Uranium Geochemistry, Mineralogy, Geology, Exploration and Resources Uranium Geochemistry, Mineralogy, Geology, Exploration and Resources

Total Page:16

File Type:pdf, Size:1020Kb

Uranium Geochemistry, Mineralogy, Geology, Exploration and Resources Uranium Geochemistry, Mineralogy, Geology, Exploration and Resources Uranium geochemistry, mineralogy, geology, exploration and resources Uranium geochemistry, mineralogy, geology, exploration and resources Edited by B. De Vivo, F. Ippolito, G. Capaldi and P. R. Simpson The Institution of Mining and Metallurgy © The Institution of Mining and Metallurgy 1984 Softcover reprint of the hardcover 1st edition 1984 ISBN-13: 978-94-009-6062-6 e-ISBN-13: 978-94-009-6060-2 001: 10.1007/978-94-009-6060-2 UDC 550.4:553.495.2 Published at the offices of the Institution of Mining and Metallurgy 44 Portland Place London WI England Introduction Since then the uranium market has been subject to two other turning points that, in the course of a few years, have made this The uranium minerals that today are at the centre of worldwide metal an essential raw material. attention were unknown until 1780, when Wagsfort found a First, the destructive property of fission reactions made pitchblende sample in 10hanngeorgenstadt. This discovery uranium a metal of fundamental strategic importance, increas­ passed unnoticed, however, since Wags fort thought that it ing research in some nations, but the revolution came with the contained a black species of a zinc mineral-hence the n':lme plan for the real possibility of utilizing chain reactions for 'pitchblende' (= pitch-like blende). Seven years later, Klaproth, energy production in place of conventional fuels. while examining the mineral, noted that it contained an oxide Since that time a 'uranium race' has been in progress in many of an unknown metal, which he called 'uranium' in honour of countries-often justified by the well-founded hope of the planet Uranus, recently discovered by Herschel. Klaproth becoming self-sufficient with regard to energy, or at least of also believed that he had separated the metal, but, in fact, the paying off a part of the financial deficit due to increasing fuel attempt failed, and uranium, given its strong affinity with imports. oxygen, was not separated until several years later. In 1833 The importance of electro-nuclear energy should, however, Arfwedson attempted the separation and, in so doing, reduced be considered on the world rather than the national scale, the pitchblende. His attempt was not successful and only U02 especially when the following points are taken into account: the was obtained. It was Peligot, in 1840, who was finally success­ very marked increase in the demand for energy, the increasing ful. He managed the reduction of the metal working with cost of classic fuels and the need to use the latter more and more metallic potassium. It should be remembered that twelve years for specialized purposes (chemical, iron and steel industries, earlier Berzelius had isolated thorium. motor-vehicle traction, etc.). This successful outcome of the experiment, however, was not Thus, exploiting radioactive material is a very urgent given much importance in uranium history because, initially, national and world problem and the many aspects of the geo­ there was little interest among scientists in this metal and in the chemistry and geology of uranium and thorium ore deposits are industrial-technical field the many attempts to use it in the form of extreme value in both theoretical and practical terms. of metal had scarcely proved successful. Attempts were made With these points in mind, in 1960 one of the editors (F.L) to use it for making Auer mantles in gas-lighting; filaments in presented Lezioni di Geologia dell'Uranio (lessons on the electric light-bulbs were also tried, but both experiments failed. geology of uranium), which summarized a course held for a Only U 30g, some uranates and some uranium salts were utilized decade at the School of specialization in applied nuclear physics as dyes in ceramics and in the glass industry, and also for special at Milan Polytechnic. Owing to the novelty of the subject and photographic preparations. As a result of such a limited utiliz­ the particular interest that it holds for the development of the ation, the demand for uranium remained so low that, at the end nuclear industry, these lessons quickly became obsolete, and it of the last century, the only mineral deposit to be exploited was was felt that a new publication was necessary for both students that in 10achimsthal, Bohemia-the same formation in which, and practising exploration geologists. Because of the com­ in 1780, Wagsfort had found the first pitchblende sample. The plexity of the subject, which, if it is to be treated thoroughly, other known mineral deposits at that time-those in Portugal, should be considered as an interdisciplinary field of research, Cornwall, Colorado, etc.