Carr, J. 2015. Species Monitoring Recommendations for The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
88 Phibians. Secondly, How Do These Animals Interact with Other Facets Of
88 CHAPTER 5 ECOLOGY One aim of the present study was first to aetermine how many ind.~viduals and how much biomass t"as contribur,.ed to the ecosystem by the reptiles and am phibians. Secondly, how do these animals interact with other facets of this ecosystem. One of the most fundamental interactions is their diet. The Burkea africana - Eragrostis pallens savanna has a wide diver sity of species but is depauparate in numbers (see Chapter 4). This feat u~e is shown by the mammals, birds, reptiles, amphibians and insects. Such a wide diversity of species leads to a wide feeding spectrum and, there fore, also to a number of specialists. ~lost species feed on a variety of food items, but some prefer one group of prey, while another prefers other prey, but there are a few, which are specialists or stenophagous. This is a dangerous practice as the species is likely to be in dire straits if its prey should exhibit large scale population fluctuations, a feature common to the savannas of the world, due to climatic variation. All the reptiles and amphibians present in the savanna ecosystem at Nylsvley belong to the secondary and tertiary levels of the trophic chain. They are, therefore, all predators. None appear to feed on vegetation. Snakes The snakes are among the largest of the reptilian and amphibian pre dators. They are certainly the most diverse. They therefore feed on a large variety of prey (Table 13). Snakes can be divided into various cate gories depending on what they feed on. It can be seen that there are few species of invertebrate feeders although food appears to be freely available. -
I Online Supplementary Data – Phylogenetic Diversity of Trachylepis in Central and West Africa Supplementary Table S1. Samples
Online Supplementary data – Phylogenetic diversity of Trachylepis in Central and West Africa Supplementary Table S1. Samples used with associated museum numbers, locality data and GenBank accession numbers. Acronyms represent the following museum and field numbers: AMNH: American Museum of Natural History, BYU: Monte L. Bean Life Science Museum, CAS: California Academy of Sciences, E/SS: field numbers from Muséum d’histoire naturelle de la Ville de Genève, MCZ: Museum of Comparative Zoology at Harvard University, MNHN: Muséum national d’histoire naturelle, MVZ: Museum of Vertebrate Zoology, NCSM: North Carolina Museum of Natural Sciences; TPNW: field numbers for Walter Tapondjou at University of Kansas, USNM: United States National Museum of Natural History, UTEP: University of Texas El Paso, KU: University of Kansas Biodiversity Institute, UWBM: University of Washington Burke Museum. Catalog number Species Country Latitude longitude 16S ND2 RAG1 KIF24 EXPH5 MNHN2002.742 Trachylepis affinis Cameroon 6.415101 9.914989 AY159118 N/A N/A N/A N/A MNHN2002.746 Trachylepis affinis Cameroon 5.489168 9.859714 AY159120 N/A N/A N/A N/A E146-8 Trachylepis affinis Cameroon N/A N/A N/A N/A N/A N/A MK542024 E146-9 Trachylepis affinis Cameroon N/A N/A N/A N/A N/A N/A MK542025 E185-12 Trachylepis affinis Cameroon 4.689191 9.293039 N/A MK583064 N/A N/A MK542033 BYU 62130 Trachylepis affinis Cameroon 4.14633 9.24977 MK496060 MK583054 MK542162 MK542277 MK542029 BYU 62131 Trachylepis affinis Cameroon 4.15965 9.22837 MK496061 MK583055 MK542161 MK542275 -
Bioseries12-Amphibians-Taita-English
0c m 12 Symbol key 3456 habitat pond puddle river stream 78 underground day / night day 9101112131415161718 night altitude high low vegetation types shamba forest plantation prelim pages ENGLISH.indd ii 2009/10/22 02:03:47 PM SANBI Biodiversity Series Amphibians of the Taita Hills by G.J. Measey, P.K. Malonza and V. Muchai 2009 prelim pages ENGLISH.indd Sec1:i 2009/10/27 07:51:49 AM SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 September 2004 through the signing into force of the National Environmental Management: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include responsibilities relating to the full diversity of South Africa’s fauna and ora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by or executed in partnership with SANBI. Technical editor: Gerrit Germishuizen Design & layout: Elizma Fouché Cover design: Elizma Fouché How to cite this publication MEASEY, G.J., MALONZA, P.K. & MUCHAI, V. 2009. Amphibians of the Taita Hills / Am bia wa milima ya Taita. SANBI Biodiversity Series 12. South African National Biodiversity Institute, Pretoria. -
