SENSITIVITY ANALYSIS of URANIUM SPECIATION MODELING in GROUNDWATER SYSTEMS with a FOCUS on MOBILITY Andrew Scott Clemson University

Total Page:16

File Type:pdf, Size:1020Kb

SENSITIVITY ANALYSIS of URANIUM SPECIATION MODELING in GROUNDWATER SYSTEMS with a FOCUS on MOBILITY Andrew Scott Clemson University Clemson University TigerPrints All Dissertations Dissertations 12-2010 SENSITIVITY ANALYSIS OF URANIUM SPECIATION MODELING IN GROUNDWATER SYSTEMS WITH A FOCUS ON MOBILITY Andrew Scott Clemson University Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Environmental Engineering Commons Recommended Citation Scott, Andrew, "SENSITIVITY ANALYSIS OF URANIUM SPECIATION MODELING IN GROUNDWATER SYSTEMS WITH A FOCUS ON MOBILITY" (2010). All Dissertations. 635. https://tigerprints.clemson.edu/all_dissertations/635 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SENSITIVITY ANALYSIS OF URANIUM SPECIATION MODELING IN GROUNDWATER SYSTEMS WITH A FOCUS ON MOBILITY __________________________ A Dissertation Presented to The Graduate School of Clemson University __________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Environmental Engineering and Science __________________________ by Andrew Lee Scott December 2010 __________________________ Accepted by: Dr. Timothy A. DeVol, Committee Chair Dr. Alan W. Elzerman Dr. Robert A. Fjeld Dr. Brian A. Powell ABSTRACT Uranium is an important natural resource used in production of nuclear reactor fuel and nuclear weapons. The mining and processing of uranium has left a legacy of environmental contamination that remains to be addressed. There has been considerable interest in manipulating the oxidation state of uranium in order to put it into an environmentally immobile form. Uranium forms two stable oxidation states in nature, uranium (IV) being much less soluble than uranium (VI), and therefore the preferred state with regard to limiting the potential exposure of man. One of the tools used in evaluating potential effects of manipulating the natural systems to prefer U(IV) formation is chemical equilibrium modeling. These models show the thermodynamically preferred chemical species that are formed in a particular defined system. Chemical equilibrium modeling is very dependent on the data that is used to support the calculations, the initial definition of the system, and the other constraints placed on the reactions. This research is designed to show the relative effects of inorganic chemical perturbations in the particular systems modeled, as well as the effects of humic/fulvic acids, mineral and bacterial sorption and temperature (to a limited extent), with a focus on uranium solubility, by performing a sensitivity analysis using Geochemist’s Workbench, a commercially available chemical equilibrium software package. Four groundwater systems of interest were selected upon which to perform the sensitivity analysis: the Yucca Mountain (YM) J-13 well water system (Harrar, et al., 1990), the mean well water system from the Simpsonville, SC (SSC) area (Woodruff, 2002), the Savannah River National Laboratory (SRNL) F-Area groundwater system, and ii Idaho National Engineering and Environmental Laboratory (INEEL) Snake River aquifer system (Ayaz, et al, 2000). The results of the sensitivity analysis are presented in terms of metrics called the uranium ratio (UR) and the sensitivity index (SIUR), defined as follows: U aq ()mol URmin −URmax UR = and SIUR = U tot ()mol URbaseline Where: URmin = UR at the minimum constraint concentration evaluated URmax = UR at the maximum constraint concentration evaluated URbaseline = UR at the baseline for the system The discussion of the results of the sensitivity analysis focuses on the relative effect varying a given constraint has on the system, defined as follows: significant or major effects (SIUR >1), moderate effects (0.1 < SIUR < 1), minor effects (0.01 < SIUR < 0.1%), no apparent effects (SIUR <0.01%). The sensitivity analysis of the YM solubility controlled system indicated that aqueous carbonate concentrations dictated UR to a large extent. Phosphate and strontium, both of which were not included in the basis, were indicated to be of potential significance to uranium solubility in this system. Temperature also seems to have a strong role in uranium solubility in this system. Interestingly, pH seemed to have little effect on the UR. The presence, concentration and composition of the organic acid simulant appeared to be of little concern. iii The solubility controlled SSC system precipitated Soddyite and Quartz in the baseline case at equilibrium indicating oversaturation of silicon and uranium in the natural groundwater. Similarly to the YM system, carbonate seemed to dominate the uranium solubility of the system, but silicon and temperature also had