Native Plantings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Field Release of the Leaf-Feeding Moth, Hypena Opulenta (Christoph)
United States Department of Field release of the leaf-feeding Agriculture moth, Hypena opulenta Marketing and Regulatory (Christoph) (Lepidoptera: Programs Noctuidae), for classical Animal and Plant Health Inspection biological control of swallow- Service worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Field release of the leaf-feeding moth, Hypena opulenta (Christoph) (Lepidoptera: Noctuidae), for classical biological control of swallow-worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. -
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Feedstock List (As of 3/2018)
Feedstock List (as of 3/2018) FOG: Fats / Oils / Greases Wastes / Oil Seeds Algae / Aquatic Species Industrial Aloe (Aloe vera) Meadowfoam (Limnanthes alba) Brown grease Cyanobacteria Babassu (Attalea speciosa) Mustard (Sinapis alba) Crude glycerine Halophytes (e.g., Salicornia bigelovii) *Camelina (Camelina sativa)* Nuts Fish oil Lemna (Lemna spp.) *Canola, winter (Brassica napus[occasionally rapa Olive (Olea europaea) Industrial effluent (palm) Macroalgae or campestris])* *Carinata (Brassica carinata)* Palm (Elaeis guineensis) Shrimp oil (Caridea) Mallow (Malva spp.) Castor (Ricinus communis) Peanut, Cull (Arachis hypogaea) Tall oil pitch Microalgae Citrus (Citron spp.) Pennycress (Thlaspi arvense) Tallow / Lard Spirodela (Spirodela polyrhiza) Coconut (Cocos nucifera) Pongamia (Millettia pinnata) White grease Wolffia (Wolffia arrhiza) Corn, inedible (Zea mays) Poppy (Papaver rhoeas) Waste vegetable oil Cottonseed (Gossypium) *Rapeseed (Brassica napus)* Yellow grease Croton megalocarpus Oryza sativa Croton ( ) Rice Bran ( ) Cuphea (Cuphea viscossisima) Safflower (Carthamus tinctorius) Flax / Linseed (Linum usitatissimum) Sesame (Sesamum indicum) Gourds / Melons (Cucumis melo) Soybean (Glycine max) Grapeseed (Vitis vinifera) Sunflower (Helianthus annuus) Hemp seeds (Cannabis sativa) Tallow tree (Triadica sebifera) Jojoba (Simmondsia chinensis) Tobacco (Nicotiana tabacum) Jatropha (Jatropha curcas) Calophyllum inophyllum Kamani ( ) Lesquerella (Lesquerella fenderi) Cellulose Woody Grasses Residues Other Types: Arundo (Arundo donax) Bagasse -
See Our Park Map of Water Bottle Refill Stations!
D V L B S Spotts Park O’Reilly St T Sawyer St H I E Snover St Snover Jackson Hill St Hill Jackson THEWATERWORKS H Zane and Brady Washington Glenwood N Memorial Way HOUSTONAVE SHEPHERDDR Cemetery Cemetery buffalo BAYO U EORIALDR Carruth Overlook Carruth STUDEONTST Bridge EORIALDR Green Tree to Sixth Ward Nature Area 0.40 M.D. Anderson Buffalo Bayou has been a focal point in Houston’s Foundation Stairway Cleveland Park Fonde history since the Allen brothers founded the city in 0.42 Rec. Center (weekends and evenings aer 1836. Today, the bayou is once again the centerpiece Houston Police Tapley 5pm only) Hamill Foundation Stairway Officers’ Memorial Tributary St Sabine of its development. Rosemont Bridge Rusk St » St. Thomas High School 0.18 Buffalo Bayou Partnership (BBP) is the non-profit organiza- 0.80 0.56 Shepherd Gateway Scurlock Foundation Overlook LDR ORIA Lee & Joe Jamail Hobby Center tion revitalizing and transforming Buffalo Bayou from a gi from the Radoff Family E Sabine Promenade Jackson Hill Bridge Skatepark Bridge Shepherd Drive to the Port of Houston Turning Basin. From to Memorial Park 0.39 Jane Gregory spearheading capital projects such as the 160-acre Buffalo EORIALDR Hobby 1.14 Garden Center 0.45 Bayou Park to constructing hike and bike trails, operating Neumann Family Barbara Fish Daniel comprehensive clean-up and maintenance programs and Wortham Foundation Stairway Nature Play Area Waugh Grove offering thoughtful programming, Buffalo Bayou Partnership Bat Colony ALLENPKWY Brookfield Bridge « Walker St is reclaiming Houston’s unique waterfront. JOHNNYSTEELE Federal Reserve Bank City Hall Bud Light Amphitheater Crosby McKinney St » Annex This map will guide you as you walk, run, cycle or paddle LOSTLAKE DOPARK Outfall ONTROSEBLVD TAFTST Gillette St Gillette ELEANORTINSLEYPARK Bagby St City along the waterway and visit the many parks and historic SHEPHERDDR WAUHDR Sam Houston Park Hall sites. -
