Hand and Foot Musculature of Anura: Structure, Homology, Terminology, and Synapomorphies for Major Clades

Total Page:16

File Type:pdf, Size:1020Kb

Hand and Foot Musculature of Anura: Structure, Homology, Terminology, and Synapomorphies for Major Clades HAND AND FOOT MUSCULATURE OF ANURA: STRUCTURE, HOMOLOGY, TERMINOLOGY, AND SYNAPOMORPHIES FOR MAJOR CLADES BORIS L. BLOTTO, MARTÍN O. PEREYRA, TARAN GRANT, AND JULIÁN FAIVOVICH BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY HAND AND FOOT MUSCULATURE OF ANURA: STRUCTURE, HOMOLOGY, TERMINOLOGY, AND SYNAPOMORPHIES FOR MAJOR CLADES BORIS L. BLOTTO Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina MARTÍN O. PEREYRA División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Laboratorio de Genética Evolutiva “Claudio J. Bidau,” Instituto de Biología Subtropical–CONICET, Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina TARAN GRANT Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; Coleção de Anfíbios, Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil; Research Associate, Herpetology, Division of Vertebrate Zoology, American Museum of Natural History JULIÁN FAIVOVICH División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Research Associate, Herpetology, Division of Vertebrate Zoology, American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 443, 155 pp., 14 plates, 1 table Issued November 6, 2020 Copyright © American Museum of Natural History 2020 ISSN 0003-0090 CONTENTS Abstract.............................................................................3 Introduction.........................................................................3 Materials and Methods................................................................5 Results.............................................................................10 Description of the Hand and Foot Musculature of Triprion petasatus ...................10 Character Evolution...............................................................24 Discussion .........................................................................30 Systematic Implications of the Inferred Synapomorphies...............................30 Homology and Terminology: A Reappraisal..........................................38 Origin of Novelties in the Anuran Hand and Foot Musculature.........................54 Conclusions ........................................................................56 Acknowledgments...................................................................57 References..........................................................................57 Appendix 1. Specimens examined .....................................................64 Appendix 2. Comments on phalanx terminology ........................................68 Appendix 3. Anuran hand and foot musculature: synonym list ............................70 Appendix 4. Data matrix ........................................................... 112 Appendix 5. Ancestral character state reconstructions.................................. 116 Appendix 6. Abbreviations. ......................................................... 136 Plates ............................................................................ 137 2 ABSTRACT Although studies of anuran hand and foot musculature began in the first half of the 19th century, all studies to date have been taxonomically or anatomically restricted in scope, and none has con- sidered the diversity of autopodial myology in Anura as a whole. As a model for future comparisons, we thoroughly describe the hand and foot musculature of an arboreal species (the hylid Triprion petasatus), define the layers in which these muscles are arranged, and attribute presumed functions. On the basis of our myological analysis of 155 species representing 46 of the 54 currently recognized families and main clades of anurans, we describe 20 characters related to hand and foot muscles. Optimization of these characters on the most recent and inclusive phylogenetic hypothesis of Anura results in synapomorphies for several major clades (Bombinatoridae, Alytidae, Xenoanura + Acos- manura, Xenoanura, Pipidae, Acosmanura, Anomocoela, Scaphiopodidae, Pelodytidae + Pelobatidae + Megophryidae, Megophryidae, Neobatrachia, Heleophrynidae, Sooglossidae, Laurentobatrachia, Calyptocephalellidae, Myobatrachoidea, and Nobleobatrachia), including new, nonhomoplastic syn- apomorphies for clades previously supported only by molecular evidence and a few conflicting phenotypic characters (e.g., Acosmanura, Anomocoela, Neobatrachia). Additionally, we (1) address controversies regarding the homology of anuran and caudate muscles in the context of putative synapomorphies for Ascaphidae + Leiopelmatidae and its sister clade Lalagobatrachia; (2) evaluate a recently proposed terminology for anuran hand and foot musculature; (3) discuss the identities of several hand and foot muscles with problematic homologies; (4) establish a unified terminology for anuran hand and foot muscles, including a list of synonyms for all names employed in the literature; and (5) propose hypotheses for the origin of several myological novelties (neomorphs). INTRODUCTION lineages, Burton (2004) focused on the foot mus- culature of “Hylidae” (including Hemiphractidae). Over the last 15 years, several studies have con- Both the larval and foot musculature studies pro- tributed significantly to the knowledge of phylo- posed several synapomorphies for a number of genetic relationships of major groups of Anura. groups, and their data sets were included in total Most of these studies were based exclusively on evidence analyses by Frost et al. (2006) and DNA sequences (e.g., Darst and Cannatella, 2004; Faivovich et al. (2005), respectively. However, the Roelants et al., 2007; Heinicke et al., 2009; Wiens dearth of comparable data sets prevents these et al., 2010; San Mauro, 2010; Pyron and Wiens, character systems from being used to test hypoth- 2011; Fouquet et al., 2013; Barej et al., 2014; Padial eses across Anura. et al., 2014; Pyron, 2014; Brown et al., 2015; Phenotypic synapomorphies are unknown for Frazão et al., 2015; Chan and Brown, 2017; Feng several major clades of anurans due to the lack of et al., 2017; Mahony et al., 2017; Chan et al., 2018; comprehensive studies for most character sys- Jetz and Pyron, 2018; Streicher et al., 2018; Tu et tems. This scenario underscores the need to al., 2018), while a few of them also included phe- explore multiple phenotypic sources of evidence notypic datasets (Faivovich et al., 2005; Scott, to bear on phylogenetic hypotheses. The detailed 2005; Wiens et al., 2005; Frost et al., 2006; Grant study of phenotypic character systems provides et al., 2006, 2017) and even fewer focused exclu- homology hypotheses that are instrumental for sively on phenotypic characters—Haas (2003), the study of the morphological evolution of a Púgener et al. (2003), and Burton (2004) the clade (e.g., O’Leary et al., 2013). Furthermore, it major examples. Whereas Haas (2003) and allows the establishment of a bridge between pat- Púgener et al. (2003) employed primarily larval tern and process, enabling the exploration of characters scored for exemplars of major anuran evolutionary mechanisms and formulation of 3 4 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 443 testable functional hypotheses (e.g., Wake et al., musculature of “Hylidae” (including Hemi- 2011). Ultimately, the inclusion of phenotypic phractidae), which Faivovich et al. (2005) data in total evidence phylogenetic analyses has combined with DNA sequences in a total evi- been shown to have a disproportionately large dence analysis. Manzano et al. (2008) studied effect, influencing tree topology and clade sup- characters related to specializations for grasp- port estimations, and, therefore, taxonomic deci- ing in the forelimb of two hylids. Salgar et al. sions (e.g., Nylander et al., 2004; de Sá et al., (2009) reported on the foot musculature of a 2014; Mirande, 2017; Sánchez-Pacheco et al., species of Pristimantis (Craugastoridae), 2018; Cabra-García and Hormiga, 2019). whereas Hoyos et al. (2014) defined characters Hand and foot muscles are an underexplored of foot musculature in a quantitative phyloge- source of phenotypic data. The seminal works of netic analysis of the Pristimantis unistrigatus Dugés (1834), Ecker (1864), Perrin (1892), species group, and Hoyos and Salgar (2016) Gaupp (1896), and Ribbing (1907, 1909, 1911) focused on variation within Dendropsophus described in detail the