the Phasianidae Yong-Yi Shen1,2,3, Lu Liang1,2,3, Yan-Bo Sun1,2,3, Bi-Song Yue4, Xiao-Jun Yang1, Robert W Murphy1,5 and Ya- Ping Zhang*1,2 Abstract Background: The Galliformes is a well-known and widely distributed Order in Aves. The phylogenetic relationships of galliform birds, especially the turkeys, grouse, chickens, quails, and pheasants, have been studied intensively, likely because of their close association with humans. Despite extensive studies, convergent morphological evolution and rapid radiation have resulted in conflicting hypotheses of phylogenetic relationships. Many internal nodes have remained ambiguous. Results: We analyzed the complete mitochondrial (mt) genomes from 34 galliform species, including 14 new mt genomes and 20 published mt genomes, and obtained a single, robust tree. Most of the internal branches were relatively short and the terminal branches long suggesting an ancient, rapid radiation. The Megapodiidae formed the sister group to all other galliforms, followed in sequence by the Cracidae, Odontophoridae and Numididae. The remaining clade included the Phasianidae, Tetraonidae and Meleagrididae. The genus Arborophila was the sister group of the remaining taxa followed by Polyplectron. This was followed by two major clades: ((((Gallus, Bambusicola) Francolinus) (Coturnix, Alectoris)) Pavo) and (((((((Chrysolophus, Phasianus) Lophura) Syrmaticus) Perdix) Pucrasia) (Meleagris, Bonasa)) ((Lophophorus, Tetraophasis) Tragopan))). Conclusions: The traditional hypothesis of monophyletic lineages of pheasants, partridges, peafowls and tragopans was not supported in this study. -
Specimen Record of a Long-Billed Murrelet from Eastern Washington, with Notes on Plumage and Morphometric Differences Between Long-Billed and Marbled Murrelets
SPECIMEN RECORD OF A LONG-BILLED MURRELET FROM EASTERN WASHINGTON, WITH NOTES ON PLUMAGE AND MORPHOMETRIC DIFFERENCES BETWEEN LONG-BILLED AND MARBLED MURRELETS CHRISTOPER W. THOMPSON, WashingtonDepartment of Fish and Wildlife, 16018 Mill Creek Blvd., Mill Creek, Washington98012, and Burke Museum,Box 353100, Universityof Washington,Seattle, Washington 98195 KEVIN J. PULLEN, ConnerMuseum, Washington State University, Pullman, Wash- ington 99164 RICHARD E. JOHNSON, Conner Museumand School of BiologicalSciences, WashingtonState University,Pullman, Washington 99164 ERICB. CUMMINS, WashingtonDepartment of Fishand Wildlife, 600 CapitolWay North, Olympia,Washington 98501 ABSTRACT:On 14 August2001, RobertDice found a Brachyramphusmurrelet approximately12 mileseast of Pomeroyin easternWashington state more than 200 milesfrom the nearestmarine waters. The bird died later that day. It had begun definitiveprebasic body molt, but not flightfeather molt. Necropsy indicated that the birdwas a female,probably in her secondcalendar year. Johnson and Thompson identifiedthe birdas a Long-billedMurrelet, Brachyramphus perdix, on the basisof plumageand measurements;it is the firstspecimen of thisspecies for Washington state. Contrary to many recent publicationsstating that Long-billedand Marbled Murreletshave white and brownunder wing coverts, respectively, we confirmedthat bothspecies typically have white under wing coverts prior to definitiveprebasic molt andbrown under wing coverts after this molt. Absence of anyextensive storm systems in the North Pacificin -
Introduction to Risk Assessments for Methods Used in Wildlife Damage Management
Human Health and Ecological Risk Assessment for the Use of Wildlife Damage Management Methods by USDA-APHIS-Wildlife Services Chapter I Introduction to Risk Assessments for Methods Used in Wildlife Damage Management MAY 2017 Introduction to Risk Assessments for Methods Used in Wildlife Damage Management EXECUTIVE SUMMARY The USDA-APHIS-Wildlife Services (WS) Program completed Risk Assessments for methods used in wildlife damage management in 1992 (USDA 1997). While those Risk Assessments are still valid, for the most part, the WS Program has expanded programs into different areas of wildlife management and wildlife damage management (WDM) such as work on airports, with feral swine and management of other invasive species, disease surveillance and control. Inherently, these programs have expanded the methods being used. Additionally, research has improved the effectiveness and selectiveness of methods being used and made new tools available. Thus, new methods and strategies will be analyzed in these risk assessments to cover the latest methods being used. The risk assements are being completed in Chapters and will be made available on a website, which can be regularly updated. Similar methods are combined into single risk assessments for efficiency; for example Chapter IV contains all foothold traps being used including standard foothold traps, pole traps, and foot cuffs. The Introduction to Risk Assessments is Chapter I and was completed to give an overall summary of the national WS Program. The methods being used and risks to target and nontarget species, people, pets, and the environment, and the issue of humanenss are discussed in this Chapter. From FY11 to FY15, WS had work tasks associated with 53 different methods being used. -
