Australian Native Flavour Wheel-Sensory Vocabulary For

Total Page:16

File Type:pdf, Size:1020Kb

Australian Native Flavour Wheel-Sensory Vocabulary For Australian native flavour wheel Sensory vocabulary for describing the aroma and flavour of native plant food products Rural Industries Research and Development Corporation Sensory descriptions for a selection of commercial native fruits, berries, herbs, seeds and spices Fruits and berries Herb, spice or seed Davidson plum (Davidsonia jerseyana) Anise myrtle (Syzygium anisatum) An earthy aroma like fresh beetroot with a slight Aroma of aniseed, menthol and herbs. pickled note. Lemon myrtle (Backhousia citriodora) Davidson plum (Davidsonia pruriens) A lemon lolly aroma, perfumed with some Aroma of rosella jam and stewed rhubarb; some menthol notes. musk and lolly notes. Cut leaf mint (Prostanthera incisa) Desert lime (Citrus glauca) A herbal aroma, bush scrub and menthol. A brown lime citrus aroma with some pickled notes, stewed fruit and cut grass. Bush tomato or ‘Kutjera’ (Solanum centrale) The savoury caramelised aroma of carob; some Finger lime (Citrus australasica) cereal notes. Aroma of fresh zesty citrus with a hint of cooked citrus. Tasmanian pepper berry (Tasmannia lanceolata) Aroma of bush scrub with perfumed, fruity lolly Kakadu plum (Terminalia ferdinandiana) notes. Lingering heat on the palate. Aroma of stewed apples and pears; some cooked citrus, pickled and fermented notes. Tasmanian pepper leaf (Tasmannia lanceolata) Aroma of Australian bushland, dry paperbark and Lemon aspen (Acronychia acidula) herbs. Developing heat on the palate. A fresh citrus aroma, conifer leafs and some chemical notes. Wattle seed (Acacia victoriae) Aroma of toasted coffee grounds, sweet spice, raisin Muntries (Kunzia pomifera) and chocolate. Aroma of moist fruit mince, spice, bush honey and butter. For recipes, fact sheets, supplier details and more information on native ingredients vist Quandong (Santaluum acuminatum) www.anfil.org.au Aroma of dry lentils; some earthy and fermented notes. For more information contact the Department of Employment, Economic Development and Innovation Riberry (Syzygium leuhmanii) on 13 25 23 or visit www.deedi.qld.gov.au A sweet, spiced tea aroma with musk, bush honey © The State of Queensland, Department of Employment, and resinous notes. Economic Development and Innovation, 2010. Rural Industries Research and Development Corporation .
Recommended publications
  • An Infrageneric Classification of Syzygium (Myrtaceae)
    Blumea 55, 2010: 94–99 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE doi:10.3767/000651910X499303 An infrageneric classification of Syzygium (Myrtaceae) L.A. Craven1, E. Biffin 1,2 Key words Abstract An infrageneric classification of Syzygium based upon evolutionary relationships as inferred from analyses of nuclear and plastid DNA sequence data, and supported by morphological evidence, is presented. Six subgenera Acmena and seven sections are recognised. An identification key is provided and names proposed for two species newly Acmenosperma transferred to Syzygium. classification molecular systematics Published on 16 April 2010 Myrtaceae Piliocalyx Syzygium INTRODUCTION foreseeable future. Yet there are many rewarding and worthy floristic and other scientific projects that await attention and are Syzygium Gaertn. is a large genus of Myrtaceae, occurring from feasible in the shorter time frame that is a feature of the current Africa eastwards to the Hawaiian Islands and from India and research philosophies of short-sighted institutions. southern China southwards to southeastern Australia and New One impediment to undertaking studies of natural groups of Zealand. In terms of species richness, the genus is centred in species of Syzygium, as opposed to floristic studies per se, Malesia but in terms of its basic evolutionary diversity it appears has been the lack of a framework or context within which a set to be centred in the Melanesian-Australian region. Its taxonomic of species can be the focus of specialised research. Below is history has been detailed in Schmid (1972), Craven (2001) and proposed an infrageneric classification based upon phylogenies Parnell et al. (2007) and will not be further elaborated here.