In Our Coastal Gardens
Detailed lists are available by pole beans, arugula, butter beans, Sept. MAY a slow-release nitrogen fertilizer. month at: https://txmg.org/aran- and herbs thru March. Transplant v Wildflowers/Annuals – do not Water with a very slow dripping sas/publications-other-resourc- warm season plants - tomato, mow wildflowers. Let them v Upkeep – check mulch levels, hose 1x/wk several hours - pepper, and eggplant. Protect replenish to 3-4” deep to deter dependent on how hot, dry, or es/news-column-archives/ bloom and go to seed so they warm weather crops from cold. come back next year. weeds, protect from heat, and windy. JANUARY v Fruit Trees – transplant new hold moisture. Keep mulch v Roses – Fertilize 1x/mo through varieties. Prune existing trees APRIL 2-3” away from trunk or stem. Sept. then water deeply. v Upkeep – cold spell predicted? = before they bloom and set fruit. Watch for spider mites, aphids, Deadheading after first spring water. Freeze? = cover plants until v Upkeep – fertilize all plants Remember, the branches you scale, beetles, whiteflies, and blossoms encourages blooming. temp is above freezing. Do not with compost, worm castings, trim won’t give you any fruit this powdery mildew. Check tender Watch for black spot, remove and fertilize until you see new growth or slow release fertilizer 1x/mo year, so don’t go crazy. growth. Many insects can be - and then, only lightly. Remove through summer, and mulch. Pull destroy diseased leaves. Prune washed off with a strong spray of problem and invasive species. v Roses – plant - well-drained weeds. Check for mildew, rust, climbing roses when they finish soil w/ 8 hrs of sun; fertilize. -
Bioenergy and Invasive Plants: Quantifying and Mitigating Future Risks
Invasive Plant Science and Management 2014 7:199–209 Bioenergy and Invasive Plants: Quantifying and Mitigating Future Risks Jacob N. Barney* The United States is charging toward the largest expansion of agriculture in 10,000 years with vast acreages of primarily exotic perennial grasses planted for bioenergy that possess many traits that may confer invasiveness. Cautious integration of these crops into the bioeconomy must be accompanied by development of best management practices and regulation to mitigate the risk of invasion posed by this emerging industry. Here I review the current status of United States policy drivers for bioenergy, the status of federal and state regulation related to invasion mitigation, and survey the scant quantitative literature attempting to quantify the invasive potential of bioenergy crops. A wealth of weed risk assessments are available on exotic bioenergy crops, and generally show a high risk of invasion, but should only be a first-step in quantifying the risk of invasion. The most information exists for sterile giant miscanthus, with preliminary empirical studies and demographic models suggesting a relatively low risk of invasion. However, most important bioenergy crops are poorly studied in the context of invasion risk, which is not simply confined to the production field; but also occurs in crop selection, harvest and transport, and feedstock storage. Thus, I propose a nested-feedback risk assessment (NFRA) that considers the entire bioenergy supply chain and includes the broad components of weed risk assessment, species distribution models, and quantitative empirical studies. New information from the NFRA is continuously fed back into other components to further refine the risk assessment; for example, empirical dispersal kernels are utilized in landscape-level species distribution models, which inform habitat invasibility studies. -
Seed Germination Characteristics of Selected Native Plants of the Lower Rio Grande Valley, Texas