-were practically untouched. Even with the help of our co-editors we decided to promote this thorium found no practical application until 1885, when Auer volume in which. various specialists treat the problems that are used the oxide for constructing the mantles that had been presented by the geology of uranium in the widest sense. We patented by him. hope that the presentation of these complex problems-from The year 1895 marks the beginning of a new chapter in the the mineralogy of uranium to the ~earch for it and its practical history of uranium minerals. Becquerel discovered the radio­ utilization-from different aspects and as completely as active property of pitchblende and the Curies isolated radium. possible has been successful. Suddenly scientists everywhere became interested in uranium We wish to thank all our collaborators and the Institution of minerals, which assumed a new importance in the mining Mining and Metallurgy, which has assumed responsibility for industry. The extraction of radium from uranium salts led to publishing this volume. the development of significant mining exploitation at St. Ives in Cornwall, in the Paradox Valley in Colorado and in Portugal. Benedetto De Vivo The first discoveries of uranium minerals in Katanga go back Felice Ippolito to 1915 and in 1921 exploitation was begun. The wealth of these January, 1984 mines was such as to put into difficulty all the others, including the loachimsthal deposits. v Contents Introduction Uranium exploration Benedetto De Vivo and Felice Ippolito v Richard H. De Voto 101 History of radioactivity Geochemistry of uranium in the hydrographic network Paolo Gasparini Bernard Soyer 109 Uranium in mantle processes Uranium deposits of the world, excluding Europe Massimo Cortini 4 Robert G. Young 117 Transport and deposition of uranium in hydrothermal systems Uranium deposits in Europe at temperatures up to 300°C: geological implications Valery Ziegler and Jacques Dardel 140 Samuel B. Romberger 12 Uranium in the economics of energy Geochemical behaviour of uranium in the supergene environ­ B. De Vivo and F. Ippolito 162 ment Gaetano Dongarra 18 Role of high heat production granites in uranium province formation Uranium exploration techniques P. R. Simpson and Jane A. Plant 167 Chester E. Nichols 23 Uranium deposits in Italy Uranium mineralogy Claudio Tedesco 179 Deane K. Smith Jr. 43 Name index 189 Time, crustal evolution and generation of uranium deposits R. W. Hutchinson and J. D. Blackwell 89 Subject index 194 vii by uranium. The radiations from thorium proved more diffi­ History of radioactivity cult to deal with because the ionization seemed to fluctuate widely. Owens proposed air current as the possible cause of the problem and, just before leaving for England for his summer vacation, succeeded in stabilizing the ionization by sealing his thorium oxide specimen in an airtight box. Rutherford was left Paolo Gasparini alone to explain the puzzle, rapidly reaching the conclusion that Istituto di Geologia e Geofisica, University of Naples, Italy the fluctuations in ionization were due to the 'emanation' of a radioactive substance from thorium. One year later, in Our understanding of the evolution of the earth and the solar London, Sir William Crookes was trying to purify uranium system had its beginning in radioactivity. Radioactivity pro­ nitrate. In doing so he was astonished to discover that he had vided a tool for absolute geochronology, it was found to be an almost completely eliminated the radioactivity from uranium. important heat source within the planets and it produced small He began a series of chemical tests that separated uranium from changes in the isotopic composition of some elements, which a totally different, highly radioactive substance, which he enabled us to trace geochemical processes back to the earth's called 'Uranium X'. Additionally, a new emanation was dis­ past. Moreover, radioactive processes are a source of energy for covered from radium. human beings. Rutherford realized that any further progress would be diffi­ The history of radioactivity as a science is full of surprises cult without the help of a chemist and persuaded Frederick and the outstanding quality of those prominent in this field was Soddy to join him in his work. He and Soddy proposed to (I) a mind that was open to the unexpected rather than possessing ascertain whether the emanation came from thorium or from the capability of foresight and research planning. something that was also mixed with it, (2) discover what kind In 1896, shortly after Rontgen had shocked the scientific of gas the emanation might be, (3) weigh the emanation and world by announcing the discovery of X-rays, Henri Becquerel, (4) ascertain what chemical properties of thorium made the stimulated by Rontgen's results, hoped to produce X-rays from emanation possible. They found definite answers to the first fluorescent minerals. Becquerel had the idea, perfectly plaus­ two questions: the emanation came from a highly radioactive ible at that time, that X-ray emission and fluorescence had the substance, which they called 'Thorium X', and the emanation same cause. The concept later proved to be completely false, had the chemical behaviour of an inert gas of the argon series.