A Checklist of Somerset Birds
A Checklist of Somerset Birds The Somerset List to the end of 2014 contains 357 species. Using the BOURC classification 336 are in Category A, 18 in B and three in C. Golden Pheasant has been removed from the list as it is considered that there never was a self-sustaining population in Somerset. An explanation of the BOUC classification is given below. A Species that have been recorded in an apparently natural state at least once since 1 January 1950. B Species that have been recorded in an apparently natural state at least prior to 31 December 1949, but have not been recorded subsequently. C1 Naturalized introduced species - species that have occurred only as a result of introduction, e.g. Egyptian Goose Alopochen aegyptiacus C2 Naturalized established species – species with established populations resulting from introduction by Man, but which also occur in an apparently natural state, e.g. Greylag Goose Anser anser C3 Naturalized re-established species – species with populations successfully re-established by Man in areas of former occurrence, e.g. Red Kite Milvus milvus. C4 Naturalized feral species – domesticated species with populations established in the wild, e.g. Rock Pigeon (Dove)/Feral Pigeon Columba livia C5 Vagrant naturalized species – species from established naturalized populations abroad, e.g. possibly some Ruddy Shelducks Tadorna ferruginea occurring in Britain. There are currently no species in category C5. C6 Former naturalized species - species formerly placed in C1 whose naturalized populations are either no longer self-sustaining or are considered extinct, e.g. Lady Amherst’s Pheasant Chrysolophus amherstiae. D Species that would otherwise appear in Category A except that there is reasonable doubt that they have ever occurred in a natural state. -
Hybridization & Zoogeographic Patterns in Pheasants
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Paul Johnsgard Collection Papers in the Biological Sciences 1983 Hybridization & Zoogeographic Patterns in Pheasants Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/johnsgard Part of the Ornithology Commons Johnsgard, Paul A., "Hybridization & Zoogeographic Patterns in Pheasants" (1983). Paul Johnsgard Collection. 17. https://digitalcommons.unl.edu/johnsgard/17 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Paul Johnsgard Collection by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HYBRIDIZATION & ZOOGEOGRAPHIC PATTERNS IN PHEASANTS PAUL A. JOHNSGARD The purpose of this paper is to infonn members of the W.P.A. of an unusual scientific use of the extent and significance of hybridization among pheasants (tribe Phasianini in the proposed classification of Johnsgard~ 1973). This has occasionally occurred naturally, as for example between such locally sympatric species pairs as the kalij (Lophura leucol11elana) and the silver pheasant (L. nycthelnera), but usually occurs "'accidentally" in captive birds, especially in the absence of conspecific mates. Rarely has it been specifically planned for scientific purposes, such as for obtaining genetic, morphological, or biochemical information on hybrid haemoglobins (Brush. 1967), trans ferins (Crozier, 1967), or immunoelectrophoretic comparisons of blood sera (Sato, Ishi and HiraI, 1967). The literature has been summarized by Gray (1958), Delacour (1977), and Rutgers and Norris (1970). Some of these alleged hybrids, especially those not involving other Galliformes, were inadequately doculnented, and in a few cases such as a supposed hybrid between domestic fowl (Gallus gal/us) and the lyrebird (Menura novaehollandiae) can be discounted. -
Trichostrongylus Cramae N. Sp. (Nematoda), a Parasite of Bob-White Quail (Colinus Virginianus) M.-C