    [Show full text]
  • Myrtle Rust Transition to Management Group Meeting Minutes
    Minutes Meeting Two of the Myrtle Rust Transition to Management Group Teleconference held on Tuesday 20 December, 2011 Attendees: Colin Grant, DAFF (Chair); Lois Ransom, DAFF; Mikael Hirsch, DAFF; Greg Fraser, PHA; Rod Turner, PHA; Sophie Peterson, PHA; Jenna Taylor, PHA (Secretariat); Sam Malfroy, PHA; Kareena Arthy, DEEDI; Suzy Perry, DEEDI; Jim Thompson, DEEDI; Satendra Kumar, NSW DPI. Apologies: Mike Ashton, DEEDI; Bruce Christie, NSW DPI. Item 1 – Welcome by the Chair Colin Grant welcomed the Members of the Myrtle Rust Transition to Management Group (MRTMG) to the teleconference and the Members introduced themselves and provided information on their role. The Chair reinforced the need for urgency in progressing objectives of the Myrtle Rust Transition to Management (MRT2M) Program and this was noted by all Members. Item 2 – Terms of Reference Terms of Reference for the MRTMG were discussed and it was agreed that PHA would develop a set of Terms of Reference similar to those being developed for the Asian Honey Bee Transition to Management Group. These will be circulated for approval. Item 3 – Governance Arrangements Membership The MRTMG will be comprised of the following: Colin Grant, DAFF (Primary member) Lois Ransom, DAFF (Secondary member) Greg Fraser, PHA (Primary member) Rod Turner, PHA (Secondary member) Kareena Arthy, DEEDI (Primary member) Mike Ashton, DEEDI (Secondary member) Bruce Christie, NSW DPI (Primary member) Satendra Kumar, NSW DPI (Secondary member) It was agreed that other people would be invited to attend the meetings as appropriate. Chair It was confirmed that Colin Grant will be the Chair of the MRTMG. Secretariat and Administration Support PHA will provide the Secretariat and administration support for the program.
    [Show full text]
  • Myrtle Rust Reviewed the Impacts of the Invasive Plant Pathogen Austropuccinia Psidii on the Australian Environment R
    Myrtle Rust reviewed The impacts of the invasive plant pathogen Austropuccinia psidii on the Australian environment R. O. Makinson 2018 DRAFT CRCPLANTbiosecurity CRCPLANTbiosecurity © Plant Biosecurity Cooperative Research Centre, 2018 ‘Myrtle Rust reviewed: the impacts of the invasive pathogen Austropuccinia psidii on the Australian environment’ is licenced by the Plant Biosecurity Cooperative Research Centre for use under a Creative Commons Attribution 4.0 Australia licence. For licence conditions see: https://creativecommons.org/licenses/by/4.0/ This Review provides background for the public consultation document ‘Myrtle Rust in Australia – a draft Action Plan’ available at www.apbsf.org.au Author contact details R.O. Makinson1,2 [email protected] 1Bob Makinson Consulting ABN 67 656 298 911 2The Australian Network for Plant Conservation Inc. Cite this publication as: Makinson RO (2018) Myrtle Rust reviewed: the impacts of the invasive pathogen Austropuccinia psidii on the Australian environment. Plant Biosecurity Cooperative Research Centre, Canberra. Front cover: Top: Spotted Gum (Corymbia maculata) infected with Myrtle Rust in glasshouse screening program, Geoff Pegg. Bottom: Melaleuca quinquenervia infected with Myrtle Rust, north-east NSW, Peter Entwistle This project was jointly funded through the Plant Biosecurity Cooperative Research Centre and the Australian Government’s National Environmental Science Program. The Plant Biosecurity CRC is established and supported under the Australian Government Cooperative Research Centres Program. EXECUTIVE SUMMARY This review of the environmental impacts of Myrtle Rust in Australia is accompanied by an adjunct document, Myrtle Rust in Australia – a draft Action Plan. The Action Plan was developed in 2018 in consultation with experts, stakeholders and the public. The intent of the draft Action Plan is to provide a guiding framework for a specifically environmental dimension to Australia’s response to Myrtle Rust – that is, the conservation of native biodiversity at risk.