musculature of a few luddeckei (as D. labialis; Hylidae). Diogo and anuran species, but few subsequent additional Ziermann (2014) studied the development of studies dealt with this character system until the the fore‐ and hind-limb muscles using Eleu- end of the 1990s, and those that did mostly therodactylus coqui (Eleutherodactylidae) as a focused on single species (e.g., Davies and Bur- model. Blotto et al. (2017) described the foot ton, 1982; Burton, 1983) or a limited number of musculature of Odontophrynidae, proposed characters (e.g., Liem, 1970; Burton, 1986). The synapomorphies, and discussed putative adap- sole exception in that period is Dunlap (1960), tations for burrowing. Finally, some studies who studied a diverse
Recommended publications
  • Two New Species of Amazophrynella (Amphibia: Anura: Bufonidae) from Loreto, Peru
    Zootaxa 3946 (1): 079–103 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3946.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:E7630BC6-637C-49E9-9C6D-E9C26DFA4AA0 Two new species of Amazophrynella (Amphibia: Anura: Bufonidae) from Loreto, Peru ROMMEL R. ROJAS1,5, VINÍCIUS TADEU DE CARVALHO1,2, ROBSON W. ÁVILA3, IZENI PIRES FARIAS1, MARCELO GORDO4 & TOMAS HRBEK1 1Laboratório de Evolução e Genética Animal, Departamento de Genética, Universidade Federal do Amazonas, Av. Gen. Rodrigo Octávio Jordão Ramos, 3000, CEP 69077-000, Manaus, AM, Brazil 2Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazo- nas, Av. Gen. Rodrigo Octávio Jordão Ramos, 3000, CEP 69077-000, Manaus, AM, Brazil 3Universidade Regional do Cariri, Centro de Ciências Biológicas e da Saúde, Departamento de Ciências Biológicas, Campus do Pimenta, Rua Cel. Antônio Luiz, 1161, Bairro do Pimenta, CEP 63105-100, Crato, CE, Brazil 4Departamento de Biologia, ICB, Universidade Federal do Amazonas, Av. Gen. Rodrigo Octávio Jordão Ramos, 3000, CEP 69077- 000, Manaus, AM, Brazil 5Corresponding author. E-mail: [email protected] Abstract Amazophrynella is a taxonomically poorly known bufonid genus with a pan-Amazonian distribution. A large part of this ambiguity comes from taxonomic uncertainties regarding the type species A. minuta. In this study we compare morpho- logical and molecular data of topotypic specimens of A. minuta with all other nomical congeneric species. Based on these comparisons, we describe two new species. The first species, A. amazonicola sp.
    [Show full text]
  • First Record of Batrachochytrium Dendrobatidis in Pleurodema Somuncurense, a Critically Endangered Species from Argentina
    CORE Metadata, citation and similar papers at core.ac.uk Provided by SEDICI68 - Repositorio AMPHIBIAN de la UNLP AND REPTILE DISEASES urbAn, M. c., L. A. Lewis, K. fučiKová, And A. cordone. 2015. Population WEBSTER, J., AND R. WEBER. 2007. Introduction to Fungi, 3rd Edition. of origin and environment interact to determine oomycete infec- Cambridge University Press, New York. 867 pp. tions in spotted salamander populations. Oikos 124:274–284. Herpetological Review, 2017, 48(1), 68–70. © 2017 by Society for the Study of Amphibians and Reptiles First Record of Batrachochytrium dendrobatidis in Pleurodema somuncurense, a Critically Endangered Species from Argentina The Valcheta Frog, Pleurodema somuncurense (Cei 1969), sterile fine-tipped rayon swabs with plastic shafts, on the ventral is an endemic species from the Somuncura Plateau (northern surface, hind limbs and interdigital membrane following the Patagonia, Argentina) with a high degree of habitat specialization techniques of Hyatt et al. (2007). and a very small distributional range. It is an almost wholly We also found two dead individuals at the eastern warm aquatic frog that inhabits permanent thermal springs and branch (Fig. 1). These individuals were fixed in formalin, and then the warm headwaters of the Valcheta Stream, a watercourse we took samples of shed skin from hind limbs. These samples located at the edge of the plateau. The Valcheta Frog is one of were observed with a light microscope at 400x magnification to most endangered species of Argentina (Vaira et al. 2012) and search for the characteristic Bd zoosporangia. one of the three amphibians in this country listed as Critically The swab samples were preserved in absolute ethanol.