significant effects. The presence, concentration and composition of organic acids in this system could effect aqueous uranium concentrations by as much as 20-30%. The SRNL system was modeled under both solubility and sorption controlled assumptions. The solubility controlled SRNL system was impressively unresponsive to physical, inorganic and organic constraint variations across the tested range, giving strong evidence that this system is indeed sorption controlled. Both pH and total uranium concentration exerted strong effects in the sorption controlled system, illustrating the importance of availability of sorption sites relative to the amount of uranium in solution. Other constraints, surprisingly including carbonate, had relatively little effect. The presence, concentration and composition of organic acids had little effect. Bacterial sorption was shown to have a significant potential to affect the aqueous uranium concentration in this system, especially as the total uranium in the system was reduced. The sorption controlled INEEL system showed much more sensitivity than did the - SRNL system, and seemed to be significantly (> 10%) effected by the variation of HCO3 + 2+ 2- - 2+ , pH, pe, Na , Ca , SO4 , Cl , and Mg in both the mineral-only and mineral-bacterial cases. The UR in this system was not shown to be sensitive to the presence, concentration or composition of organic acids. The mineral-only and mineral-bacterial sorption controlled systems behaved nearly identically. iv There are obvious limitations in the models and supporting data. Further, the sensitivity analysis did not evaluate synergistic or antagonistic effects of multiple constraint variability, except in a very rudimentary way. More research in these areas is suggested. Given these limitations, the sensitivity analysis can identify potentially unrecognized factors that may have a strong impact, and those that have little effect, on uranium mobility in the environment. This gives environmental scientists another tool to evaluate resource allocation and narrow down many potential avenues of research to those that have the greatest potential to bear fruit, ultimately aimed at defining and perhaps controlling uranium mobility in the environment. v DEDICATION This work is dedicated to my wife, Kim, without whose loving support, patience and encouragement it would not have been written; my daughter Jaime, for helping me keep it all in perspective; my son, Bradley, for generously giving up time with his Dad; my parents, Dwight and Mary Brown, for always being there to pick me up when I fell; my father and mother-in-law, Camille and Edna George, for considering me a son in every sense; and to my grandmother, Garnette Roll, who was unshakably convinced that one day, I would become a ‘Doctor’. vi ACKNOWLEDGEMENTS I would like to thank my advisors, Dr. Fjeld and Dr. DeVol, for their guidance, support, and wisdom. Their unflagging confidence and gentle criticism lead directly to the completion and quality of this work. I owe additional thanks to my committee members, Dr. Elzerman and especially Dr. Powell, for their assistance, time, and insightful comments. They contributed directly to the quality and completeness of this project. Dr. John Coates gave valuable advice and contributed by listening to, and providing feedback on, many of the concepts and ideas contained herein. I am grateful to the RES3T team in Germany for the provision of their database, which was so crucial to the sorption modeling. Dr. Craig Bethke, the author of Geochemist’s Workbench, seemed to always be available to provide assistance with the technical aspects of chemical equilibrium modeling with his software, as was the vendor, Tom Meuzlaar of Rock Ware. All the folks on the GWB listserver are also due thanks for providing much needed advice and feedback during the modeling effort. The staff, faculty, and students in the Department of Environmental Engineering and Earth Sciences were outstanding and supportive in too many ways to mention. Finally, I would like to thank the U.S. Army for providing this opportunity by selecting and funding me for this assignment, and specifically, Colonel Mark Melanson, for helping me to keep my focus on the objective. vii TABLE OF CONTENTS Page TITLE PAGE ................................................................................................................ i ABSTRACT .................................................................................................................. ii DEDICATION .............................................................................................................. vi ACKNOWLEDGEMENTS .......................................................................................... vii TABLE OF CONTENTS…………………………………………………………….