Seed germination characteristics of selected native plants of the lower Rio Grande Valley, Texas ROBINS. VORA Experhnents were conducted to identity treatments that increased 58% with 45 minutes acid treatment of huisachillo (Acacia schaf- emergence of seeds of 24 woody plant species native to the lower fwri) seeds, and 87% with acid treatment for 15 to 90 minutes of Rio Grande Valley of southern Texas. Sulfuric acid (18.4M retama (Purkinsoniu uculeutu) seeds. Similarly, germination of H&04) scarification significantly hnxeased emergence of buisachc rattlebush (Sesbania drummondii) seeds was improved by soaking (A cud& smul&i), bui~ebillo (A. scwm?ri), Texas ebony (Pithecel- in acid for up to 4 hours (Easton 1984). Acid scarification for 60 to lobiumflexicmde), tenam (P.palkns), tepeguaje (Leucaenapuhv- 90 minutes followed by cold scarification for 90 days produced best r&da), retama (porkinson& rrcrrlcou),and western soapberry results with western soapberry (Sapindus drummondii) seeds (Munson 1984). Seeds of other species, such as sugarberry (Celtis (Sapiudus &wnmlo II@); treatments such as soakhrg in disHBed water, gibberellic acid (0.3 or 1.4 mMol), or other scari5cation luevigata), might undergo periods of dormancy that can be broken techniques were not as effective as add. Fresh guajillo (A. be&n- by prechilling (Bonner 1974,1984). Fulbright et al. (1986a, b) used died’) seedr required no treatment, but g-month-old seeds had a combination of mechanical scarification, gibberellic acid, and heat/ chill treatments to obtain 62% germination of granjeno (Cel- higher emergence with add scarification. Texas ebony emergence was higher from lO-month-old seed treated with acid than from tis p&da) seeds; and gibberellic acid, moist prechilling for 2 fresh seeds. -
Valley Native Plants for Birds
Quinta Mazatlan WBC 1/19/17 SB 1 TOP VALLEY NATIVE FRUITING PLANTS FOR BIRDS TALL TREES, 30 FT OR GREATER: Common Name Botanical Name Height Width Full Shade/ Full Evergreen Bloom Bloom Fruit Notes (ft) (ft) Sun Sun Shade Color Period Color Anacua, Ehretia anacua 20-50 40-60 X X X White Summer- Yellow- Leaves feel like sandpaper; Sandpaper Tree, Fall Orange fragrant flowers. Mature trunk has Sugarberry characteristic outgrowth which resembles cylinders put together to form it. Edible fruit. Butterfly nectar plant. Sugar Hackberry, Celtis laevigata 30-50 50 X X X Greenish, Spring Red Fast-growing, short-lived tree, with Palo Blanco tiny an ornamental grey, warty bark. Shallow rooted and prone to fungus; should be planted away from structures. Caterpillar host plant. SMALL TREES (LESS THAN 30 FT): Common Name Botanical Name Height Width Full Shade/ Full Evergreen Bloom Bloom Fruit Notes (ft) (ft) Sun Sun Shade Color Period Color Brasil, Condalia hookeri 12-15 15 X X X Greenish- Spring- Black Branches end in thorns; shiny Capul Negro, yellow, Summer leaves. Capulín, Bluewood small Condalia Coma, Sideroxylon 15-30 15 X X X White Summer- Blue- Very fragrant flowers; sticky, edible Chicle, celastrinum Fall, after black fruit; thorny; glossy leaves. Saffron Plum rain Granjeno, Celtis pallida 10-20 12 X X X X Greenish, Spring Orange Edible fruit; spiny; bark is mottled Spiny tiny grey. Can be small tree or shrub. Hackberry Texas Diospyros 15-30 15 X X X X White Spring Black Mottled, peeling ornamental bark; Persimmon, texana great native choice instead of the Chapote Crape Myrtle. -
Botanischer Garten Der Universität Tübingen
Botanischer Garten der Universität Tübingen 1974 – 2008 2 System FRANZ OBERWINKLER Emeritus für Spezielle Botanik und Mykologie Ehemaliger Direktor des Botanischen Gartens 2016 2016 zur Erinnerung an LEONHART FUCHS (1501-1566), 450. Todesjahr 40 Jahre Alpenpflanzen-Lehrpfad am Iseler, Oberjoch, ab 1976 20 Jahre Förderkreis Botanischer Garten der Universität Tübingen, ab 1996 für alle, die im Garten gearbeitet und nachgedacht haben 2 Inhalt Vorwort ...................................................................................................................................... 8 Baupläne und Funktionen der Blüten ......................................................................................... 9 Hierarchie der Taxa .................................................................................................................. 13 Systeme der Bedecktsamer, Magnoliophytina ......................................................................... 15 Das System von ANTOINE-LAURENT DE JUSSIEU ................................................................. 16 Das System von AUGUST EICHLER ....................................................................................... 17 Das System von ADOLF ENGLER .......................................................................................... 19 Das System von ARMEN TAKHTAJAN ................................................................................... 21 Das System nach molekularen Phylogenien ........................................................................ 22 -