    [Show full text]
  • The Potential of Selected Australian Medicinal Plants with Anti‑Proteus Activity for the Treatment and Prevention of Rheumatoid Arthritis
    PHCOG MAG. ORIGINAL ARTICLE The potential of selected Australian medicinal plants with anti‑Proteus activity for the treatment and prevention of rheumatoid arthritis I. E. Cock1,2, V. Winnett2, J. Sirdaarta1,2, B. Matthews3 1Environmental Futures Research Institute, Nathan Campus, Griffith University, 2School of Natural Sciences, Nathan Campus, Griffith University, Nathan, Queensland 4111, 3Smartwaters Research Centre, Griffith University, Gold Coast, Australia Submitted: 01-08-2014 Revised: 18-09-2014 Published: 27-05-2015 ABSTRACT Access this article online Website: Background: A wide variety of herbal medicines are used in indigenous Australian traditional www.phcog.com medicinal systems to treat rheumatoid arthritis (RA) and inflammation. The current study was DOI: undertaken to test the ability of a panel of Australian plants with a history of the ethnobotanical 10.4103/0973-1296.157734 usage in the treatment of inflammation for the ability to block the microbial trigger of RA. Quick Response Code: Materials and Methods: One hundred and six extracts from 40 plant species were investigated for the ability to inhibit the growth of the bacterial trigger of RA (Proteus mirabilis). The extracts were tested for toxicity in the Artemia nauplii bioassay. The most potent inhibitor of P. mirabilis growth was further analyzed by reversed-phase high performance liquid chromatography (RP-HPLC) coupled to high accuracy time‑of‑flight (TOF) mass spectroscopy. Results: Sixty‑five of the 106 extracts tested (61.3%) inhibited the growth of P. The Aleurites moluccanus, Datura leichardtii, Eucalyptus major, Leptospermum bracteata, L. juniperium, Macadamia integrifloranut, Melaleuca alternifolia, Melaleuca quinquenervia, Petalostigma pubescens, P. triloculorae, P. augustifolium, Scaevola spinescens, Syzygium australe, and Tasmannia lanceolata extracts were determined to be the most effective inhibitors of P.
    [Show full text]
  • Backhousia Citriodora F. Muell. (Lemon Myrtle), an Unrivalled Source of Citral
    foods Review Backhousia citriodora F. Muell. (Lemon Myrtle), an Unrivalled Source of Citral Ian Southwell Plant Science, Southern Cross University, Lismore, NSW 2480, Australia; [email protected] Abstract: Lemon oils are amongst the highest volume and most frequently traded of the flavor and fragrance essential oils. Citronellal and citral are considered the key components responsible for the lemon note with citral (neral + geranial) preferred. Of the myriad of sources of citral, the Australian myrtaceous tree, Lemon Myrtle, Backhousia citriodora F. Muell. (Myrtaceae), is considered superior. This review examines the history, the natural occurrence, the cultivation, the taxonomy, the chemistry, the biological activity, the toxicology, the standardisation and the commercialisation of Backhousia citriodora especially in relation to its essential oil. Keywords: Backhousia citriodora; lemon myrtle; lemon oils; citral; geranial; neral; iso-citrals; citronellal; flavor; fragrance; biological activity 1. Introduction There are many natural sources of lemon oil or lemon scent. According to a recent ISO Strategic Business Plan [1], the top production of lemon oils comes from lemon (7500 Citation: Southwell, I. Backhousia tonne), Litsea cubeba (1700 tonne), citronella (1100 tonne) and Eucalyptus (now Corymbia) citriodora F. Muell. (Lemon Myrtle), citriodora (1000 tonne). Lemon oil itself, cold pressed from the peel of Citrus limon L., an Unrivalled Source of Citral. Foods Rutaceae, contains 2–3% of citral (geranial + neral) [2–4], the lemon flavor ingredient. 2021, 10, 1596. https://doi.org/ Consequently, the oil, along with numerous other citrus species, is used more for its high 10.3390/foods10071596 limonene (60–80%) and minor component content as a fragrance, health care additive [5] or solvent rather than a citral lemon flavor.