    [Show full text]
  • Amazophrynella Minuta (Amphibia: Anura: Bufonidae) Da Região Amazônica
    UNIVERSIDADE FEDERAL DO AMAZONAS-UFAM INSTITUTO DE CIÊNCIAS BIOLÓGICAS-ICB PROGRAMA DE PÓS GRADUAÇÃO EM DIVERSIDADE BIOLÓGICA - PPGDIVBIO Revisão taxonômica e distribuição geográfica do complexo Amazophrynella minuta (Amphibia: Anura: Bufonidae) da região Amazônica ROMMEL ROBERTO ROJAS ZAMORA Manaus- Amazonas Março - 2014 1 UNIVERSIDADE FEDERAL DO AMAZONAS-UFAM INSTITUTO DE CIÊNCIAS BIOLÓGICAS-ICB PROGRAMA DE PÓS GRADUAÇÃO EM DIVERSIDADE BIOLÓGICA - PPGDIVBIO Revisão taxonômica e distribuição geográfica do complexo Amazophrynella minuta (Amphibia: Anura: Bufonidae) da região Amazônica ROMMEL ROBERTO ROJAS ZAMORA Orientador: Prof. Dr. TOMAS HRBEK Co-Orientador: Prof. Dr. MARCELO GORDO Dissertação apresentada à . Coordenação do Programa de Pós-Graduação em Diversidade Biológica, Universidade Federal do Amazonas, como requisito parcial para obtenção do título de mestre em Diversidade Biológica Manaus - Amazonas Março - 2014 2 Ficha Catalográfica (Catalogação realizada pela Biblioteca Central da UFAM) Rojas Zamora, Rommel Roberto Revisão taxonômica e distribuição geográfica do complexo R741r Amazophrynella minuta (Amphibia: Anura: Bufonidae) da região Amazônica / Rommel Roberto Rojas Zamora. - 2014. 83 f. : il. color. ; 31 cm. Dissertação (mestre em Diversidade Biológica) –– Universidade Federal do Amazonas. Orientador: Prof. Dr. Tomas Hrbek. Co-orientador: Prof. Dr. Marcelo Gordo. 1. Anuro – Classificação - Amazônia 2. Anfíbio – Classificação – Amazônia 3. Bufo – Classificação – Amazônia 4. Anuro – Criação 5. Anfíbio – Criação 6. Bufo – Criação I. Hrbek, Tomas, orientador II. Gordo, Marcelo, orientador III. Universidade Federal do Amazonas IV. Título CDU (2007): 597.8(811)(043.3) iii 3 Poucas vezes são as ocasiões onde um filho tem a oportunidade de agradecer o esforço do seus pais; esta é uma de elas. Dedico esta teses aos meus queridos Pais (Elvira e Roberto) por cuidar com empenho sua prole.
    [Show full text]
  • Catalogue of the Amphibians of Venezuela: Illustrated and Annotated Species List, Distribution, and Conservation 1,2César L
    Mannophryne vulcano, Male carrying tadpoles. El Ávila (Parque Nacional Guairarepano), Distrito Federal. Photo: Jose Vieira. We want to dedicate this work to some outstanding individuals who encouraged us, directly or indirectly, and are no longer with us. They were colleagues and close friends, and their friendship will remain for years to come. César Molina Rodríguez (1960–2015) Erik Arrieta Márquez (1978–2008) Jose Ayarzagüena Sanz (1952–2011) Saúl Gutiérrez Eljuri (1960–2012) Juan Rivero (1923–2014) Luis Scott (1948–2011) Marco Natera Mumaw (1972–2010) Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [Special Section]: 1–198 (e180). Catalogue of the amphibians of Venezuela: Illustrated and annotated species list, distribution, and conservation 1,2César L. Barrio-Amorós, 3,4Fernando J. M. Rojas-Runjaic, and 5J. Celsa Señaris 1Fundación AndígenA, Apartado Postal 210, Mérida, VENEZUELA 2Current address: Doc Frog Expeditions, Uvita de Osa, COSTA RICA 3Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Apartado Postal 1930, Caracas 1010-A, VENEZUELA 4Current address: Pontifícia Universidade Católica do Río Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados, Av. Ipiranga 6681, Porto Alegre, RS 90619–900, BRAZIL 5Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, apartado 20632, Caracas 1020, VENEZUELA Abstract.—Presented is an annotated checklist of the amphibians of Venezuela, current as of December 2018. The last comprehensive list (Barrio-Amorós 2009c) included a total of 333 species, while the current catalogue lists 387 species (370 anurans, 10 caecilians, and seven salamanders), including 28 species not yet described or properly identified. Fifty species and four genera are added to the previous list, 25 species are deleted, and 47 experienced nomenclatural changes.
