Applications Des Technologies Mémoires MRAM Appliquées Aux Processeurs Embarqués Luís Vitório Cargnini

Total Page:16

File Type:pdf, Size:1020Kb

Applications Des Technologies Mémoires MRAM Appliquées Aux Processeurs Embarqués Luís Vitório Cargnini Applications des technologies mémoires MRAM appliquées aux processeurs embarqués Luís Vitório Cargnini To cite this version: Luís Vitório Cargnini. Applications des technologies mémoires MRAM appliquées aux processeurs embarqués. Micro et nanotechnologies/Microélectronique. Université Montpellier II - Sciences et Techniques du Languedoc, 2013. Français. NNT : 2013MON20091. tel-01015187 HAL Id: tel-01015187 https://tel.archives-ouvertes.fr/tel-01015187 Submitted on 26 Jun 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par UNIVERSITÉ MONTPELLIER 2 Préparée au sein de l’école doctorale Information, Structures et Systèmes Et de l’unité de recherche LIRMM Spécialité : Systèmes Automatiques et Microélectronique Présentée par Luís Vitório Cargnini Applications des technologies mémoires MRAM Appliquées aux processeurs embarqués Soutenue le 12/11/2013 devant le jury composé de Dr. Lionel TORRES Professeur, Université Montpellier 2 Directeur de Thèse Dr. Gilles SASSATELLI Directeur de Recherche CNRS, LIRMM UMR CNRS 5506 Co-Encadrant Dr. Guy Gogniat Professeur, Université Bretagne-Sud, Lorient Rapporteur Dr. Bertrand GRANADO Professeur, Université Pierre et Marie Curie, Paris Rapporteur Dr. Jacques-Olivier Klein Professeur, Université Paris Sud 11, Paris Président Dr. Daniel Étiemble Professeur, Université Paris Sud 11, Paris Examinateur Dr. Guillaume Prenat Ingénieur-Docteur, CEA, Laboratoire SPINTEC, Grenoble Examinateur Académie de Montpellier U n i v e r s i t é M o n t p e l l i e r II — Sciences et Techniques du Languedoc — Thèse présentée au Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier pour obtenir le grade de Docteur de l’Université Montpellier II Discipline : Génie Informatique, Automatique et Traitement du Signal Formation Doctorale : Systèmes Automatiques et Microélectronique École Doctorale : Information, Structures et Systèmes MRAM APPLIED TO EMBEDDED PROCESSORS ARCHITECTURE AND MEMORY HIERARCHY NON-VOLATILE MEMORY MRAM INTO THE MEMORY HIERARCHY par Luís Vitório Cargnini Jury composé de : Lionel Torres Professeur, Université Montpellier II/CNRS, Montpellier, France Directeur de thèse Gilles Sassatelli Directeur de recherche/CNRS, Montpellier, France Co-encadrant Guy Gogniat Professeur, Université de Bretagne Sud, Lorient, France Rapporteur Bertrand Granado Professeur, Université Pierre et Marie Curie, Paris, France Rapporteur Jacques-Olivier Klein Professeur, Institut d’Électronique Fondamentale, Université Paris Sud 11, Paris, France Président Daniel Étiemble Professeur, Lab. de Recherche en Informatique, Université Paris Sud 11, Paris, France Examinateur Guillaume Prenat Ingenieur, CEA Spintec, Grenoble, France Examinateur luís vitório cargnini MRAMAPPLIEDTOEMBEDDEDPROCESSORSARCHITECTURE ANDMEMORYHIERARCHY MRAMAPPLIEDTOEMBEDDEDPROCESSORSARCHITECTUREAND MEMORYHIERARCHY luís vitório cargnini Non-volatile Memory MRAM into the memory hierarchy Ph.D. I2S LIRMM – Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Université de Montpellier 2 November 12, 2013 – version 7.3 Luís Vitório Cargnini: MRAM applied to Embedded Processors architecture and Memory Hier- archy , Non-volatile Memory MRAM into the memory hierarchy , Ph.D., c , November 12, 2013 supervisors: Lionel Torres Gilles Sassatelli location & time frame: Montpellier,France, November 12, 2013 To my wife, that endured, my years of Ph.D., my absences. I was lucky to have found you at our Alma Mater ! Thanks for all the trust, help and support you give me everyday, we finally can go home ! To my thesis baby: now, dad have time to play ! New ideas pass through three periods: 1) It can’t be done. 2) It probably can be done, but it’s not worth doing. 