    [Show full text]
  • Anetholea ANISATA Transferred To, and Two New Australian Taxa Of, Syzygium (Myrtaceae)
    BLUMEA 50: 157–162 Published on 22 April 2005 http://dx.doi.org/10.3767/000651905X623346 ANETHOLEA ANISATA TRANSFERRED TO, AND TWO NEW AUSTRALIAN TAXA OF, SYZYGIUM (MYRTACEAE) L.A. CRAVEN1 & E. BIFFIN1, 2 SUMMARY The distinction between Anetholea and Syzygium is lessened due to the occurrence of epigeal ger- mination and dry fruitedness in the latter genus also and it is concluded that Anetholea is better placed within Syzygium. Analysis of sequence data from nuclear ribosomal DNA and the chloroplast genome support this conclusion. The sole species of Anetholea, A. anisata, is transferred to Syzygium and the new combination, S. anisatum (Vickery) Craven & Biffin, made. Syzygium wilsonii subsp. cryptophlebium is reinstated at species rank, necessitating the new combination, S. cryptophlebium (F. Muell.) Craven & Biffin. Two new taxa of Syzygium are described from Australia, S. wilsonii subsp. epigaeum Craven & Biffin and S. maraca Craven & Biffin. Key words: Anetholea, Syzygium, Myrtaceae, cpDNA, nrDNA. INTRODUCTION Backhousia anisata Vickery recently was found to be an anomalous member of Back­ housia Hook. & Harv. and moved to the new genus Anetholea Peter G. Wilson as its sole species (Wilson et al., 2000). The lack of any indumentum and possession of cer- tain wood anatomical features were more consistent with a relationship with Syzygium Gaertn. and its allies than with the remaining species of Backhousia (Wilson et al., 2000). Because B. anisata possesses a dry fruit, leafy cotyledons and has epigeal germination, Wilson et al. (2000) concluded that it did not belong to an existing syzygioid genus and erected Anetholea to accommodate it. Our studies of the Syzygium generic com- plex in the Indo-Pacific have necessitated consideration of Anetholea anisata relative to the other species of the complex.
    [Show full text]
  • Study of Volatile Organic Compounds (VOC) in the Cloudy Atmosphere : Air/Droplet Partitioning of VOC Miao Wang
    Study of Volatile Organic Compounds (VOC) in the cloudy atmosphere : air/droplet partitioning of VOC Miao Wang To cite this version: Miao Wang. Study of Volatile Organic Compounds (VOC) in the cloudy atmosphere : air/droplet partitioning of VOC. Earth Sciences. Université Clermont Auvergne, 2019. English. NNT : 2019CLFAC080. tel-02864762 HAL Id: tel-02864762 https://tel.archives-ouvertes.fr/tel-02864762 Submitted on 11 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE CLERMONT AUVERGNE DOCTORAL SCHOOL OF FUNDAMENTAL SCIENCES PhD Thesis in partial fulfilment of the requirements for the degree of Doctor of University Clermont Auvergne Specialty : Physics-Chemistry of the Atmosphere and Climate Submitted and presented by « WANG Miao » Graduate of the Master Physics and Chemistry for the Environment Study of Volatile Organic Compounds (VOC) in the cloudy atmosphere : air/droplet partitioning of VOC To be defended the 16th of December 2019 Jury member of the committee: Huret Nathalie President Leriche Maud Reviewer Sauvage Stéphane Reviewer
    [Show full text]
  • Witjuti-Grub-Bushfood-Nursery
    BushfoodGardenStarter Kit Map & Contact Details \VIIJ11IIG,1111 Bush{ood N urserlJ Established in 1996 We specialise in quality native food plants for the home gardener and commercial grower Our Bushfood Garden Starter Kits consist of eight different species in either 100mm or 140mm pots. The Kits include an interesting selection of plants with a variety of growth habits and Member of the Queensland Bushfood Association tasty fruits, to create the basis of a great www.qldbushfood.com bushfood garden. Nursery open by appointment only Contact: Individual Kits can be tailor made to suit your Veronica Cougan requirements and the specific soil and Phone: 07 5446 9265 climatic conditions in your area. Nursery Address: The Wild TasteoltheRainlorest 84 Falls Creek. Rd. Obi Obi. Old 4574 Also available is our booklet, Email The Wild Taste of the Rainforest [email protected] Web Address: Varieties selected for profiling a number of bushfood species. www.witjutigrub.com.au their superior fruiting A guide to the selection, cultivation and use and leaf qualities of native food plants. Experience... T.heWild Taste of the Rainforest Witjuti GrubSpeGies List Genus / species Common Name Habit Y.!! ,, or centuries 'bush food' plants have been an integral Acronychia acidula Lemon Aspen Small- Medium Tree Fruit Fruit part of our indigenous people's staple diet and Acronychia oblongifolia White Aspen Small - Medium Tree Fruit lifesty le. Toda y these native foods are being Acronychia wilcoxiana Silver Aspen Small - Medium Tree Alectryon coriaceus Beach Bird's-eye Small Tree Fruit 'rediscovered ' by contemporary Australians a·nd used in Alpinia caeru/ea Native Ginger (Atherton form) Shrub Root/Seed ways as varied as our multi-cultured backgrounds .