Recommended publications
  • Uraninite Alteration in an Oxidizing Environment and Its Relevance to the Disposal of Spent Nuclear Fuel
    TECHNICAL REPORT 91-15 Uraninite alteration in an oxidizing environment and its relevance to the disposal of spent nuclear fuel Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 SVENSK KÄRNBRÄNSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO BOX 5864 S-102 48 STOCKHOLM TEL 08-665 28 00 TELEX 13108 SKB S TELEFAX 08-661 57 19 original contains color illustrations URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author (s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32) and 1989 (TR 89-40) is available through SKB. URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch Rodney Ewing Department of Geology University of New Mexico Submitted to Svensk Kämbränslehantering AB (SKB) December 21,1990 ABSTRACT Uraninite is a natural analogue for spent nuclear fuel because of similarities in structure (both are fluorite structure types) and chemistry (both are nominally UOJ. Effective assessment of the long-term behavior of spent fuel in a geologic repository requires a knowledge of the corrosion products produced in that environment.
    [Show full text]
  • Weeksite K2(UO2)2(Si5o13)·4H2O
    Weeksite K2(UO2)2(Si5O13)·4H2O Crystal Data: Monoclinic. Point Group: 2/m: As bladed or acicular crystals, flattened on {010} and elongated along [001], and as flat plates; also as spherulites and radiating fibrous clusters. - Twinning: By two-fold rotation around [401 ]. Physical Properties: Cleavage: Two good prismatic cleavages noted. Hardness = < 2 D(meas.) = ~ 4.1 D(calc.) = 3.80 Radioactive. Optical Properties: Transparent to translucent. Color: Yellow. Luster: Waxy to silky. Optical Class: Biaxial (-). α = 1.596 β = 1.603 γ = 1.606 2V(meas.) = ~ 60° 2V(calc.) = 66° Pleochroism: X = colorless, Y = pale yellow-green, Z = yellow-green. Dispersion: r > v, strong. Orientation: X = b, Y = c, Z = a. Cell Data: Space Group: C2/m. a = 14.26(2) b = 35.88(10) c = 14.20(2) β = 111.578(3)° Z = 4 X-ray Powder Pattern: Thomas Range, Utah, USA. 7.11 (10), 5.57 (9), 8.98 (8), 3.55 (7), 3.30 (7), 2.91 (6), 3.20 (5) Chemistry: (1) (1) Na2O 0.53 Al2O3 0.6 K2O 4.73 SiO2 29.44 CaO 0.67 UO3 55.78 BaO 3.11 H2O [7.02] MgO 0.18 Total 101.28 SrO 0.20 (1) Anderson mine, Arizona, USA; average of 8 electron microprobe analyses, supplemented by TGA, H2O calculated from structure, corresponds to (K1.031Na0.176Ca0.123Ba0.208)Σ=1.537(UO2)2.002 (Si5.030O13)·4H2O. Occurrence: In “opal" veinlets in rhyolite, agglomerates, sandstones and limestones. Association: “Opal," “chalcedony," calcite, gypsum, fluorite, uraninite, thorogummite, uranophane, boltwoodite, carnotite, margaritasite. Distribution: In the USA, in Utah, at the Autunite No.
    [Show full text]
  • Periodic DFT Study of the Structure, Raman Spectrum and Mechanical
    Periodic DFT Study of the Structure, Raman Spectrum and Mechanical Properties of Schoepite Mineral Francisco Colmeneroa*, Joaquín Cobosb and Vicente Timóna aInstituto de Estructura de la Materia (IEM-CSIC). C/ Serrano, 113. 28006 – Madrid, Spain. bCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT). Avda/ Complutense, 40. 28040 – Madrid, Spain. Orcid Francisco Colmenero: https://orcid.org/0000-0003-3418-0735 Orcid Joaquín Cobos: https://orcid.org/0000-0003-0285-7617 Orcid Vicente Timón: https://orcid.org/0000-0002-7460-7572 *E-mail: [email protected] 1 ABSTRACT The structure and Raman spectrum of schoepite mineral, [(UO2)8O2(OH)12] · 12 H2O, was studied by means of theoretical calculations. The computations were carried out by using Density Functional Theory with plane waves and pseudopotentials. A norm-conserving pseudopotential specific for the uranium atom developed in a previous work was employed. Since it was not possible to locate hydrogen atoms directly from X-ray diffraction data by structure refinement in the previous experimental studies, all the positions of the hydrogen atoms in the full unit cell were determined theoretically. The structural results, including the lattice parameters, bond lengths, bond angles and X-ray powder pattern were found in good agreement with their experimental counterparts. However, the calculations performed using the unit cell designed by Ostanin and Zeller in 2007, involving half of the atoms of the full unit cell, leads to significant errors in the computed X-ray powder pattern. Furthermore, Ostanin and Zeller’s unit cell contains hydronium ions, + H3O , that are incompatible with the experimental information. Therefore, while the use of this schoepite model may be a very useful approximation requiring a much smaller amount of computational effort, the full unit cell should be used to study this mineral accurately.