Ann. Parasitol. Hum. Comp., Key-words: Trichostrongylus. Birds. Europe. USA. Trichos- 1993, 68 : n° 1, 43-48. trongylus tenuis. T. cramae n. sp. Lagopus scoticus. Pavo cris- tatus. Perdix perdix. Phasianus colchicus. Colinus virginianus. Mémoire. Mots-clés : Trichostrongylus. Oiseaux. Europe. USA. Trichos trongylus tenuis. T. cramae n. sp. Lagopus scoticus. Pavo cris- tatus. Perdix perdix. Phasianus colchicus. Colinus virginianus. TRICHOSTRONGYLUS CRAMAE N. SP. (NEMATODA), A PARASITE OF BOB-WHITE QUAIL (COLINUS VIRGINIANUS) M.-C. DURETTE-DESSET*, A. G. CHABAUD*, J. MOORE** Summary ---------------------------------------------------------- Cram (1925, 1927) incorrectly identified as T. pergracilis (now the cuticular striation, the relative distances between the second, a synonym of T. tenuis) what was in reality an undescribed spe third and fourth bursal papillae and the configuration of the dorsal cies in Colinus virginianus. ray. Red grouse (Lagopus scoticus), the type host of T. pergra Trichostrongylus cramae n. sp. is proposed for T. pergracilis cilis, was in fact found to be parasitized by T. tenuis, confirming sensu Cram, 1927 nec Cobbold, 1873 from C. virginianus from the synonymy of T. pergracilis and T. tenuis. USA. It differs from T. tenuis (Mehlis in Creplin, 1846) as regards Résumé : Trichostrongylus cramae n. sp. (Nematoda) parasite de Colinus virginianus. Cram (1925, 1927) a identifié par erreur comme étant T. per Il se différencie de T. tenuis (Mehlis in Creplin, 1846) par la gracilis, maintenant considéré comme un synonyme de T. tenuis, striation cuticulaire, les distances relatives entre les papilles bur- ce qui était en réalité une espèce non décrite parasite de Colinus sales 2, 3 et 4, et par la configuration de la côte dorsale. -
Why Do Eared-Pheasants of the Eastern Qinghai-Tibet Plateau Show So Much Morphological Variation?
Bird Conservation International (2000) 10:305–309. BirdLife International 2000 Why do eared-pheasants of the eastern Qinghai-Tibet plateau show so much morphological variation? XIN LU and GUANG-MEI ZHENG Summary It is known that White Eared-pheasants Crossoptilon crossoptilon drouyni interbreed widely with Tibetan Eared-pheasants C. harmani at the boundary of their ranges. A new hybrid zone has been found recently in eastern Tibet, far away from the boundary of the parental species’ ranges. Based on ecological observations of eared-pheasants and the geographical history and pattern of modern glaciers, we have attributed the complex morphological variation of eared-pheasants and the high biodiversity of the eastern Qinghai-Tibet plateau to its varied geography. Introduction The eared-pheasant genus Crossoptilon is endemic to China and includes four species. The Brown Eared-pheasant C. mantchuricum is found in northern China and the Blue Eared-pheasant C. auritum occurs on the plateau of northern Qinghai-Tibet. These species show no morphological variation and have no described subspecies. The White Eared-pheasant C. crossoptilon shows greater variations in plumage colour and four subspecies have been recognised: crossopti- lon in western Sichuan and south-eastern Tibet, lichiangense in north-western Yunnan, drouyni in the area between the Nujiang River and the Jinsha River, and dolani in Yushu of southern Qinghai. The Tibetan Eared-pheasant C. harmani is restricted to Tibet, north of the main axis of the Himalayas (Ludlow and Kinnear 1944). It was formerly treated as a subspecies of the White Eared-pheasant (Delacour 1977, Cheng et al. 1978), but more recently has been considered a full species (Sibley and Monroe 1990, Cheng 1994), mainly because of its dark blue- grey plumage, which is distinct from the predominately white plumage of the other subspecies. -
Habitat Use of Tibetan Eared Pheasant Crossoptilon Harmani
IBI_006.fm Page 17 Friday, November 30, 2001 2:01 PM ____________________________________________________________________________www.paper.edu.cn Ibis (2002), 144, 17–22 Blackwell ScienceHabitat Ltd use of Tibetan Eared Pheasant Crossoptilon harmani flocks in the non-breeding season XIN LU1* & GUANG-MEI ZHENG2 1Department of Zoology, College of Life Sciences, Wuhan University, Wuhan 430072, China 2Department of Ecology, College of Life Sciences, Beijing Normal University, Beijing 100875, China Habitat use by Tibetan Eared Pheasant Crossoptilon harmani flocks in shrub vegetation was investigated in the Lhasa area of Tibet during the non-breeding season of 1995–1996. Home range composition varied considerably among flocks, but stream belts were consistently used as foraging grounds. Slope direction, altitude and vegetation had little effect on habitat selec- tion. In the absence of supplemental food, core range size was positively correlated with flock size, suggesting that food supplementation could support larger flocks. Flocks regularly roosted on the ground at midday at two or three relatively fixed sites within core ranges. At night they used patches of relatively tall, dense vegetation at the year-round sites in areas near cliffs or in hollows. The size of the night-roost site was related to flock size. Our results strongly suggested that both foraging and night-roosting habitats in the shrub environment are crucial to the birds. The Tibetan Eared Pheasant Crossoptilon harmani is and Xiongse) in the Lhasa mountains (29°32′N, endemic to Tibet and was originally treated as a 91°40′E), Tibet. The vegetation in the study area is subspecies of C. crossoptilon (Delacour 1977), but more mainly shrub and meadow. -