Recommended publications
  • Thirty-Fourth List of New Mineral Names
    MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 741-61 Thirty-fourth list of new mineral names E. E. FEJER Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD THE present list contains 181 entries. Of these 148 are Alacranite. V. I. Popova, V. A. Popov, A. Clark, valid species, most of which have been approved by the V. O. Polyakov, and S. E. Borisovskii, 1986. Zap. IMA Commission on New Minerals and Mineral Names, 115, 360. First found at Alacran, Pampa Larga, 17 are misspellings or erroneous transliterations, 9 are Chile by A. H. Clark in 1970 (rejected by IMA names published without IMA approval, 4 are variety because of insufficient data), then in 1980 at the names, 2 are spelling corrections, and one is a name applied to gem material. As in previous lists, contractions caldera of Uzon volcano, Kamchatka, USSR, as are used for the names of frequently cited journals and yellowish orange equant crystals up to 0.5 ram, other publications are abbreviated in italic. sometimes flattened on {100} with {100}, {111}, {ill}, and {110} faces, adamantine to greasy Abhurite. J. J. Matzko, H. T. Evans Jr., M. E. Mrose, lustre, poor {100} cleavage, brittle, H 1 Mono- and P. Aruscavage, 1985. C.M. 23, 233. At a clinic, P2/c, a 9.89(2), b 9.73(2), c 9.13(1) A, depth c.35 m, in an arm of the Red Sea, known as fl 101.84(5) ~ Z = 2; Dobs. 3.43(5), D~alr 3.43; Sharm Abhur, c.30 km north of Jiddah, Saudi reflectances and microhardness given.
    [Show full text]
  • New Mineral Names*
    AmericanMineralogM, Volume66, pages 1099-l103,IgEI NEW MINERAL NAMES* LouIs J. Cetnt, MrcHeer FtnrscHnn AND ADoLF Pnssr Aldermanlter Choloallte. I. R. Harrowficl4 E. R. Segnitand J. A. Watts (1981)Alderman- S. A. Williams (1981)Choloalite, CuPb(TeO3)z .HrO, a ncw min- ite, a ncw magnesiumalrrminum phosphate.Mineral. Mag.44, eral. Miaeral. Mag. 44, 55-51. 59-62. Choloalite was probably first found in Arabia, then at the Mina Aldermanite o@urs as minute, very thin" talc-likc crystallitcs La Oriental, Moctczuma, Sonora (the typc locality), and finally at with iuellite and other secondaryphosphates in the Moculta rock Tombstone, Arizona. Only thc Tombstone material provides para- phosphatc deposit near thc basc of Lower Cambrisn limestone genetic information. In this material choloalite occurs with cerus- close to Angaston, ca. 60 km NE of Adelaide. Microprobc analy- site, emmonsite and rodalquilarite in severcly brecciated shale that si.q supplcmented by gravimetric water determination gave MgO has been replaced by opal and granular jarosite. Wet chcmical E.4,CaO 1.2, AJ2O328.4, P2O5 25.9, H2O 36.1%,(totat 100),lead- analysisofcholoalitc from the type locality gave CuO 11.0,PbO ing to the formula Mg5Als2(POa)s(OH)zz.zH2O,where n = 32. 33.0,TeO2 50.7, H2O 3.4,total 98.1%,correspolding closcly to thc Thc powder diffraction pattern, taken with a Guinier camera, can formula in the titlc. Powder pattems of thc mineral from thc three be indexed on an orthorhombic. ccll with a = 15.000(7), D = localities can bc indexcd on the basis of a cubic ccll with a : 8.330(6),c - 26.60(l)A, Z = 2,D alc.2.15 from assumedcell con- l2.5l9A for the material from Mina La Oriental, Z: l2,D c,alc.