3) I knew it was a good idea all along! Arthur C. Clarke Ohana means family. Family means nobody gets left behind, or forgotten. — Lilo & Stitch Ad Verum Ducit — Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) motto. ABSTRACT The Semiconductors Industry with the advent of submicronic manufacturing flows below 45nm began to face new challenges to keep evolving according with the Moore’s Law. Regarding the widespread adoption of embedded systems one major constraint became power consumption of Integrated Circuit (IC). Also, memory technologies like the current standard of integrated memory technology for memory hierarchy, the SRAM, or the FLASH for non-volatile storage have extreme intricate constraints to be able to yield memory arrays at technological nodes below 45nm. One important is up until now Non-Volatile Memory weren’t adopted into the memory hierarchy, due to its density and like flash the necessity of multi-voltage operation. This thesis has the objective to work into these constraints and provide some answers. Into the thesis will be presented methods and results extracted from this methods to corroborate our goal of delineate a roadmap to adopt a new memory technology, non-volatile, low-power, low-leakage, SEU/MEU-resistant, scalable and with similar performance as the current SRAM, physically equivalent to SRAM, or even better with a area density between 4 to 8 times the area of a SRAM cell, without the necessity of multi-voltage domain like FLASH. This memory is the MRAM (Magnetic Memory), according with the ITRS one candidate to replace SRAM in the near future. MRAM instead of storing charge, they store the magnetic orientation provided by the spin-torque orientation of the free-layer alloy in the Magnetic Tunnel Junction (MTJ). Spin is a quantical state of matter, that in some metallic materials can have the orientation or its torque switched applying a polarized current in the sense of the desired field orientation. Once the magnetic field orientation is set, using a sense amplifier, and a current flow through the MTJ, the memory cell element of MRAM, it is possible to measure the orientation given the resistance variation, higher the resistance lower the passing current, the sense will identify a logic zero, lower the resistance the SA will sense a one logic. So the information is not a charge stored, instead it is a magnetic field orientation, reason why it is not affected by SEU or MEU caused due to high energy particles. Also it is not due to voltages variations to change the memory cell content, trapping charges in a floating gate. Regarding the MRAM, this thesis has by objective address the following aspects: MRAM applied to memory Hierarchy: • By describing the current state of the art in MRAM design and use into memory hierarchy; • by providing an overview of a mechanism to mitigate the latency of writing into MRAM at the cache level (Principle to composite memory bank); • By analyzing power characteristics of a system based on MRAM on CACHE L1 and L2, using a dedicated evaluation flow • by proposing a methodology to infer a system power consumption, and performance. • and for last based into the memory banks analyzing a Composite Memory Bank, a simple description on how to generate a memory bank, with some compromise in power, but equivalent latency to the SRAM, that keeps similar performance. ix PUBLICATIONS Some ideas and figures have appeared previously in the following publications: book chapters Weisheng Zhao, Lionel Torres, Luís Vitório Cargnini, Raphael Martins Brum, Yue Zhang, Yoann Guillemenet, Gilles Sassatelli, Yahya Lakys, Jacques-Olivier Klein, Daniel Etiem- ble, Dafiné Ravelosona, Claude Chappert, "High Performance SoC Design Using Mag- netic Logic and Memory", VLSI-SoC: Advanced Research for Systems on Chip, IFIP Advances in Information and Communication Technology, Volume 379, 2012, pp 10- 33, DOI: 10.1007/978-3-642-32770-4_2, Print ISBN 978-3-642-32769-8, Online ISBN 978-3- 642-32770-4, ISSN 1868-4238, Springer Berlin Heidelberg, http://link.springer.com/ chapter/10.1007%2F978-3-642-32770-4_2 international conferences Torres, L.; Brum, R.M.; Cargnini, L.V.; Sassatelli, G., "Trends on the application of emerg- ing nonvolatile memory to processors and programmable devices," Circuits and Sys- tems (ISCAS), 2013 IEEE International Symposium on , vol., no., pp.101,104, 19-23 May 2013, doi: 10.1109/ISCAS.2013.6571792, http://ieeexplore.ieee.org/stamp/stamp.jsp? tp=&arnumber=6571792&isnumber=6571764 Torres, L.; Brum, R.M.; Guillemenet, Y.; Sassatelli, G.; Cargnini, L.V., "Evaluation