TRAFFIC POST Galliformes in Illegal Wildlife Trade in India: a Bird's Eye View in FOCUS TRAFFIC Post
T R A F F I C NEWSLETTER ON WILDLIFE TRADE IN INDIA N E W S L E T T E R Issue 29 SPECIAL ISSUE ON BIRDS MAY 2018 TRAFFIC POST Galliformes in illegal wildlife trade in India: A bird's eye view IN FOCUS TRAFFIC Post TRAFFIC’s newsletter on wildlife trade in India was started in September 2007 with a primary objective to create awareness about poaching and illegal wildlife trade . Illegal wildlife trade is reportedly the fourth largest global illegal trade after narcotics, counterfeiting and human trafficking. It has evolved into an organized activity threatening the future of many wildlife species. TRAFFIC Post was born out of the need to reach out to various stakeholders including decision makers, enforcement officials, judiciary and consumers about the extent of illegal wildlife trade in India and the damaging effect it could be having on the endangered flora and fauna. Since its inception, TRAFFIC Post has highlighted pressing issues related to illegal wildlife trade in India and globally, flagged early trends, and illuminated wildlife policies and laws. It has also focused on the status of legal trade in various medicinal plant and timber species that need sustainable management for ensuring ecological and economic success. TRAFFIC Post comes out three times in the year and is available both online and in print. You can subscribe to it by writing to [email protected] All issues of TRAFFIC Post can be viewed at www.trafficindia.org; www.traffic.org Map Disclaimer: The designations of the geographical entities in this publication and the presentation of the material do not imply the expression of any opinion whatsoever on the part of WWF-India or TRAFFIC concerning the legal status of any country, territory, or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Revision of Molt and Plumage
The Auk 124(2):ART–XXX, 2007 © The American Ornithologists’ Union, 2007. Printed in USA. REVISION OF MOLT AND PLUMAGE TERMINOLOGY IN PTARMIGAN (PHASIANIDAE: LAGOPUS SPP.) BASED ON EVOLUTIONARY CONSIDERATIONS Peter Pyle1 The Institute for Bird Populations, P.O. Box 1346, Point Reyes Station, California 94956, USA Abstract.—By examining specimens of ptarmigan (Phasianidae: Lagopus spp.), I quantifi ed three discrete periods of molt and three plumages for each sex, confi rming the presence of a defi nitive presupplemental molt. A spring contour molt was signifi cantly later and more extensive in females than in males, a summer contour molt was signifi cantly earlier and more extensive in males than in females, and complete summer–fall wing and contour molts were statistically similar in timing between the sexes. Completeness of feather replacement, similarities between the sexes, and comparison of molts with those of related taxa indicate that the white winter plumage of ptarmigan should be considered the basic plumage, with shi s in hormonal and endocrinological cycles explaining diff erences in plumage coloration compared with those of other phasianids. Assignment of prealternate and pre- supplemental molts in ptarmigan necessitates the examination of molt evolution in Galloanseres. Using comparisons with Anserinae and Anatinae, I considered a novel interpretation: that molts in ptarmigan have evolved separately within each sex, and that the presupplemental and prealternate molts show sex-specifi c sequences within the defi nitive molt cycle. Received 13 June 2005, accepted 7 April 2006. Key words: evolution, Lagopus, molt, nomenclature, plumage, ptarmigan. Revision of Molt and Plumage Terminology in Ptarmigan (Phasianidae: Lagopus spp.) Based on Evolutionary Considerations Rese.—By examining specimens of ptarmigan (Phasianidae: Lagopus spp.), I quantifi ed three discrete periods of molt and three plumages for each sex, confi rming the presence of a defi nitive presupplemental molt.