Setting Conservation Priorities for the Moroccan Herpetofauna: the Utility of Regional Red Listing
Oryx—The International Journal of Conservation Setting conservation priorities for the Moroccan herpetofauna: the utility of regional red listing J uan M. Pleguezuelos,JosE´ C. Brito,Soum´I A F ahd,Mo´ nica F eriche J osE´ A. Mateo,Gregorio M oreno-Rueda,Ricardo R eques and X avier S antos Appendix 1 Nomenclatural and taxonomical combinations scovazzi (Zangari et al., 2006) for amphibians. Chalcides for the Moroccan (Western Sahara included) amphibians lanzai (Caputo & Mellado, 1992), Leptotyphlops algeriensis and reptiles for which there are potential problems re- (Hahn & Wallach, 1998), Macroprotodon brevis (Carranza garding taxonomic combinations; species names are fol- et al., 2004) and Telescopus guidimakaensis (Bo¨hme et al., lowed by reference to publications that support these 1989) for reptiles are considered here as full species. Macro- combinations. The complete list of species is in Appendix 2. protodon abubakeri has been recently described for the Agama impalearis (Joger, 1991), Tarentola chazaliae region (Carranza et al., 2004) and Hemidactylus angulatus (Carranza et al., 2002), Chalcides boulengeri, Chalcides recently found within the limits of the study area (Carranza delislei, Chalcides sphenopsiformis (Carranza et al., 2008), & Arnold, 2006). Filtering was not applied to species of Timon tangitanus, Atlantolacerta andreanszkyi, Podarcis passive introduction into Morocco, such as Hemidactylus vaucheri, Scelarcis perspicillata (Arnold et al., 2007), turcicus and Hemidactylus angulatus. The three-toed skink Hyalosaurus koellikeri -
Congolius, a New Genus of African Reed Frog Endemic to The
www.nature.com/scientificreports OPEN Congolius, a new genus of African reed frog endemic to the central Congo: A potential case of convergent evolution Tadeáš Nečas1,2*, Gabriel Badjedjea3, Michal Vopálenský4 & Václav Gvoždík1,5* The reed frog genus Hyperolius (Afrobatrachia, Hyperoliidae) is a speciose genus containing over 140 species of mostly small to medium-sized frogs distributed in sub-Saharan Africa. Its high level of colour polymorphism, together with in anurans relatively rare sexual dichromatism, make systematic studies more difcult. As a result, the knowledge of the diversity and taxonomy of this genus is still limited. Hyperolius robustus known only from a handful of localities in rain forests of the central Congo Basin is one of the least known species. Here, we have used molecular methods for the frst time to study the phylogenetic position of this taxon, accompanied by an analysis of phenotype based on external (morphometric) and internal (osteological) morphological characters. Our phylogenetic results undoubtedly placed H. robustus out of Hyperolius into a common clade with sympatric Cryptothylax and West African Morerella. To prevent the uncovered paraphyly, we place H. robustus into a new genus, Congolius. The review of all available data suggests that the new genus is endemic to the central Congolian lowland rain forests. The analysis of phenotype underlined morphological similarity of the new genus to some Hyperolius species. This uniformity of body shape (including cranial shape) indicates that the two genera have either retained ancestral morphology or evolved through convergent evolution under similar ecological pressures in the African rain forests. African reed frogs, Hyperoliidae Laurent, 1943, are presently encompassing almost 230 species in 17 genera. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
A New Species of Running Frog, (Kassina, Anura: Hyperoliidae) from Unguja Island, Zanzibar, Tanzania
African Journal of Herpetology, 2006 55(2): 113-122. ©Herpetological Association of Africa Original article A new species of Running Frog, (Kassina, Anura: Hyperoliidae) from Unguja Island, Zanzibar, Tanzania CHARLES A. MSUYA1, KIM M. HOWELL1, AND ALAN CHANNING2 1PO Box 35064, Department of Zoology & Wildlife Conservation, University of Dar es Salaam, Dar es Salaam, Tanzania 2Biodiversity and Conservation Biology Department, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa Abstract.—A new species of Kassina is described from Unguja Island, Zanzibar, East Africa. It is dis- tinguished from other species in its genus by an advertisement call that is pulsed, frequency modulated, and with a longer duration than that of K. senegalensis or K. maculata, and its grey and white reticulat- ed colour pattern. The gular strap, like that in K. senegalensis, is continuous with the thick, pleated skin of the vocal pouch, but unlike K. senegalensis, it is rounded and truncated posteriorly. In contrast, the gular gland of K. maculata is rounded and free at its posterior end. The finger and toe tips are not dis- tinct disks, but are only very slightly rounded and truncated when viewed from above. In lateral view, the tips are noticeably flattened. Key words.