of hy- brid MRAM/CMOS cells for reconfigurable computing," New Circuits and Systems Conference (NEWCAS), 2013 IEEE 11th International , vol., no., pp.1,6, 16-19 June 2013, doi: 10.1109/NEWCAS.2013.6573676, http://ieeexplore.ieee.org/stamp/stamp.jsp? tp=&arnumber=6573676&isnumber=6573561 Cargnini, Luis Vitorio; Torres, Lionel; Brum, Raphael Martins; Senni, Sophiane; Sas- satelli, Gilles, "Embedded memory hierarchy exploration based on magnetic RAM," Faible Tension Faible Consommation (FTFC), 2013 IEEE , vol., no., pp.1,4, 20-21 June 2013, doi: 10.1109/FTFC.2013.6577780, http://ieeexplore.ieee.org/stamp/stamp.jsp? tp=&arnumber=6577780&isnumber=6577746 Weisheng Zhao, Lionel Torres, Yoann Guillemenet, Luís Vitório Cargnini, Yahya Lakys, Jacques-Olivier
Recommended publications
  • Archiving Online Data to Optical Disk
    ARCHIVING ONLINE DATA TO OPTICAL DISK By J. L. Porter, J. L. Kiesler, and D. A. Stedfast U.S. GEOLOGICAL SURVEY Open-File Report 90-575 Reston, Virginia 1990 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report can be write to: purchased from: Chief, Distributed Information System U.S. Geological Survey U.S. Geological Survey Books and Open-File Reports Section Mail Stop 445 Federal Center, Bldg. 810 12201 Sunrise Valley Drive Box 25425 Reston, Virginia 22092 Denver, Colorado 80225 CONTENTS Page Abstract ............................................................. 1 Introduction ......................................................... 2 Types of optical storage ............................................... 2 Storage media costs and alternative media used for data archival. ......... 3 Comparisons of storage media ......................................... 3 Magnetic compared to optical media ............................... 3 Compact disk read-only memory compared to write-once/read many media ................................... 6 Erasable compared to write-once/read many media ................. 7 Paper and microfiche compared to optical media .................... 8 Advantages of write-once/read-many optical storage ..................... 8 Archival procedure and results ........................................ 9 Summary ........................................................... 13 References ..........................................................
    [Show full text]
  • The Future of Data Storage Technologies
    International Technology Research Institute World Technology (WTEC) Division WTEC Panel Report on The Future of Data Storage Technologies Sadik C. Esener (Panel Co-Chair) Mark H. Kryder (Panel Co-Chair) William D. Doyle Marvin Keshner Masud Mansuripur David A. Thompson June 1999 International Technology Research Institute R.D. Shelton, Director Geoffrey M. Holdridge, WTEC Division Director and ITRI Series Editor 4501 North Charles Street Baltimore, Maryland 21210-2699 WTEC Panel on the Future of Data Storage Technologies Sponsored by the National Science Foundation, Defense Advanced Research Projects Agency and National Institute of Standards and Technology of the United States government. Dr. Sadik C. Esener (Co-Chair) Dr. Marvin Keshner Dr. David A. Thompson Prof. of Electrical and Computer Director, Information Storage IBM Fellow Engineering & Material Sciences Laboratory Research Division Dept. of Electrical & Computer Hewlett-Packard Laboratories International Business Machines Engineering 1501 Page Mill Road Corporation University of California, San Diego Palo Alto, CA 94304-1126 Almaden Research Center 9500 Gilman Drive Mail Stop K01/802 La Jolla, CA 92093-0407 Dr. Masud Mansuripur 650 Harry Road Optical Science Center San Jose, CA 95120-6099 Dr. Mark H. Kryder (Co-Chair) University of Arizona Director, Data Storage Systems Center Tucson, AZ 85721 Carnegie Mellon University Roberts Engineering Hall, Rm. 348 Pittsburgh, PA 15213-3890 Dr. William D. Doyle Director, MINT Center University of Alabama Box 870209 Tuscaloosa, AL 35487-0209 INTERNATIONAL TECHNOLOGY RESEARCH INSTITUTE World Technology (WTEC) Division WTEC at Loyola College (previously known as the Japanese Technology Evaluation Center, JTEC) provides assessments of foreign research and development in selected technologies under a cooperative agreement with the National Science Foundation (NSF).