    [Show full text]
  • JOURNAL the Russell Society
    JOURNAL OF The Russell Society Volume 20, 2017 www.russellsoc.org JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR Dr Malcolm Southwood 7 Campbell Court, Warrandyte, Victoria 3113, Australia. ([email protected]) JOURNAL MANAGER Frank Ince 78 Leconfield Road, Loughborough, Leicestershire, LE11 3SQ. EDITORIAL BOARD R.E. Bevins, Cardiff, U.K. M.T. Price, OUMNH, Oxford, U.K. R.S.W. Braithwaite, Manchester, U.K. M.S. Rumsey, NHM, London, U.K. A. Dyer, Hoddlesden, Darwen, U.K. R.E. Starkey, Bromsgrove, U.K. N.J. Elton, St Austell, U.K. P.A. Williams, Kingswood, Australia. I.R. Plimer, Kensington Gardens, S. Australia. Aims and Scope: The Journal publishes refereed articles by both amateur and professional mineralogists dealing with all aspects of mineralogy relating to the British Isles. Contributions are welcome from both members and non-members of the Russell Society. Notes for contributors can be found at the back of this issue, on the Society website (www.russellsoc.org) or obtained from the Editor or Journal Manager. Subscription rates: The Journal is free to members of the Russell Society. The non-member subscription rates for this volume are: UK £13 (including P&P) and Overseas £15 (including P&P). Enquiries should be made to the Journal Manager at the above address. Back numbers of the Journal may also be ordered through the Journal Manager. The Russell Society: named after the eminent amateur mineralogist Sir Arthur Russell (1878–1964), is a society of amateur and professional mineralogists which encourages the study, recording and conservation of mineralogical sites and material.
    [Show full text]
  • STRONG and WEAK INTERLAYER INTERACTIONS of TWO-DIMENSIONAL MATERIALS and THEIR ASSEMBLIES Tyler William Farnsworth a Dissertati
    STRONG AND WEAK INTERLAYER INTERACTIONS OF TWO-DIMENSIONAL MATERIALS AND THEIR ASSEMBLIES Tyler William Farnsworth A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2018 Approved by: Scott C. Warren James F. Cahoon Wei You Joanna M. Atkin Matthew K. Brennaman © 2018 Tyler William Farnsworth ALL RIGHTS RESERVED ii ABSTRACT Tyler William Farnsworth: Strong and weak interlayer interactions of two-dimensional materials and their assemblies (Under the direction of Scott C. Warren) The ability to control the properties of a macroscopic material through systematic modification of its component parts is a central theme in materials science. This concept is exemplified by the assembly of quantum dots into 3D solids, but the application of similar design principles to other quantum-confined systems, namely 2D materials, remains largely unexplored. Here I demonstrate that solution-processed 2D semiconductors retain their quantum-confined properties even when assembled into electrically conductive, thick films. Structural investigations show how this behavior is caused by turbostratic disorder and interlayer adsorbates, which weaken interlayer interactions and allow access to a quantum- confined but electronically coupled state. I generalize these findings to use a variety of 2D building blocks to create electrically conductive 3D solids with virtually any band gap. I next introduce a strategy for discovering new 2D materials. Previous efforts to identify novel 2D materials were limited to van der Waals layered materials, but I demonstrate that layered crystals with strong interlayer interactions can be exfoliated into few-layer or monolayer materials.
    [Show full text]
  • SENSITIVITY ANALYSIS of URANIUM SPECIATION MODELING in GROUNDWATER SYSTEMS with a FOCUS on MOBILITY Andrew Scott Clemson University
    Clemson University TigerPrints All Dissertations Dissertations 12-2010 SENSITIVITY ANALYSIS OF URANIUM SPECIATION MODELING IN GROUNDWATER SYSTEMS WITH A FOCUS ON MOBILITY Andrew Scott Clemson University Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Environmental Engineering Commons Recommended Citation Scott, Andrew, "SENSITIVITY ANALYSIS OF URANIUM SPECIATION MODELING IN GROUNDWATER SYSTEMS WITH A FOCUS ON MOBILITY" (2010). All Dissertations. 635. https://tigerprints.clemson.edu/all_dissertations/635 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SENSITIVITY ANALYSIS OF URANIUM SPECIATION MODELING IN GROUNDWATER SYSTEMS WITH A FOCUS ON MOBILITY __________________________ A Dissertation Presented to The Graduate School of Clemson University __________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Environmental Engineering and Science __________________________ by Andrew Lee Scott December 2010 __________________________ Accepted by: Dr. Timothy A. DeVol, Committee Chair Dr. Alan W. Elzerman Dr. Robert A. Fjeld Dr. Brian A. Powell ABSTRACT Uranium is an important natural resource used in production of nuclear reactor fuel and nuclear weapons. The mining and processing of uranium has left a legacy of environmental contamination that remains to be addressed. There has been considerable interest in manipulating the oxidation state of uranium in order to put it into an environmentally immobile form. Uranium forms two stable oxidation states in nature, uranium (IV) being much less soluble than uranium (VI), and therefore the preferred state with regard to limiting the potential exposure of man.