    [Show full text]
  • STRONG and WEAK INTERLAYER INTERACTIONS of TWO-DIMENSIONAL MATERIALS and THEIR ASSEMBLIES Tyler William Farnsworth a Dissertati
    STRONG AND WEAK INTERLAYER INTERACTIONS OF TWO-DIMENSIONAL MATERIALS AND THEIR ASSEMBLIES Tyler William Farnsworth A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2018 Approved by: Scott C. Warren James F. Cahoon Wei You Joanna M. Atkin Matthew K. Brennaman © 2018 Tyler William Farnsworth ALL RIGHTS RESERVED ii ABSTRACT Tyler William Farnsworth: Strong and weak interlayer interactions of two-dimensional materials and their assemblies (Under the direction of Scott C. Warren) The ability to control the properties of a macroscopic material through systematic modification of its component parts is a central theme in materials science. This concept is exemplified by the assembly of quantum dots into 3D solids, but the application of similar design principles to other quantum-confined systems, namely 2D materials, remains largely unexplored. Here I demonstrate that solution-processed 2D semiconductors retain their quantum-confined properties even when assembled into electrically conductive, thick films. Structural investigations show how this behavior is caused by turbostratic disorder and interlayer adsorbates, which weaken interlayer interactions and allow access to a quantum- confined but electronically coupled state. I generalize these findings to use a variety of 2D building blocks to create electrically conductive 3D solids with virtually any band gap. I next introduce a strategy for discovering new 2D materials. Previous efforts to identify novel 2D materials were limited to van der Waals layered materials, but I demonstrate that layered crystals with strong interlayer interactions can be exfoliated into few-layer or monolayer materials.
    [Show full text]
  • Clarkeite: New Chemical and Structural Data
    American Mineralogist, Volume 82, pages 607±619, 1997 Clarkeite: New chemical and structural data ROBERT J. FINCH* AND RODNEY C. EWING Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A. ABSTRACT Clarkeite crystallizes during metasomatic replacement of pegmatitic uraninite by late- stage, oxidizing hydrothermal ¯uids. Samples are zoned compositionally: Clarkeite, which is Na rich, surrounds a K-rich core (commonly with remnant uraninite) and is surrounded by more Ca-rich material; volumetrically, clarkeite is most abundant. Clarkeite is hexag- onal (space group Rm3Å )a53.954(4), c 5 17.73(1) AÊ (Z 5 3). The structure of clarkeite is based on anionic sheets of the form [(UO2)(O,OH)2]. The sheets are bonded to each other through interlayer cations and H2O molecules. The empirical formula for clarkeite from the Fanny Gouge mine near Spruce Pine, North Carolina, is: {Na0.733K0.029Ca0.021Sr0.009Y0.024Th0.006Pb0.058}S0.880[(UO2)0.942O0.918(OH)1.082](H2O)0.069. Na predominates and the Pb is radiogenic. The general formula for clarkeite is 21 31 41 {(Na,K)pMMMPbqr s x}[(UO2)1 2 xO1 2 y(OH)1 1 y](H2O)z where Na .. K and p . (q 1 r 1 s). The number of O22 ions and OH groups in the structural unit is determined by the net charge of the interlayer cations (except Pb): y 5 1 2 (p 1 2q 1 3r 1 4s). This suggests that the ideal formula for ideal end-member clarkeite is Na[(UO2)O(OH)](H2O)0-1.