    [Show full text]
  • Anura, Neobatrachia) in a Northwestern Patagonian Pond
    Phyllomedusa 5(1):67-76, 2006 © 2006 Departamento de Ciências Biológicas - ESALQ - USP ISSN 1519-1397 Feeding habits and their implications for the conservation of the endangered semiaquatic frog Atelognathus patagonicus (Anura, Neobatrachia) in a northwestern Patagonian pond María Elena Cuello, María Teresa Bello, Marcelo Kun, and Carmen A. Úbeda Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Quintral 1250, R 8400 FRF San Carlos de Bariloche, Río Negro, Argentina. E-mail: [email protected]. Abstract Feeding habits and their implications for the conservation of the endangered semiaquatic frog Atelognathus patagonicus (Anura, Neobatrachia) in a northwestern Patagonian pond. Atelognathus patagonicus (Gallardo, 1962) is an endemic frog species whose distribution is restricted to an endorheic pond system in basaltic basins in the northwest of the Argentinean Patagonia. Atelognathus patagonicus has two morphotypes: aquatic and littoral. This study presents data on the diet of A. patagonicus in Laguna del Burro, in Neuquén Province. Digestive tracts were analyzed for 20 specimens: 17 of the aquatic form and 3 of the littoral form. Diversity and trophic niche breadth, and index of relative importance (IRI) were calculated for the aquatic form. Nine food categories were found in the stomachs and intestine with the most important being Odonate naiads (Rhionaeschna sp.; IRI% = 86.57) and amphipod crustaceans (Hyalella sp.; IRI% = 12.89). There was not a statistically significant correlation between snout-vent length and mouth width of the frogs and mean prey lengths. For the littoral form of A. patagonicus, 25 prey categories were found, and all preys were adult terrestrial arthropods. Conclusions about the feeding habits of Atelognathus patagonicus and their implications for the design of conservation programs for the species are also given.
    [Show full text]
  • Amphibian Ark Conservation Needs Assessment, Philippines, July 2014 Page 1
    Amphibian Ark Conservation Needs Assessment, Philippines, July 2014 Page 1 Species suited to Conservation Education 42 species Species that are specifically selected for management – primarily in zoos and aquariums - to inspire and increase knowledge in visitors, in order to promote positive behavioural change. For example, when a species is used to raise financial or other support for field conservation projects (this would include clearly defined ‘flagship’ or ‘ambassador’ species). Phylogenetic Cultural/socio-economic Scientific Education Species Biological Distinctiveness significance importance Importance potential Sanguirana everetti 8.659490771 No aspect of biology known to be No No research dependent on this Yes exceptional species Research into availability of founders needs to be prioritised. Known in the area it was first collected like Mt. Apo. Threat: Habitat loss. It is not seen in great numbers anymore in Mindanao and chytrid may already affected them – hard hit (Diesmos). New genetic data suggest that real S. everetti is a SW Mindanao species...not sure what the Apo population would be since it has not be included in a phylogenetic study (Brown). No inferences can be made on the basis of habitat or forest cover. Need actual surveys of populations (Brown). Recommended to be listed as Data Deficient, for its distribution. Data Deficient because no studies can be conducted in that region due to security issues (Brown). Hylarana similis 7.692704126 No aspect of biology known to be No No research dependent on this Yes exceptional species Chytrid infected, effects cannot be reversed in time, high priority, but (Diesmos) they are quiet common on other mountain areas in Luzon, one of the hardest hit frog.