    [Show full text]
  • Alt I5LNER&S
    4r>.'44~' ¶4,' Alt I5LNER&SI 4t *vX,it8a.rsAt s 4"5' r K4Wsx ,4 'fv, '' 54,4 'T~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~' 4>i4^ 44 4 r 44,4 >s0 s;)r i; X+9;s tSiX,.<t;.W.FE0''¾'"',f,,v-;, s sHteS<T^ 4~~~~~~~~~~~~~~~~~~~~'44'" 4444 ;,t,4 ~~~~~~~~~' "e'(' 4 if~~~~~~~~~~0~44'~"" , ",4' IN:A.S~~ ~ ~ C~ f'"f4444.444"Z'.4;4 4 p~~~~~~~~~~~~~~~~~~~44'1s-*o=4-4444's0zs*;.-<<<t4 4 4 A'.~~~44~~444) O 4t4t '44,~~~~~~~~~~i'$'" a k -~~~~~~44,44.~~~~~~~~~~~~~~~~~~44-444444,445.44~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.V 4X~~~~~~~~~~~~~~4'44 44 444444444.44. AQ~~ ~ ~~~~, ''4'''t :i2>#ZU '~f"44444' i~~'4~~~k AM 44 2'tC>K""9N 44444444~~~~~~~~~~~,4'4 4444~~~~IT fpw~~ ~ ~ ~ ~ ~ ~ 'V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ae, ~~~~~~~~~~~~~~~~~~~~~~2 '4 '~~~~~~~~~~4 40~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' 4' N.~~..Fg ~ 4F.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ " ~ ~ ~ 4 ~~~ 44zl "'444~~474'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~ &~1k 't-4,~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ :"'".'"~~~~~~~~~~~~~~~~~"4 ~~ 444"~~~~~~~~~'44*#"44~~~~~~~~~~4 44~~~~~'f"~~~~~4~~~'yw~~~~4'5'# 44'7'j ~4 y~~~~~~~~~~~~~~~~~~~~~~~~~~~~~""'4 1L IJ;*p*44 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~44~~~~~~~~~~~~~~~~~~~~1 q A ~~~~~ 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~W~~k* A SYSTEMATIC CLASSIFICATION OF NONSILICATE MINERALS JAMES A. FERRAIOLO Department of Mineral Sciences American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 172: ARTICLE 1 NEW YORK: 1982 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Volume 172, article l, pages 1-237,
    [Show full text]
  • Shin-Skinner January 2018 Edition
    Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com.