    [Show full text]
  • SHB-Botanical-Index.Pdf
    List of botanical and common names for herbs and spices copyright Ian Hemphill 2016 INDEX OF BOTANICAL NAMES OF SPICES & HERBS in The Spice & Herb Bible Third Edition by Ian Hemphill, Published by Robert Rose Inc. Canada BOTANICAL NAME FAMILY COMMONLY USED NAMES PAGE www.herbies.com.au Carum ajowan Apiaceae ajwain, bishop's weed, carum 46 Trachyspermum ammi Apiaceae ajwain, bishop's weed, carum 46 Solanum centrale Solanaceae akudjura, kutjera, bush tomato, desert raisins 52 Solanum chippendalei Solanaceae akudjura, kutjera, bush tomato, desert raisins 52 Smyrnium olusatrum Apiaceae black lovage, horse parsley, potherb, smyrnium, wild celery 57 Pimenta dioica Myrtaceae bay rum berry, clove pepper, pimento, Jamaica pepper 61 Pimenta racemosa Myrtaceae bayberry tree 61 Calycanthus floridus Myrtaceae Carolina allspice 61 Calycanthus occidentalis Myrtaceae Californian allspice 61 Mangifera indica Anacardiaceae amchur, amchoor, green mango powder 68 Angelica archangelica Apiaceae garden angelica, great angelica, holy ghost, masterwort 73 Archangelica officinalis Apiaceae garden angelica, great angelica, holy ghost, masterwort 73 Pimpenella anisum Apiaceae aniseed, anise, anise seed, sweet cumin 78 Bixa orellana Bixaceae annatto, achiote, bija, latkhan, lipstick tree, roucou 83 Ferula asafoetida Apiaceae asafoetida, asafetida, devil's dung, hing, hingra, laser 89 Melissa officinalis Lamiaceae balm, bee balm, lemon balm, melissa, sweet balm 94 Berberis vulgaris Berberidaceae barberry, holy thorn, jaundice berry, zareshk, sowberry 100 Ocimum basilicum Lumiaceae basil, sweet basil 104 Ocimum basilicum minimum Lumiaceae bush basil 104 Ocimum cannum sims Lumiaceae Thai basil 104 Page 1 of 12 List of botanical and common names for herbs and spices copyright Ian Hemphill 2016 INDEX OF BOTANICAL NAMES OF SPICES & HERBS in The Spice & Herb Bible Third Edition by Ian Hemphill, Published by Robert Rose Inc.