    [Show full text]
  • Vibrational Spectroscopic Study of Hydrated Uranyl Oxide: Curite Ray L
    This is the author version of article published as: Frost, Ray L. and Cejka, Jiri and Ayoko, Godwin A. and Weier, Matt L. (2007) Vibrational spectroscopic study of hydrated uranyl oxide: curite. Polyhedron 26(14):pp. 3724-3730. Copyright 2007 Elsevier Vibrational spectroscopic study of hydrated uranyl oxide: curite Ray L. Frost 1*, Jiří Čejka 1,2 , Godwin A. Ayoko 1 and Matt L. Weier 1 1. Inorganic Materials Research Program, School of physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia. 2. National Museum, Václavské náměstí 68, 115 79 Praha 1, Czech Republic. Abstract Raman and infrared spectra of the uranyl oxyhydroxide hydrate: curite is reported. 2+ Observed bands are attributed to the (UO2) stretching and bending vibrations, U-OH - bending vibrations, H2O and (OH) stretching, bending and librational modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. These bond lengths are close to the values inferred and/or predicted from the X-ray single crystal structure. The complex hydrogen-bonding network arrangement was proved in the structures of the curite minerals. This hydrogen bonding contributes to the stability of these uranyl minerals. Key words: curite, uranyl mineral, Raman and infrared spectroscopy, U-O bond lengths in uranyl, hydrogen-bonding network Introduction The lead uranyl oxide hydrate minerals, PbUOHs, are a group of natural uranyl oxide hydrates that are formed and therefore are also present in oxidized zones of geologically old uranium deposits, owing to the buildup of radiogenic divalent Pb2+ [1-3].
    [Show full text]
  • [email protected] 1–408–923–6800
    www.minresco.com [email protected] 1–408–923–6800 Systematic Mineral List ABERNATHYITE - Rivieral, Lodeve, Herault Dept., France ABHURITE - Wreck of SS Cheerful, 14 Miles NNW of St. Ives, Cornwall, England ACANTHITE – Alberoda, Erzgebirge, Saxony, Germany ACANTHITE – Brahmaputra Vein, Alberoda, Schlema-Hartenstein District, Erzgebirge, Saxony, Germany ACANTHITE – Centennial Eureka Mine, Tintic District, Juab County, Utah ACANTHITE – Horn Silver Mine, near Frisco, Beaver County, Utah ACANTHITE – Ingleterra Mine, Santa Eulalia, Chihuahua, Mexico ACANTHITE – Pribram-Trebsco, Central Bohemia, Czech Republic ACANTHITE – Tombstone, Cochise County, Arizona ACHTARAGDITE - Achtaragda River/Wilui River District, Sakha Republic (Yakutia), Russian Fed. ADAMITE Var. Cuproadamite – Kintore Opencut, Broken Hill, New South Wales, Australia ADAMITE Var. Cuproadamite - Mine de Cap-Garonne, near Hyers, Dept. Var, France ADAMITE Var. Cuproadamite - Tsumcorp Mine, Tsumeb, Namibia ADAMITE Var. Cuproadamite – Zinc Hill, Darwin, Inyo County, California ADAMITE Var. Manganoan Adamite – El Potosi Mine, Santa Eulalia, Chihuahua, Mexico ADREALITE – Moorba Cave, Jurien Bay, W.A., Australia AEGIRINE Var. Blanfordite - Tirodi Mines, Madhya Pradesh, Central Provinces, India T AENIGMATITE – Chibiny (Khibina) Massif, Kola Peninsula, Russia AERINITE - Estopinan, Pyrenees Mountains, Huesca Province, Spain AESCHYNITE-(Y) (Priorite) – Arendal, Aust-Adger, Norway AFGHANITE – Casa Collina, Pitigliano, Grosseto, Tuscany (Toscana), Italy AFGHANITE - Laacher See Region, Ettringen,
    [Show full text]
  • New Data on Minerals
    Russian Academy of Science Fersman Mineralogical Museum Volume 39 New Data on Minerals Founded in 1907 Moscow Ocean Pictures Ltd. 2004 ISBN 5900395626 UDC 549 New Data on Minerals. Moscow.: Ocean Pictures, 2004. volume 39, 172 pages, 92 color images. EditorinChief Margarita I. Novgorodova. Publication of Fersman Mineralogical Museum, Russian Academy of Science. Articles of the volume give a new data on komarovite series minerals, jarandolite, kalsilite from Khibiny massif, pres- ents a description of a new occurrence of nikelalumite, followed by articles on gemnetic mineralogy of lamprophyl- lite barytolamprophyllite series minerals from IujaVritemalignite complex of burbankite group and mineral com- position of raremetaluranium, berrillium with emerald deposits in Kuu granite massif of Central Kazakhstan. Another group of article dwells on crystal chemistry and chemical properties of minerals: stacking disorder of zinc sulfide crystals from Black Smoker chimneys, silver forms in galena from Dalnegorsk, tetragonal Cu21S in recent hydrothermal ores of MidAtlantic Ridge, ontogeny of spiralsplit pyrite crystals from Kursk magnetic Anomaly. Museum collection section of the volume consist of articles devoted to Faberge lapidary and nephrite caved sculp- tures from Fersman Mineralogical Museum. The volume is of interest for mineralogists, geochemists, geologists, and to museum curators, collectors and ama- teurs of minerals. EditorinChief Margarita I .Novgorodova, Doctor in Science, Professor EditorinChief of the volume: Elena A.Borisova, Ph.D Editorial Board Moisei D. Dorfman, Doctor in Science Svetlana N. Nenasheva, Ph.D Marianna B. Chistyakova, Ph.D Elena N. Matvienko, Ph.D Мichael Е. Generalov, Ph.D N.A.Sokolova — Secretary Translators: Dmitrii Belakovskii, Yiulia Belovistkaya, Il'ya Kubancev, Victor Zubarev Photo: Michael B.