    [Show full text]
  • Lnd Thorium-Bearing Minerals IQURTH EDITION
    :]lossary of Uranium­ lnd Thorium-Bearing Minerals IQURTH EDITION y JUDITH W. FRONDEL, MICHAEL FLEISCHER, and ROBERT S. JONES : EOLOGICAL SURVEY BULLETIN 1250 1list of uranium- and thorium-containing vtinerals, with data on composition, type f occurrence, chemical classification, ~nd synonymy NITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1967 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. GS 67-278 For sale by the Superintendent of Documents, U.S. Government Printing, Office Washington, D.C. 20402 - Price 30 cents (paper cover) CONTENTS Page Introduction _ _ __ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ __ _ __ __ _ __ _ _ _ _ _ _ __ __ _ _ __ __ __ _ _ __ 1 Chemical classification of the uranium and thorium minerals____________ 5 A. Uranium and thorium minerals _ _ __ _ __ __ _ __ _ _ __ _ __ __ _ _ _ __ _ _ __ __ _ _ 10 B. Minerals with minor amounts of uranium and thorium______________ 50 C. Minerals reported to contain uranium and thorium minerals as im- purities or intergrowths_______________________________________ 61 Index____________________________________________________________ 65 In GLOSSARY OF URANIUM- AND THORIUM-BEARING MINERALS FOURTH EDITION By JuDITH W. FRONDEL, MicHAEL FLEISCHER, and RoBERTS. JoNES INTRODUCTION The first edition of this work was published as U.S. Geological Survey Circular 74 in April1950, the second edition as Circular 194 in February 1952, and the third edition in 1955 as U. S.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 89, pages 249–253, 2004 New Mineral Names* JOHN L. JAMBOR1,† AND ANDREW C. ROBERTS2 1Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada 2Geological Survey of Canada, 601 Booth Street, Ottawa K1A 0E8, Canada ARTSMITHITE* analysis gave BaO 47.66, SiO2 36.38, BeO (by AA) 14.90, A.C. Roberts, M.A. Cooper, F.C. Hawthorne, R.A. Gault, J.D. sum 98.94 wt%, corresponding to Ba1.03Be1.97Si2.00O7.00. The Grice, A.J. Nikischer (2003) Artsmithite, a new Hg1+–Al mineral forms radial aggregates and platy to prismatic crystals phosphate–hydroxide from the Funderburk prospect, Pike that are elongate [001] and up to 1 × 4 × 20 mm, typically flattened on {100} or less commonly on {010}. Observed forms County, Arkansas, U.S.A. Can. Mineral., 41, 721–725. – are {100}, {010}, {201}, and {201}, with less common {610}, – {101}, and {101}. Colorless, transparent, vitreous luster, brittle, Electron microprobe analysis gave Hg2O 78.28, Al2O3 5.02, H = 6½, perfect {100} and less perfect {001} and {101} cleav- P2O5 11.39, H2O (calc.) 1.63, sum 96.32 wt%, from which the 3 structure-derived formula corresponds to Hg1+ Al P ages, Dmeas = 3.97(7), Dcalc = 4.05 g/cm for Z = 2. Optically 4 .00 1.05 1.71 α β γ O H , generalized as Hg Al(PO ) (OH) , where x = 0.26. biaxial positive, = 1.698(3), = 1.700(3), = 1.705(5), 2Vmeas 8.74 1.78 4 4 2–x 1+3x ∧ ∧ The mineral occurs as a matted nest of randomly scattered fi- = 70(10), 2Vcalc = 65°, orientation Z = b, X a = 6°, Y c = 5– bres, elongate [001] and some >1 mm in length, with 6°.
    [Show full text]
  • A Raman Spectroscopic Study of the Uranyl Phosphate Mineral Bergenite
    COVER SHEET This is the author version of article published as: Frost, Ray L. and Ayoko, Godwin and Cejka, Jiri and Weier, Matt (2007) A Raman spectroscopic study of the uranyl phosphate mineral bergenite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 66(4-5):pp. 979-984. Copyright 2007 Elsevier Accessed from http://eprints.qut.edu.au A Raman spectroscopic study of the uranyl phosphate mineral bergenite Ray L. Frost•, Jiří Čejka+) , Godwin A. Ayoko and Matt Weier Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. +) National Museum, Václavské náměstí 68, CZ-115 79 Praha 1, Czech Republic. Abstract Raman spectroscopy at 298 and 77 K of bergenite has been used to characterise this uranyl phosphate mineral. Bands at 995, 971 and 961 cm-1 (298 K) and 1006, 996, -1 3- 971, 960 and 