    [Show full text]
  • AUSTRALIAN AROMATIC PLANTS Research and Therapeutics
    AUSTRALIAN AROMATIC PLANTS Research and Therapeutics ANDREW PENGELLY PHD 2017 PENETT BOTANICALS Eucalyptus Tea trees Myrtaceae family OVERVIEW Plant families and essential oils Chemotypes of aromatic plants Essential oil chemistry Backhousia spp. Eucalyptus spp. Tea tree and melaleuca spp. Leptospermum spp. and honey Kunzea Taxandra Safety issues Clinical formulations ESSENTIAL OIL FAMILIES Several plant families include representatives of the aromatic flora of Australia. Myrtaceae family (Eucalyptus, Melaleuca spp.) Rutaceae (Boronia, Geijera spp.) Lamiaceae (Prostanthera, Mentha spp.) Lauraceae (Cinnamomum, Doryphora spp.) Santalaceae (Sandalwood) Cupressaceae (Cypress) Winteraceae (Tasmannia spp.) HYBRIDS, SUB-SPECIES AND CHEMOTYPES: EUCALYPTUS Despite the fact that Australia is known as the “oldest continent” the Eucalyptus genus has evolved relatively recently, and the vast number of sub-species and hybrids suggests the evolutionary process is still quite active. Hence any particular wild Eucalyptus specimen may be a true species, or maybe hybrids of two species - making correct identification a difficult matter. Establishing the chemical profile of an individual plant is even more complex, since various “chemotypes” exist for some species of Eucalyptus and of the Myrtaceae family generally. Each chemotype is genetically determined and physical features and locality are not accurate indicators. The only reliable method is to submit the leaves to chemical analysis, the most common method being GC/MS = gas chromatography coupled with a mass spectrometer. Table: Examples of Eucalyptus chemotypes Species c/type 1 c/type 2 E. dives 52% pipertone 70-80% cineole E. radiata 65-70% cineole 18% phellandrene 12% piperitone Boland, Brophy & House, 1991; Webb, 1990. TEA TREE CHEMOTYPES CT1: terpinen-4-ol, α-thujene, α-terpinene, γ-terpinene CT11: 1,8-cineole,α-pinene, β-pinene, myrcene, limonene, α-terpineol CT111: α- phellandrene, terpinolene, linalool.
    [Show full text]
  • Final Report Template
    Assessing Myrtle Rust in a Lemon Myrtle Provenance Trial OCTOBER 2012 RIRDC Publication No. 12/098 Assessing Myrtle Rust in a Lemon Myrtle Provenance Trial by John Doran, Dave Lea and David Bush October 2012 RIRDC Publication No. 12/098 RIRDC Project No. PRJ-008303 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-440-3 ISSN 1440-6845 Assessing Myrtle Rust in a Lemon Myrtle Provenance Trial Publication No. 12/098 Project No. PRJ-008303 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved.
    [Show full text]
  • Reconstituted Plant Material and Its Use for Packaging
    (19) TZZ¥_ __T (11) EP 3 122 941 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: D21H 27/10 (2006.01) B65D 65/02 (2006.01) 06.03.2019 Bulletin 2019/10 B65D 65/38 (2006.01) D21H 17/02 (2006.01) (21) Application number: 15713709.2 (86) International application number: PCT/EP2015/056745 (22) Date of filing: 27.03.2015 (87) International publication number: WO 2015/144893 (01.10.2015 Gazette 2015/39) (54) RECONSTITUTED PLANT MATERIAL AND ITS USE FOR PACKAGING, WRAPPING AND FOOD APPLIANCES REKONSTITUIERTES PFLANZENMATERIAL UND DESSEN VERWENDUNG FÜR VERPACKUNGS-, EINWICKEL- UND SPEISEVORRICHTUNGEN MATÉRIAU VÉGÉTAL RECONSTITUÉ ET SON UTILISATION À DES FINS D’EMPAQUETAGE, D’EMBALLAGE ET POUR DES DISPOSITIFS À USAGE ALIMENTAIRE (84) Designated Contracting States: • ROUSSEAU, Cédric AL AT BE BG CH CY CZ DE DK EE ES FI FR GB F-72000 Le Mans (FR) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • PONS, Esther PL PT RO RS SE SI SK SM TR F-33600 Pessac (FR) (30) Priority: 28.03.2014 US 201461971580 P (74) Representative: Jones Day Rechtsanwälte,Attorneys-at-Law, Patentanwälte (43) Date of publication of application: Prinzregentenstrasse 11 01.02.2017 Bulletin 2017/05 80538 München (DE) (73) Proprietor: SWM Luxembourg s.a.r.l. (56) References cited: 5326 Contern (LU) EP-A1- 0 500 931 EP-A1- 0 630 828 WO-A1-2011/094840 JP-A- 2001 104 153 (72) Inventors: US-A- 3 847 164 US-A- 3 860 012 • RAGOT, Philippe US-A- 4 182 349 US-A- 5 006 405 LU-5720 Aspelt (LU) US-A- 5 858 487 US-A1- 2003 079 846 • BARAT, Laetitia F-72100 Le Mans (FR) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]