    [Show full text]
  • Systematics and Paragenesis of Uranium Minerals Robert Finch Argonne National Laboratory 9700 South Cass Ave
    3 Systematics and Paragenesis of Uranium Minerals Robert Finch Argonne National Laboratory 9700 South Cass Ave. Argonne, Illinois 60439 Takashi Murakami Mineralogical Institute University of Japan Bunkyo-ku, Tokyo 113, Japan INTRODUCTION Approximately five percent of all known minerals contain U as an essential structural constituent (Mandarino 1999). Uranium minerals display a remarkable structural and chemical diversity. The chemical diversity, especially at the Earth’s surface, results from different chemical conditions under which U minerals are formed. U minerals are therefore excellent indicators of geochemical environments, which are closely related to geochemical element cycles. For example, detrital uraninite and the absence of uranyl minerals at the Earth’s surface during the Precambrian are evidence for an anoxic atmosphere before about 2 Ga (Holland 1984, 1994; Fareeduddin 1990; Rasmussen and Buick 1999). The oxidation and dissolution of U minerals contributes U to geochemical fluids, both hydrothermal and meteoric. Under reducing conditions, U transport is likely to be measured in fractions of a centimeter, although F and Cl complexes can stabilize U(IV) in solution (Keppler and Wyllie 1990). Where conditions are sufficiently oxidizing to stabilize 2+ the uranyl ion, UO2 , and its complexes, U can migrate many kilometers from its source in altered rocks, until changes in solution chemistry lead to precipitation of U minerals. Where oxidized U contacts more reducing conditions, U can be reduced to form uraninite, coffinite, or brannerite. The precipitation of U(VI) minerals can occur in a wide variety of environments, resulting in an impressive variety of uranyl minerals. Because uraninite dissolution can be rapid in oxidizing, aqueous environments, the oxidative dissolution of uraninite caused by weathering commonly leads to the development of a complex array of uranyl minerals in close association with uraninite.
    [Show full text]
  • Experimental Equilibrium Data for the Uranium(IV) Thiocyanate System
    Group 14 compounds and complexes 333 Table V.45: Experimental equilibrium data for the uranium(IV) thiocyanate system. t β(a) β◦(b) Method Ionic log10 q log10 q Reference Medium (◦C) U4+ +SCN− USCN3+ emf 0.6 M HClO4 20 1.49 ± 0.03 2.97 ± 0.06 [54AHR/LAR2] +0.4 MNaClO4 dis 1.00 M HClO4 10 1.78 [55DAY/WIL] (c) 1.00 M NaClO4 25 1.49 ± 0.20 2.97 ± 0.21 1.00 M NaClO4 40 1.30 ............................. 4+ − 2+ U + 2SCN U(SCN)2 emf 0.6 M HClO4 20 1.95 ± 0.17 4.20 ± 0.22 [54AHR/LAR2] +0.4 MNaClO4 dis 1.00 M HClO4 10 2.30 [55DAY/WIL] (c) 1.00 M NaClO4 25 2.11 ± 0.30 4.36 ± 0.30 1.00 M NaClO4 40 1.98 ............................. 4+ − + U + 3SCN U(SCN)3 emf 0.6 M HClO4 20 2.2 [54AHR/LAR2] +0.4 MNaClO4 β (a) log10 q refers to the equilibrium and the ionic strength given in the table. β◦ I (b) log10 q is the corresponding value corrected to = 0 at 298.15 K. (c) Uncertainty estimated by this review. H◦ q − ± · −1 ∆r m(V.176, = 1, 298.15 K) = (27 8) kJ mol H◦ q − ± · −1 ∆r m(V.176, = 2, 298.15 K) = (18 4) kJ mol These values are used to derive the enthalpies of formation of the two complexes 3+ 2+ USCN and U(SCN)2 : H◦ 3+, , . − . ± . · −1 ∆f m(USCN aq 298 15 K) = (541 8 9 5) kJ mol H◦ 2+, , .