948 cm (77 K) are assigned to the ν1 (PO4) symmetric stretching vibration. Three bands at 1059, 1107 and 1152 cm-1 (298 K) and 1061, 1114 and -1 3- 1164 cm (77 K) are attributed to the the ν3 (PO4) antisymmetric stretching vibrations. Two bands at 810 and 798 cm-1 ( 298 K) and 812 and 800 cm-1 (77 K) are 2+ attributed to the ν1 symmetric stretching vibration of the (UO2) units. Bands at 860 -1 -1 cm (298 K) and 866 cm (77 K) are assigned to the ν3 antisymmetric stretching 2+ vibrations of the (UO2) units. U-O bond lengths in uranyls, calculated using the 2+ wavenumbers of the ν1 and ν3 (UO2) vibrations with empirical relations by Bartlett and Cooney, are in agreement with the X-ray single crystal structure data.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 71, pages 1543-1548,1986 NEW MINERAL NAMES* FRANK C. HAWTHORNE, KENNETH W. BLADH, ERNST A. J. BURKE, T. SCOTT ERCIT, EDWARD S. GREW, JOEL D. GRICE, JACEK PuZIEWICZ, ANDREW C. ROBERTS, ROBERT A. SCHEDLER, JAMES E. SHIGLEY Bayankbanite somewhat higher reflectance than neltnerite, and a slightly more yellowish color compared to the bluish color of neltnerite. V.I. Vasil'ev (1984) New mercury minerals and mercury-con- Discussion. The name braunite II was first used (without ap- taining deposits and their parageneses. Trudy Inst. Geol. Geo- proval of the IMA-CNMMN) by De Villiers and Herbstein [(1967), fiz., Siber. Otdel. Akad. NaukSSSR, no. 587,5-21 (in Russian). Am. Mineral., 52, 20-40] for material previously described by Microprobe analyses (3 grains) gave Cu 43.0-59.0, Hg 20.9- De Villiers [(1946), Geol. Soc. S. Afr. Trans., 48,17-25] asferrian 40.9, S 17.0-18.7. HN03 induces pale-olive tint on surfaces per- braunite. This phase (from several mines in the Kalahari man- pendicular to longer axis, no reaction with NH03 on surfaces ganese field, South Africa) differed chemically from braunite parallel to it. No reaction with HCI and KOH. (Mn+2Mnt3Si012) by its lower Si content (4.4 wt% Si02) and by X-ray powder study of impure material yields 17 lines; the the presence of 4.3 wt% CaO. Crystallographically, both braunite strongest are 4.64(3), 2.74(4), 2.65(5), 1.983(3), 1.685(3). and braunite II have the same space group 14/acd, but braunite In reflected light white, strongly anisotropic with effects from II has a c cell parameter twice that of braunite.
    [Show full text]
  • The Canadian Mineralogist
    VOLUME 41, INDEX 1531 THE CANADIAN MINERALOGIST INDEX, VOLUME 41 J. DOUGLAS SCOTT§ 203-44 Brousseau Avenue, Timmins, Ontario P4N 5Y2, Canada AUTHOR INDEX Acosta, A. with Pereira, M.D., 617 Borodaev, Yu. S., Garavelli, A., Garbarino, C., Grillo, S.M., Agakhanov, A.A. with Sokolova, E., 513 Mozgova, N.N., Paar, W.H., Topa, D. & Vurro, F., Rare Ahmed, A.H. & Arai, S., Platinum-group minerals in podiform sulfosalts from Vulcano, Aeolian Islands, Italy. V. Selenian chromitites of the Oman ophiolite, 597 heyrovsk´yite, 429 Alfonso, P., Melgarejo, J.C., Yusta, I. & Velasco, F., Geochemis- Bottazzi, P. with Tiepolo, M., 261 try of feldspars and muscovite in granitic pegmatite from the Brandstätter, F. with Ertl, A., 1363 Cap de Creus field, Catalonia, Spain, 103 Brenan, J.M. with Mungall, J.E., 207 Alfonso, P. with Canet, C., 561, 581 Britvin, S.N., Antonov, A.A., Krivovichev, S.V., Armbruster, T., Amthauer, G. with Makovicky, E., 1125 Burns, P.C. & Chukanov, N.V., Fluorvesuvianite, Ca19(Al, 2+ Anderson, A.J. with Cernˇ ´y, P., 1003 Mg,Fe )13[SiO4]10[Si2O7]4O(F,OH)9, a new mineral species Andersson, U.B. with Holtstam, D., 1233 from Pitkäranta, Karelia, Russia: description and crystal Antao, S.M., Hassan, I. & Parise, J.B., The structure of danalite at structure, 1371 high temperature obtained from synchrotron radiation and Brugger, J., Berlepsch, P., Meisser, N. & Armbruster, T., 5+ Rietveld refinements, 1413 Ansermetite, MnV2O6•4H2O, a new mineral species with V Antao, S.M. with Hassan, I., 759 in five-fold coordination from Val Ferrera, Eastern Swiss Antonov, A.A.
    [Show full text]