—Africa, Tanzania, new species, Kassina, Zanzibar, Jozani-Chwaka National Park he Running Frogs (Kassina spp.) are mem- Pakenham 1941; Pakenham 1983). The only Tbers of the Hyperoliidae, a family that is distinctive endemic mammal on Zanzibar, the restricted to sub-Saharan Africa. In eastern Zanzibar Red Colobus, has been considered a Africa several species of Kassina have been separate species by some authors (Corbet & recorded (Channing & Howell 2006). -
Substrate Thermal Properties Influence Ventral Brightness Evolution In
ARTICLE https://doi.org/10.1038/s42003-020-01524-w OPEN Substrate thermal properties influence ventral brightness evolution in ectotherms ✉ Jonathan Goldenberg 1 , Liliana D’Alba 1, Karen Bisschop 2,3, Bram Vanthournout1 & Matthew D. Shawkey 1 1234567890():,; The thermal environment can affect the evolution of morpho-behavioral adaptations of ectotherms. Heat is transferred from substrates to organisms by conduction and reflected radiation. Because brightness influences the degree of heat absorption, substrates could affect the evolution of integumentary optical properties. Here, we show that vipers (Squa- mata:Viperidae) inhabiting hot, highly radiative and superficially conductive substrates have evolved bright ventra for efficient heat transfer. We analyzed the brightness of 4161 publicly available images from 126 species, and we found that substrate type, alongside latitude and body mass, strongly influences ventral brightness. Substrate type also significantly affects dorsal brightness, but this is associated with different selective forces: activity-pattern and altitude. Ancestral estimation analysis suggests that the ancestral ventral condition was likely moderately bright and, following divergence events, some species convergently increased their brightness. Vipers diversified during the Miocene and the enhancement of ventral brightness may have facilitated the exploitation of arid grounds. We provide evidence that integument brightness can impact the behavioral ecology of ectotherms. 1 Evolution and Optics of Nanostructures group, Department -
Checklist of Amphibians and Reptiles of Morocco: a Taxonomic Update and Standard Arabic Names
Herpetology Notes, volume 14: 1-14 (2021) (published online on 08 January 2021) Checklist of amphibians and reptiles of Morocco: A taxonomic update and standard Arabic names Abdellah Bouazza1,*, El Hassan El Mouden2, and Abdeslam Rihane3,4 Abstract. Morocco has one of the highest levels of biodiversity and endemism in the Western Palaearctic, which is mainly attributable to the country’s complex topographic and climatic patterns that favoured allopatric speciation. Taxonomic studies of Moroccan amphibians and reptiles have increased noticeably during the last few decades, including the recognition of new species and the revision of other taxa. In this study, we provide a taxonomically updated checklist and notes on nomenclatural changes based on studies published before April 2020. The updated checklist includes 130 extant species (i.e., 14 amphibians and 116 reptiles, including six sea turtles), increasing considerably the number of species compared to previous recent assessments. Arabic names of the species are also provided as a response to the demands of many Moroccan naturalists. Keywords. North Africa, Morocco, Herpetofauna, Species list, Nomenclature Introduction mya) led to a major faunal exchange (e.g., Blain et al., 2013; Mendes et al., 2017) and the climatic events that Morocco has one of the most varied herpetofauna occurred since Miocene and during Plio-Pleistocene in the Western Palearctic and the highest diversities (i.e., shift from tropical to arid environments) promoted of endemism and European relict species among allopatric speciation (e.g., Escoriza et al., 2006; Salvi North African reptiles (Bons and Geniez, 1996; et al., 2018). Pleguezuelos et al., 2010; del Mármol et al., 2019). -
Phase 1: Report on Specialist Amphibian Habitat Surveys at the Proposed Rohill Business Estate Development