    [Show full text]
  • 2129710142200313CSE312 Amir Adel Salah.Pdf
    استمارة جقييم الزسائل البحثيت ملقزر دراس ي اوﻻ : بياهاث جمل بمعزفت الطالب اسم الطالبـــــــــــ :أم ري عادل صﻻح عبد العظيم كلية : الهندســــه القسم: الحاسبات و النظم الفرقة/المستوى : الثالثة الشعبة : اسم المقرر :بنية الحاسب كود المقرر : CSE312 استاذ المقرر : د.طارق مراد جمعة ر ال رييد اﻻلكيون [email protected] : للطالب عنوان الرسالة البحثية : Modern Computers Memory ثاهيا: بياهاث جمل بمعزفت لجىت املمتحىيين هل الزسالت البحثيت املقدمت متشابت جشئيا او كليا ☐ وعم ☐ ﻻ فى حالت الاجابت بىعم ﻻ يتم جقييم املشزوع البحثى ويعتبر غير مجاس جقييم املشزوع البحثى م عىاصز التقييم الوسن التقييم اليسبى 1 الشكل العام للزسالت البحثيت 2 جحقق املتطلباث العلميت املطلوبت 3 يذكز املزاجع واملصادر العلميت 4 الصياغت اللغويت واسلوب الكتابت جيد هتيجت التقييم النهائى 100/ ☐ هاجح ☐ راسب جوقيع لجىت التقييم 1. .2 .3 .4 .5 جزفق هذه الاستمارة كغﻻف للمشزوع البحثى بعد استكمال البياهاث بمعزفت الطالب وعلى ان ﻻ جشيد عً صفحت واحدة Computers Memory Introduction At the beginning of the age of technology , A new term name called Memory has appeared .The memory is the most important thing in Computer . it is the main item which is responsible for data storage. The memories were designed by different ways and through multiple stages. At the beginning of memory manufacturing, the memory was produced by vacuum tubes from 1946 to 1959 .Vacuum tubes were basic components which was used to make the first generation of memories . Also the vacuum tubes used to make circuitry of CPU (Central Processing unit).In this generation ,the basic programming language was machine code which used in computers used vacuum tubes in the memory.
    [Show full text]
  • 3 Secondary Storage.PDF
    CAPE COMPUTER SCIENCE SECONDARY STORAGE Secondary storage is needed 1. because there is a limit on the size of primary memory (due to cost) and 2. because RAM is volatile and so data needed for future use must be stored somewhere else so that it can be retrieved when necessary. Secondary storage is also used for backup and archives. When we consider secondary storage devices we must bear in mind the following characteristics of each device : Capacity Access speed Access method and portability Floppy Disk This is a 3.5 inch magnetic disk of flexible material which until recently was a standard feature on most microcomputers. Typically it stores 1.44 MB of data. It’s a thin plastic circle coated with a magnetic material and encased in a rigid plastic to protect it. A metal sliding access shuttle opens when the disk is in the machine allowing the read/write head access to the disk. Data can be written to and erased from a floppy disk. A write protect tab can be used to prevent accidental overwriting of data. Before data can be written to a disk, it must be formatted. This prepares the disk for use by creating a magnetic map on the disks surface. This map consists of tracks and sectors. Formatting also prepares the file allocation table (FAT). The address of a file on a floppy disk is comprised of the track number and the sector number. Floppy disks are direct access devices but they are slow compared to hard disks. The floppies great advantage has been its use as a device to help transport small files between machines.