Ehretia Anacua / Condalia Hookeri Forest Texas Ebony – Anacua / Brasíl Forest (From International Vegetation Classification, Natureserve 2012)
6 Major Physiographic Zones of the Lower Rio Grande Valley, Texas (from Hathcock et al. 2014, in press) South Texas Refuge Complex STRC MISSION To restore, enhance, and protect the natural diversity of the Lower Rio Grande Valley of Texas Two-Pronged Approach Acquisition -- land/easements • Create corridors* • Conserve unique biota • Very high, immediate priority Restoration -- mature riparian woodlands • Create corridors* • Augment and enhance habitat blocks • Long-term ecosystem sustainability STRC Restoration Program • Facilitate succession • 5,000 ha planted since mid-1980’s • Early sites direct-seeded/low-density (<600 plants/ha) transplants • Currently 200 ha/year @ 1,000-2,000 plants/ha (50-60 species) • Additional 3,000 ha slated for future Seedlings in “Mini” (6” x 1.5”) Plant Bands Texas ebony Ebanopsis ebano all-thorn goat-bush Castela erecta Evaluation of Effectiveness Traditional • Focus on maximum area/numbers of plants • 1st-Year Survivorship (re-plant?) • No long-term data Current • Increased focus on similarity to natural climax communities • Poor results observed anecdotally at many past sites • Possible to evaluate 15 to 25-year-old sites Study Methods • Non-Systematic, Qualitative Surveys – 2 distinct association-level mature woodland communities – noted dominant species within 4 vertical strata • Belt-Transect Surveys – 9 Sites (3 direct-seed, 5 transplant, 1 control) – counted all individual woody plants within 2 to 3-m belt Ebenopsis ebano – Ehretia anacua / Condalia hookeri Forest Texas Ebony – Anacua / Brasíl -
Water Quality Monitoring in the Bayou Teche Watershed
Water Quality Monitoring in the Bayou Teche Watershed Researchers: Dr. Whitney Broussard III Dr. Jenneke M. Visser Kacey Peterson Mark LeBlanc Project type: Staff Research Funding sources: Louisiana Department of Environmental Quality, Environmental Protection Agency Status: In progress Summary The historic Bayou Teche is an ancient distributary of the Mississippi River. Some 3,000-4,000 years ago, the main flow of the Mississippi River followed the Bayou Teche waterway. This explains the long, slow bends of the small bayou and its wide, sloping banks. The Atákapa-Ishák nation named the bayou “Teche” meaning snake because the course of the bayou looked like a giant snake had laid down to rest, leaving its mark on the land. Many years later, the first Acadians arrived in Southwestern Louisiana via Bayou Teche. They settled along its banks and used the waterway as a means of transportation and commerce. The bayou remains to this day an iconic cultural figure and an important ecological phenomenon. Several modern events have reshaped the quality and quantity of water in Bayou Teche. After the catastrophic flood of 1927, the United States Congress authorized the US Army Corps of Engineers to create the first comprehensive flood management plan for the Mississippi River. One important element of this plan was the construction of the West Atchafalaya Basin Protection Levee, which, in conjunction with the East Protection Levee, allows the Corps of Engineers to divert a substantial amount of floodwaters out of the Mississippi River into the Atchafalaya Spillway, and away from major urban centers like Baton Rouge and New Orleans. -
National List of Vascular Plant Species That Occur in Wetlands 1996
National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.