3610 ׀ Hillcrest ׀ A Hilltop Road 40 Cell: 083 254 9563 ׀ Tel: (031) 765 5471 Email: [email protected] Phase 1: Report on specialist amphibian habitat surveys at the proposed Rohill Business Estate development Date: 9 July 2014 CONSULTANT: Dr. Jeanne Tarrant Amphibian Specialist Contact details Email: [email protected] Tel: 031 7655471 Cell: 083 254 9563 1 3610 ׀ Hillcrest ׀ A Hilltop Road 40 Cell: 083 254 9563 ׀ Tel: (031) 765 5471 Email: [email protected] Executive Summary Jeanne Tarrant was asked by GCS Consulting to conduct a habitat assessment survey at the proposed Rohill development site, in particular to assess suitability for the Critically Endangered Pickersgill’s Reed Frog Hyperolius pickersgilli . The potential presence of this species at the proposed development site requires careful consideration in terms of mitigation measures. The habitat survey took place in June 2014, which is outside of the species’ breeding season, but still provided an opportunity to assess wetland condition and vegetation to give an indication of suitability for Pickersgill’s Reed Frog. The habitat assessment indicates that the wetland areas on site are of a structure and vegetative composition that are suitable to Pickersgill’s Reed Frog and it is recommended that further surveys for the species are conducted during the peak breeding period to confirm species presence and guide recommendations regarding possible mitigation measures. Terms of Reference 1. Undertake a site visit to identify all potential Pickersgill’s Reed Frog habitats onsite based on the latest current understanding of their habitat requirements. 2. Identify the likelihood of occurrence for each of the habitats identified. -
Tucson, Arizona March 16-19, 2016
Copyright Paul Mirocha 2015 Tucson, Arizona March 16-19, 2016 Table of Contents Bienvenido a Tucson……………………………………………………………..3 About the Society of Ethnobiology…………………………………………..4 Awards…………………….……………………………………………………………5 Meeting Summary…………………………………………………………………10 Presentation Schedule…………………………………………………………..13 Presentation Abstracts…………………………………………………………..24 Map of Meeting Venues………..……………………………………………….67 Notes…………………………………………………………………………………..68 2 Bienvenido a Tucson The annual conference of the Society of Ethnobiology is an opportunity to disseminate research, learn about field methodologies, and connect with fellow scholars. Ethno- biology is a diverse field that is inclusive of anthropology, archaeology, botany, ecology, linguistics, natural history, nutrition, pharmacology, zoology, to name just a few. Across the range of disciplines, the Society of Ethnobiology embraces non-Western, native, and indigenous scholars as vibrant members of our research community. This year’s conference is hosted in Tucson, Arizona, and is sponsored by four units of the University of Arizona: School of Anthropology, Arizona State Museum, Southwest Center, University of Arizona Press, as well as the Arizona-Sonora Desert Museum, and Native Seeds/SEARCH. Have questions or comments about the meeting? Organizing Committee members have blue ribbons on their name tags. Conference Coordinator: Elizabeth Olson Organizing Committee: Michael Diehl Suzanne Fish Jesús García Sharlot Hart Melissa Kruse-Peeples Lela Scott MacNeil Letitia McCune Paul Minnis Volunteers: Jay Allen, Elizabeth Eklund, Paul Fish, Patricia Gilman, Sharlot Hart, Anna Jansson, Sarah Lee-Allen, Nicole Mathwich, Laurie Monti, Rebecca Renteria, and Meredith Wismer-Lanoe 3 About The Society of Ethnobiology The Society of Ethnobiology is a nonprofit professional organization dedicated to the interdisciplinary study of the relationships of plants and animals with human cultures worldwide, including past and present relationships between peoples and the environment. -
Hand and Foot Musculature of Anura: Structure, Homology, Terminology, and Synapomorphies for Major Clades
HAND AND FOOT MUSCULATURE OF ANURA: STRUCTURE, HOMOLOGY, TERMINOLOGY, AND SYNAPOMORPHIES FOR MAJOR CLADES BORIS L. BLOTTO, MARTÍN O. PEREYRA, TARAN GRANT, AND JULIÁN FAIVOVICH BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY HAND AND FOOT MUSCULATURE OF ANURA: STRUCTURE, HOMOLOGY, TERMINOLOGY, AND SYNAPOMORPHIES FOR MAJOR CLADES BORIS L. BLOTTO Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina MARTÍN O. PEREYRA División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Laboratorio de Genética Evolutiva “Claudio J. Bidau,” Instituto de Biología Subtropical–CONICET, Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina TARAN GRANT Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; Coleção de Anfíbios, Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil; Research Associate, Herpetology, Division of Vertebrate Zoology, American Museum of Natural History JULIÁN FAIVOVICH División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Research Associate, Herpetology, Division of Vertebrate Zoology, American