    [Show full text]
  • 1 Revision 1 1 2 the New K, Pb-Bearing Uranyl-Oxide Mineral
    1 Revision 1 2 3 The new K, Pb-bearing uranyl-oxide mineral kroupaite: crystal-chemical implications for 4 the structures of uranyl-oxide hydroxy-hydrates 5 1§ 2 3 4 5 6 JAKUB PLÁŠIL , ANTHONY R. KAMPF , TRAVIS A. OLDS , JIŘÍ SEJKORA , RADEK ŠKODA , 3 4 7 PETER C. BURNS AND JIŘÍ ČEJKA 8 9 1 Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic 10 2 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition 11 Boulevard, Los Angeles, CA 90007, USA 12 3 Department of Civil and Environmental Engineering and Earth Sciences, University of Notre 13 Dame, Notre Dame, IN 46556, USA 14 4 Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9 - 15 Horní Počernice, 193 00, Czech Republic 16 5 Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 17 37, Brno, Czech Republic 18 19 ABSTRACT 20 Kroupaite (IMA2017-031), ideally KPb0.5[(UO2)8O4(OH)10]·10H2O, is a new uranyl-oxide 21 hydroxyl-hydrate mineral found underground in the Svornost mine, Jáchymov, Czechia. 22 Electron-probe microanalysis (WDS) provided the empirical formula 23 (K1.28Na0.07)Σ1.35(Pb0.23Cu0.14Ca0.05Bi0.03Co0.02Al0.01)Σ0.48[(UO2)7.90(SO4)0.04O4.04(OH)10.00]·10H2O, 24 basis of 40 O atoms apfu. Sheets in the crystal structure of kroupaite adopt the fourmarierite 25 anion topology, and therefore kroupaite belongs to the schoepite-family of minerals with related 26 structures differing in the interlayer composition and arrangement, and charge of the sheets.
    [Show full text]
  • Uranium Geochemistry, Mineralogy, Geology, Exploration and Resources Uranium Geochemistry, Mineralogy, Geology, Exploration and Resources
    Uranium geochemistry, mineralogy, geology, exploration and resources Uranium geochemistry, mineralogy, geology, exploration and resources Edited by B. De Vivo, F. Ippolito, G. Capaldi and P. R. Simpson The Institution of Mining and Metallurgy © The Institution of Mining and Metallurgy 1984 Softcover reprint of the hardcover 1st edition 1984 ISBN-13: 978-94-009-6062-6 e-ISBN-13: 978-94-009-6060-2 001: 10.1007/978-94-009-6060-2 UDC 550.4:553.495.2 Published at the offices of the Institution of Mining and Metallurgy 44 Portland Place London WI England Introduction Since then the uranium market has been subject to two other turning points that, in the course of a few years, have made this The uranium minerals that today are at the centre of worldwide metal an essential raw material. attention were unknown until 1780, when Wagsfort found a First, the destructive property of fission reactions made pitchblende sample in 10hanngeorgenstadt. This discovery uranium a metal of fundamental strategic importance, increas­ passed unnoticed, however, since Wags fort thought that it ing research in some nations, but the revolution came with the contained a black species of a zinc mineral-hence the n':lme plan for the real possibility of utilizing chain reactions for 'pitchblende' (= pitch-like blende). Seven years later, Klaproth, energy production in place of conventional fuels. while examining the mineral, noted that it contained an oxide Since that time a 'uranium race' has been in progress in many of an unknown metal, which he called 'uranium' in honour of countries-often justified by the well-founded hope of the planet Uranus, recently discovered by Herschel.
    [Show full text]