    [Show full text]
  • Unit 5: Memory Organizations
    Memory Organizations Unit 5: Memory Organizations Introduction This unit considers the organization of a computer's memory system. The characteristics of the most important storage technologies are described in detail. Basically memories are classified as main memory and secondary memory. Main memory with many different categories are described in Lesson 1. Lesson 2 focuses the secondary memory including the details of floppy disks and hard disks. Lesson 1: Main Memory 1.1 Learning Objectives On completion of this lesson you will be able to : • describe the memory organization • distinguish between ROM, RAM, PROM, EEPROM and • other primary memory elements. 1.2 Organization Computer systems combine binary digits to form groups called words. The size of the word varies from system to system. Table 5.1 illustrates the current word sizes most commonly used with the various computer systems. Two decades ago, IBM introduced their 8-bit PC. This was Memory Organization followed a few years later by the 16-bit PC AT microcomputer, and already it has been replaced with 32- and 64-bit systems. The machine with increased word size is generally faster because it can process more bits of information in the same time span. The current trend is in the direction of the larger word size. Microcomputer main memories are generally made up of many individual chips and perform different functions. The ROM, RAM, Several types of semi- PROM, and EEPROM memories are used in connection with the conductor memories. primary memory of a microcomputers. The main memory generally store computer words as multiple of bytes; each byte consisting of eight bits.
    [Show full text]
  • SŁOWNIK POLSKO-ANGIELSKI ELEKTRONIKI I INFORMATYKI V.03.2010 (C) 2010 Jerzy Kazojć - Wszelkie Prawa Zastrzeżone Słownik Zawiera 18351 Słówek
    OTWARTY SŁOWNIK POLSKO-ANGIELSKI ELEKTRONIKI I INFORMATYKI V.03.2010 (c) 2010 Jerzy Kazojć - wszelkie prawa zastrzeżone Słownik zawiera 18351 słówek. Niniejszy słownik objęty jest licencją Creative Commons Uznanie autorstwa - na tych samych warunkach 3.0 Polska. Aby zobaczyć kopię niniejszej licencji przejdź na stronę http://creativecommons.org/licenses/by-sa/3.0/pl/ lub napisz do Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA. Licencja UTWÓR (ZDEFINIOWANY PONIŻEJ) PODLEGA NINIEJSZEJ LICENCJI PUBLICZNEJ CREATIVE COMMONS ("CCPL" LUB "LICENCJA"). UTWÓR PODLEGA OCHRONIE PRAWA AUTORSKIEGO LUB INNYCH STOSOWNYCH PRZEPISÓW PRAWA. KORZYSTANIE Z UTWORU W SPOSÓB INNY NIŻ DOZWOLONY NA PODSTAWIE NINIEJSZEJ LICENCJI LUB PRZEPISÓW PRAWA JEST ZABRONIONE. WYKONANIE JAKIEGOKOLWIEK UPRAWNIENIA DO UTWORU OKREŚLONEGO W NINIEJSZEJ LICENCJI OZNACZA PRZYJĘCIE I ZGODĘ NA ZWIĄZANIE POSTANOWIENIAMI NINIEJSZEJ LICENCJI. 1. Definicje a."Utwór zależny" oznacza opracowanie Utworu lub Utworu i innych istniejących wcześniej utworów lub przedmiotów praw pokrewnych, z wyłączeniem materiałów stanowiących Zbiór. Dla uniknięcia wątpliwości, jeżeli Utwór jest utworem muzycznym, artystycznym wykonaniem lub fonogramem, synchronizacja Utworu w czasie z obrazem ruchomym ("synchronizacja") stanowi Utwór Zależny w rozumieniu niniejszej Licencji. b."Zbiór" oznacza zbiór, antologię, wybór lub bazę danych spełniającą cechy utworu, nawet jeżeli zawierają nie chronione materiały, o ile przyjęty w nich dobór, układ lub zestawienie ma twórczy charakter.
