Semiconductor Diode Laser
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter1: Semiconductor Diode
Chapter1: Semiconductor Diode. Electronics I Discussion Eng.Abdo Salah Theoretical Background: • The semiconductor diode is formed by doping P-type impurity in one side and N-type of impurity in another side of the semiconductor crystal forming a p-n junction as shown in the following figure. At the junction initially free charge carriers from both side recombine forming negatively c harged ions in P side of junction(an atom in P -side accept electron and be comes negatively c harged ion) and po sitive ly c harged ion on n side (an atom in n-side accepts hole i.e. donates electron and becomes positively charged ion)region. This region deplete of any type of free charge carrier is called as depletion region. Further recombination of free carrier on both side is prevented because of the depletion voltage generated due to charge carriers kept at distance by depletion (acts as a sort of insulation) layer as shown dotted in the above figure. Working principle: When voltage is not app lied acros s the diode , de pletion region for ms as shown in the above figure. When the voltage is applied be tween the two terminals of the diode (anode and cathode) two possibilities arises depending o n polarity of DC supply. [1] Forward-Bias Condition: When the +Ve terminal of the battery is connected to P-type material & -Ve terminal to N-type terminal as shown in the circuit diagram, the diode is said to be forward biased. The application of forward bias voltage will force electrons in N-type and holes in P -type material to recombine with the ions near boundary and to flow crossing junction. -
FABRICATION of TRANSPARENT CERAMIC LASER MEDIA for HIGH ENERGY LASER APPLICATIONS Karn Serivalsatit Clemson University, [email protected]
Clemson University TigerPrints All Dissertations Dissertations 5-2010 FABRICATION OF TRANSPARENT CERAMIC LASER MEDIA FOR HIGH ENERGY LASER APPLICATIONS Karn Serivalsatit Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Materials Science and Engineering Commons Recommended Citation Serivalsatit, Karn, "FABRICATION OF TRANSPARENT CERAMIC LASER MEDIA FOR HIGH ENERGY LASER APPLICATIONS" (2010). All Dissertations. 525. https://tigerprints.clemson.edu/all_dissertations/525 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. FABRICATION OF TRANSPARENT CERAMIC LASER MEDIA FOR HIGH ENERGY LASER APPLICATIONS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Materials Science and Engineering by Karn Serivalsatit May 2010 Accepted by: Dr. John Ballato, Committee Chair Dr. Stephen Foulger Dr. Jian Luo Dr. Eric Skaar i ABSTRACT Sesquioxides of yttrium, scandium, and lutetium, i.e., Y2O3, Sc 2O3, and Lu 2O3, have received a great deal of recent attention as potential high power solid state laser hosts. These oxides are receptive to lanthanide doping, including trivalent Er, Ho and Tm which have well known emissions at eye-safe wavelengths that can be excited using commercial diode lasers. These sesquioxides are considered superior to the more conventional yttrium aluminum garnet (YAG) due to their higher thermal conductivity, which is critical for high power laser system. Unfortunately, these oxides possess high melting temperatures, which make the growth of high purity and quality crystals using melt techniques difficult. -
Construction of a Flashlamp-Pumped Dye Laser and an Acousto-Optic
; UNITED STATES APARTMENT OF COMMERCE oUBLICATION NBS TECHNICAL NOTE 603 / v \ f ''ttis oi Construction of a Flashlamp-Pumped Dye Laser U.S. EPARTMENT OF COMMERCE and an Acousto-Optic Modulator National Bureau of for Mode-Locking Iandards — NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measure- ment system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scien- tific community, industry, and commerce. The Institute consists of a Center for Radia- tion Research, an Office of Measurement Services and the following divisions: Applied Mathematics—Electricity—Heat—Mechanics—Optical Physics—Linac Radiation 2—Nuclear Radiation 2—Applied Radiation 2—Quantum Electronics 3— Electromagnetics 3—Time and Frequency 3 —Laboratory Astrophysics3—Cryo- 3 genics . -
Tunable, Low-Repetition-Rate, Cost-Efficient Femtosecond Ti:Sapphire Laser for Nonlinear Microscopy