    [Show full text]
  • Redalyc.Reproductive Features of Chaltenobatrachus Grandisonae
    Revista Chilena de Historia Natural ISSN: 0716-078X [email protected] Sociedad de Biología de Chile Chile CISTERNAS, JAVIERA; CORREA, CLAUDIO; VELÁSQUEZ, NELSON; PENNA, MARIO Reproductive features of Chaltenobatrachus grandisonae (Anura: Batrachylidae) within a protected area in Patagonia, Chile Revista Chilena de Historia Natural, vol. 86, núm. 3, 2013, pp. 365-368 Sociedad de Biología de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=369944186013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative REPRODUCTION OF CHALTENOBATRACHUS GRANDISONAE 365 REVISTA CHILENA DE HISTORIA NATURAL Revista Chilena de Historia Natural 86: 365-368, 2013 © Sociedad de Biología de Chile NATURAL HISTORY NOTE Reproductive features of Chaltenobatrachus grandisonae (Anura: Batrachylidae) within a protected area in Patagonia, Chile Características reproductivas de Chaltenobatrachus grandisonae (Anura: Batrachylidae) en un área protegida en Patagonia, Chile JAVIERA CISTERNAS1,2,*, CLAUDIO CORREA1,3, NELSON VELÁSQUEZ2 & MARIO PENNA2 1Aumen o el Eco de los montes, Organización No Gubernamental, P. O. Box 393, Coyhaique, Chile 2Universidad de Chile, Facultad de Medicina, Instituto de Ciencias Biomédicas, P. O. Box 70005, Santiago, Chile 3Pontifi cia Universidad Católica de Chile, Departamento de Ecología, Alameda 340, P. O. Box 6513677, Santiago, Chile *Corresponding author: [email protected] Basso et al. (2011) assigned the monotypic Reproductive mode is defined by genus Chaltenobatrachus for the species a combination of characteristics including described originally as Telmatobius grandisonae breeding site, clutch structure, location of Lynch, 1975 (later transferred to the genus egg deposition, larval development site and Atelognathus by Lynch 1978).
    [Show full text]
  • Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property
    Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property. Los Alerces National Park, Argentina 185 Map 2: Andean-North Patagonian Biosphere Reserve: Context for the Nominated Proprty. Los Alerces National Park, Argentina 186 Map 3: Vegetation of the Valdivian Ecoregion 187 Map 4: Vegetation Communities in Los Alerces National Park 188 Map 5: Strict Nature and Wildlife Reserve 189 Map 6: Usage Zoning, Los Alerces National Park 190 Map 7: Human Settlements and Infrastructure 191 Appendix 2: Species Lists Ap9n192 Appendix 2.1 List of Plant Species Recorded at PNLA 193 Appendix 2.2: List of Animal Species: Mammals 212 Appendix 2.3: List of Animal Species: Birds 214 Appendix 2.4: List of Animal Species: Reptiles 219 Appendix 2.5: List of Animal Species: Amphibians 220 Appendix 2.6: List of Animal Species: Fish 221 Appendix 2.7: List of Animal Species and Threat Status 222 Appendix 3: Law No. 19,292 Append228 Appendix 4: PNLA Management Plan Approval and Contents Appendi242 Appendix 5: Participative Process for Writing the Nomination Form Appendi252 Synthesis 252 Management Plan UpdateWorkshop 253 Annex A: Interview Guide 256 Annex B: Meetings and Interviews Held 257 Annex C: Self-Administered Survey 261 Annex D: ExternalWorkshop Participants 262 Annex E: Promotional Leaflet 264 Annex F: Interview Results Summary 267 Annex G: Survey Results Summary 272 Annex H: Esquel Declaration of Interest 274 Annex I: Trevelin Declaration of Interest 276 Annex J: Chubut Tourism Secretariat Declaration of Interest 278
    [Show full text]
  • Congolius, a New Genus of African Reed Frog Endemic to The