    [Show full text]
  • EE 4504 Computer Organization Overview
    Overview Historically, the limiting factor in a computer’s performance has been memory access time – Memory speed has been slow compared to the speed of the processor EE 4504 – A process could be bottlenecked by the memory Computer Organization system’s inability to “keep up” with the processor Our goal in this section is to study the development of an effective memory Section 3 organization that supports the processing Computer Memory power of the CPU – General memory organization and performance – “Internal” memory components and their use – “External” memory components and their use Reading: Text, chapters 4 and 5 EE 4504 Section 3 1 EE 4504 Section 3 2 1 Terminology Capacity: the amount of information that Access time: can be contained in a memory unit -- – For RAM, the time to address the unit and usually in terms of words or bytes perform the transfer Word: the natural unit of organization in – For non-random access memory, the time to position the R/W head over the desired location the memory, typically the number of bits used to represent a number Memory cycle time: Access time plus any other time required before a second access Addressable unit: the fundamental data can be started element size that can be addressed in the memory -- typically either the word size or Access technique: how are memory individual bytes contents accessed – Random access: Unit of transfer: The number of data » Each location has a unique physical address elements transferred at a time -- usually » Locations can be accessed in any order and bits in main
    [Show full text]
  • Dissertation
    ADAM: A Decentralized Parallel Computer Architecture Featuring Fast Thread and Data Migration and a Uniform Hardware Abstraction by Andrew “bunnie” Huang Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2002 ­c Massachusetts Institute of Technology 2002. All rights reserved. Author........................................................................... Department of Electrical Engineering and Computer Science May 24, 2002 Certifiedby....................................................................... Thomas F. Knight, Jr. Senior Research Scientist Thesis Supervisor Accepted by ...................................................................... Arthur C. Smith Chairman, Department Committee on Graduate Students 2 ADAM: A Decentralized Parallel Computer Architecture Featuring Fast Thread and Data Migration and a Uniform Hardware Abstraction by Andrew “bunnie” Huang Submitted to the Department of Electrical Engineering and Computer Science on May 24, 2002, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract The furious pace of Moore’s Law is driving computer architecture into a realm where the the speed of light is the dominant factor in system latencies. The number of clock cycles to span a chip are increasing, while the number of bits that can be accessed within a clock cycle is decreasing. Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency by migrating threads and data, but the overhead of existing implementations has previously made migration an unserviceable solution so far. I present an architecture, implementation, and mechanisms that reduces the overhead of mi- gration to the point where migration is a viable supplement to other latency hiding mechanisms, such as multithreading.
    [Show full text]
  • Random Access Memory (Ram)
    www.studymafia.org A Seminar report On RANDOM ACCESS MEMORY (RAM) Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org www.studymafia.org Acknowledgement I would like to thank respected Mr…….. and Mr. ……..for giving me such a wonderful opportunity to expand my knowledge for my own branch and giving me guidelines to present a seminar report. It helped me a lot to realize of what we study for. Secondly, I would like to thank my parents who patiently helped me as i went through my work and helped to modify and eliminate some of the irrelevant or un-necessary stuffs. Thirdly, I would like to thank my friends who helped me to make my work more organized and well-stacked till the end. Next, I would thank Microsoft for developing such a wonderful tool like MS Word. It helped my work a lot to remain error-free. Last but clearly not the least, I would thank The Almighty for giving me strength to complete my report on time. www.studymafia.org Preface I have made this report file on the topic RANDOM ACCESS MEMORY (RAM); I have tried my best to elucidate all the relevant detail to the topic to be included in the report. While in the beginning I have tried to give a general view about this topic. My efforts and wholehearted co-corporation of each and everyone has ended on a successful note. I express my sincere gratitude to …………..who assisting me throughout the preparation of this topic.