    www.nature.com/scientificreports OPEN Congolius, a new genus of African reed frog endemic to the central Congo: A potential case of convergent evolution Tadeáš Nečas1,2*, Gabriel Badjedjea3, Michal Vopálenský4 & Václav Gvoždík1,5* The reed frog genus Hyperolius (Afrobatrachia, Hyperoliidae) is a speciose genus containing over 140 species of mostly small to medium-sized frogs distributed in sub-Saharan Africa. Its high level of colour polymorphism, together with in anurans relatively rare sexual dichromatism, make systematic studies more difcult. As a result, the knowledge of the diversity and taxonomy of this genus is still limited. Hyperolius robustus known only from a handful of localities in rain forests of the central Congo Basin is one of the least known species. Here, we have used molecular methods for the frst time to study the phylogenetic position of this taxon, accompanied by an analysis of phenotype based on external (morphometric) and internal (osteological) morphological characters. Our phylogenetic results undoubtedly placed H. robustus out of Hyperolius into a common clade with sympatric Cryptothylax and West African Morerella. To prevent the uncovered paraphyly, we place H. robustus into a new genus, Congolius. The review of all available data suggests that the new genus is endemic to the central Congolian lowland rain forests. The analysis of phenotype underlined morphological similarity of the new genus to some Hyperolius species. This uniformity of body shape (including cranial shape) indicates that the two genera have either retained ancestral morphology or evolved through convergent evolution under similar ecological pressures in the African rain forests. African reed frogs, Hyperoliidae Laurent, 1943, are presently encompassing almost 230 species in 17 genera.
    [Show full text]
  • Characterization of an Alsodes Pehuenche Breeding Site in the Andes of Central Chile
    Herpetozoa 33: 21–26 (2020) DOI 10.3897/herpetozoa.33.e49268 Characterization of an Alsodes pehuenche breeding site in the Andes of central Chile Alejandro Piñeiro1, Pablo Fibla2, Carlos López3, Nelson Velásquez3, Luis Pastenes1 1 Laboratorio de Genética y Adaptación a Ambientes Extremos, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule. Av. San Miguel #3605, Talca, Chile 2 Laboratorio de Genética y Evolución, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile. Las Palmeras #3425, Santiago, Chile 3 Laboratorio de Comunicación Animal, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Av. San Miguel #3605, Talca, Chile http://zoobank.org/E7A8C1A6-31EF-4D99-9923-FAD60AE1B777 Corresponding author: Luis Pastenes ([email protected]) Academic editor: Günter Gollmann ♦ Received 10 December 2019 ♦ Accepted 21 March 2020 ♦ Published 7 April 2020 Abstract Alsodes pehuenche, an endemic anuran that inhabits the Andes of Argentina and Chile, is considered “Critically Endangered” due to its restricted geographical distribution and multiple potential threats that affect it. This study is about the natural history of A. pe- huenche and the physicochemical characteristics of a breeding site located in the Maule mountain range of central Chile. Moreover, the finding of its clutches in Chilean territory is reported here for the first time. Finally, a description of the number and morphology of these eggs is provided. Key Words Alsodidae, Andean, Anura, endemism, highland wetland, threatened species The Andean border crossing “Paso Internacional Pehu- and long roots arranged in the form of cushions, hence the enche” (38°59'S, 70°23'W, 2553 m a.s.l.) is a bioceanic name “cushion plants” (Badano et al.
    [Show full text]
  • Maritime Southeast Asia and Oceania Regional Focus
    November 2011 Vol. 99 www.amphibians.orgFrogLogNews from the herpetological community Regional Focus Maritime Southeast Asia and Oceania INSIDE News from the ASG Regional Updates Global Focus Recent Publications General Announcements And More..... Spotted Treefrog Nyctixalus pictus. Photo: Leong Tzi Ming New The 2012 Sabin Members’ Award for Amphibian Conservation is now Bulletin open for nomination Board FrogLog Vol. 99 | November 2011 | 1 Follow the ASG on facebook www.facebook.com/amphibiansdotor2 | FrogLog Vol. 99| November 2011 g $PSKLELDQ$UN FDOHQGDUVDUHQRZDYDLODEOH 7KHWZHOYHVSHFWDFXODUZLQQLQJSKRWRVIURP $PSKLELDQ$UN¶VLQWHUQDWLRQDODPSKLELDQ SKRWRJUDSK\FRPSHWLWLRQKDYHEHHQLQFOXGHGLQ $PSKLELDQ$UN¶VEHDXWLIXOZDOOFDOHQGDU7KH FDOHQGDUVDUHQRZDYDLODEOHIRUVDOHDQGSURFHHGV DPSKLELDQDUN IURPVDOHVZLOOJRWRZDUGVVDYLQJWKUHDWHQHG :DOOFDOHQGDU DPSKLELDQVSHFLHV 3ULFLQJIRUFDOHQGDUVYDULHVGHSHQGLQJRQ WKHQXPEHURIFDOHQGDUVRUGHUHG±WKHPRUH \RXRUGHUWKHPRUH\RXVDYH2UGHUVRI FDOHQGDUVDUHSULFHGDW86HDFKRUGHUV RIEHWZHHQFDOHQGDUVGURSWKHSULFHWR 86HDFKDQGRUGHUVRIDUHSULFHGDW MXVW86HDFK 7KHVHSULFHVGRQRWLQFOXGH VKLSSLQJ $VZHOODVRUGHULQJFDOHQGDUVIRU\RXUVHOIIULHQGV DQGIDPLO\ZK\QRWSXUFKDVHVRPHFDOHQGDUV IRUUHVDOHWKURXJK\RXU UHWDLORXWOHWVRUIRUJLIWV IRUVWDIIVSRQVRUVRUIRU IXQGUDLVLQJHYHQWV" 2UGHU\RXUFDOHQGDUVIURPRXUZHEVLWH ZZZDPSKLELDQDUNRUJFDOHQGDURUGHUIRUP 5HPHPEHU±DVZHOODVKDYLQJDVSHFWDFXODUFDOHQGDU WRNHHSWUDFNRIDOO\RXULPSRUWDQWGDWHV\RX¶OODOVREH GLUHFWO\KHOSLQJWRVDYHDPSKLELDQVDVDOOSUR¿WVZLOOEH XVHGWRVXSSRUWDPSKLELDQFRQVHUYDWLRQSURMHFWV ZZZDPSKLELDQDUNRUJ FrogLog Vol. 99 | November
    [Show full text]
  • Linking Environmental Drivers with Amphibian Species Diversity in Ponds from Subtropical Grasslands
    Anais da Academia Brasileira de Ciências (2015) 87(3): 1751-1762 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201520140471 www.scielo.br/aabc Linking environmental drivers with amphibian species diversity in ponds from subtropical grasslands DARLENE S. GONÇALVES1, LUCAS B. CRIVELLARI2 and CARLOS EDUARDO CONTE3*,4 1Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Caixa Postal 19020, 81531-980 Curitiba, PR, Brasil 2Programa de Pós-Graduação em Biologia Animal, Universidade Estadual Paulista, Rua Cristovão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, SP, Brasil 3Universidade Federal do Paraná. Departamento de Zoologia, Caixa Postal 19020, 81531-980 Curitiba, PR, Brasil 4Instituto Neotropical: Pesquisa e Conservação. Rua Purus, 33, 82520-750 Curitiba, PR, Brasil Manuscript received on September 17, 2014; accepted for publication on March 2, 2015 ABSTRACT Amphibian distribution patterns are known to be influenced by habitat diversity at breeding sites. Thus, breeding sites variability and how such variability influences anuran diversity is important. Here, we examine which characteristics at breeding sites are most influential on anuran diversity in grasslands associated with Araucaria forest, southern Brazil, especially in places at risk due to anthropic activities. We evaluate the associations between habitat heterogeneity and anuran species diversity in nine body of water from September 2008 to March 2010, in 12 field campaigns in which 16 species of anurans were found. Of the seven habitat descriptors we examined, water depth, pond surface area and distance to the nearest forest fragment explained 81% of total species diversity.
    [Show full text]