    [Show full text]
  • Memory and Storage Systems
    CHAPTER 3 MEMORY AND STORAGE SYSTEMS Chapter Outline Chapter Objectives 3.1 Introduction In this chapter, we will learn: 3.2 Memory Representation ∑ The concept of memory and its 3.3 Random Access Memory representation. 3.3.1 Static RAM ∑ How data is stored in Random Access 3.3.2 Dynamic RAM Memory (RAM) and the various types of 3.4 Read Only Memory RAM. 3.4.1 Programmable ROM ∑ How data is stored in Read Only Memory 3.4.2 Erasable PROM (ROM) and the various types of ROM. 3.4.3 Electrically Erasable PROM ∑ The concept of storage systems and the 3.4.4 Flash ROM various types of storage systems. 3.5 Storage Systems ∑ The criteria for evaluating storage 3.6 Magnetic Storage Systems systems. 3.6.1 Magnetic Tapes 3.6.2 Magnetic Disks 3.7 Optical Storage Systems 3.1 INTRODUCTION 3.7.1 Read only Optical Disks 3.7.2 Write Once, Read Many Disks Computers are used not only for processing of data 3.8 Magneto Optical Systems for immediate use, but also for storing of large 3.8.1 Principle used in Recording Data volume of data for future use. In order to meet 3.8.2 Architecture of Magneto Optical Disks these two specifi c requirements, computers use two 3.9 Solid-State Storage Devices types of storage locations—one, for storing the data 3.9.1 Structure of SSD that are being currently handled by the CPU and the 3.9.2 Advantages of SSD other, for storing the results and the data for future 3.9.3 Disadvantages of SSD use.
    [Show full text]
  • CS 152 Computer Architecture and Engineering Lecture 6
    CS 152 Computer Architecture and Engineering Lecture 6 - Memory Dr. George Michelogiannakis EECS, University of California at Berkeley CRD, Lawrence Berkeley National Laboratory http://inst.eecs.berkeley.edu/~cs152 2/8/2016 CS152, Spring 2016 CS152 Administritivia . PS 1 due on Wednesday’s class . Lab 1 also due at the same time . Hand paper reports or email . PS 2 will be released on Wendesday . Lab 2 Wednesday or Thursday . Quiz next week Wednesday (17th) . Discussion section on Thursday to cover lab 2 and PS 1 2/8/2016 CS152, Spring 2016 2 Question of the Day . Can a cache worsen performance, latency, bandwidth compared to a system with DRAM and no caches? 2/8/2016 CS152, Spring 2016 3 Last time in Lecture 5 . Control hazards (branches, interrupts) are most difficult to handle as they change which instruction should be executed next . Branch delay slots make control hazard visible to software, but not portable to more advanced µarchs . Speculation commonly used to reduce effect of control hazards (predict sequential fetch, predict no exceptions, branch prediction) . Precise exceptions: stop cleanly on one instruction, all previous instructions completed, no following instructions have changed architectural state . To implement precise exceptions in pipeline, shift faulting instructions down pipeline to “commit” point, where exceptions are handled in program order 2/8/2016 CS152, Spring 2016 4 Early Read-Only Memory Technologies Punched cards, From early 1700s through Jaquard Loom, Punched paper tape, Babbage, and then IBM instruction
    [Show full text]
  • The Use of Write-Once Read-Many Optical Disks for Temporary and Archival Storage
    THE USE OF WRITE-ONCE READ-MANY OPTICAL DISKS FOR TEMPORARY AND ARCHIVAL STORAGE By Brenda L. Groskinsky U.S. GEOLOGICAL SURVEY Open-File Report 92-36 Portland, Oregon 1992 U. S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director ,,... ,. , .. Copies of this report can For additional information , r , , , r .^ ^ be purchased from: wnte to: r T-V j. -^ /-u- c U.S. Geological Survey District Chief D . ° ., ^ . c .. TT _^ . , c ,Arnr^ Books and Open-File Reports Section U.S. Geological Survey, WRD c , , ^ . r oc^oc -inxn-rc^u Di T^. Federal Center, Box 25425 10615 S.E. Cherry Blossom Drive T-. , ' on~~r. n .. , ,. n^-i^ Denver, Colorado 80225 Portland, Oregon 97216 n CONTENTS Abstract..........................................................................................................................................................................1 Introduction .................................................................................................................................................................1 Purpose and scope.........................................................................................................................................3 Approach .......................................................................:..............................................................................................3 Results and discussion ................................................................................................................................................3
    [Show full text]