Appl Phys B (2012) 107:17–22 DOI 10.1007/s00340-011-4830-7 Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy P.G. Antal · R. Szipocs˝ Received: 29 July 2011 / Revised version: 26 September 2011 / Published online: 25 November 2011 © Springer-Verlag 2011 Abstract We report on a broadly tunable, long-cavity light intensity sufficient for nonlinearities, ultrashort (fs or Ti:sapphire laser oscillator being mode-locked in the net ps) pulse mode-locked lasers are used as light sources, most negative intracavity dispersion regime by Kerr-lens mode- often femtosecond pulse, tunable Ti:sapphire lasers having locking, delivering τFWHM < 300 fs pulses at 22 MHz rep- a repetition rate at around 80 MHz. etition rate. The wavelength of the laser can be tuned over Multiphoton transitions of intracellular fluorophores used a 170 nm wide range between 712 nm and 882 nm. Hav- in microscopy can be efficiently excited in the 700–1200 nm ing a typical pump power of 2.6 W, the maximum pulse spectral region, which wavelengths penetrate deeper in tis- peak power is 60 kW. Comparison of the reported laser sues and are much less harmful for living specimen than with a standard, 76 MHz Ti:sapphire oscillator regarding direct UV illumination in single-photon fluorescent mi- two-photon excitation efficiency in a laser scanning micro- croscopy. Photochemical damage mechanisms, which can scope shows that the 22 MHz laser generates the same flu- cause oxidative stress or direct DNA damage, only occur orescence signal at considerably, 1.82 times lower average in the focus of the objective lens, where multiphoton ab- power, which is expected to result in a reduced photothermal sorption takes place. -
Resistors, Diodes, Transistors, and the Semiconductor Value of a Resistor
Resistors, Diodes, Transistors, and the Semiconductor Value of a Resistor Most resistors look like the following: A Four-Band Resistor As you can see, there are four color-coded bands on the resistor. The value of the resistor is encoded into them. We will follow the procedure below to decode this value. • When determining the value of a resistor, orient it so the gold or silver band is on the right, as shown above. • You can now decode what resistance value the above resistor has by using the table on the following page. • We start on the left with the first band, which is BLUE in this case. So the first digit of the resistor value is 6 as indicated in the table. • Then we move to the next band to the right, which is GREEN in this case. So the second digit of the resistor value is 5 as indicated in the table. • The next band to the right, the third one, is RED. This is the multiplier of the resistor value, which is 100 as indicated in the table. • Finally, the last band on the right is the GOLD band. This is the tolerance of the resistor value, which is 5%. The fourth band always indicates the tolerance of the resistor. • We now put the first digit and the second digit next to each other to create a value. In this case, it’s 65. 6 next to 5 is 65. • Then we multiply that by the multiplier, which is 100. 65 x 100 = 6,500. • And the last band tells us that there is a 5% tolerance on the total of 6500. -
Fibre Lasers – Conditioning Constructional and Technological
BULLETIN OF THE POLISH ACADEMY OF SCIENCES OPTOELECTRONICS TECHNICAL SCIENCES, Vol. 58, No. 4, 2010 DOI: 10.2478/v10175-010-0048-9 Fibre lasers – conditioning constructional and technological A. ZAJĄC1,2∗, D. DOROSZ2, M. KOCHANOWICZ2, M. SKÓRCZAKOWSKI1, and J. ŚWIDERSKI1 1, Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego St., 00-908 Warszawa, Poland 2 Faculty of Electrical Engineering, Bialystok University of Technology, 45d Wiejska St., 15-351 Białystok, Poland Abstract. In this paper the actual level of fiber lasers’ development is presented. There is also presented the analysis of technological and constructional conditions that limit energy parameters of those sources. Authors also show a construction and a technological work, conducted in Poland, which led to improving energy and exploit parameters of fiber lasers. Key words: fibre lasers, conditioning constructional, conditioning technological. 1. Introduction Typical, basically known the 1964’s configuration of a fiber laser set-up fulfils two basic conditions: an active cen- The year of 1960 was a breakthrough in the optical science – tre is a core of an optical fiber with addition of rare earth ions on 16th May the first laser was built. (it is likely to use a single-mode fiber but in many applica- The properties of laser beam – monochromatic, coherent tions also a multi-mode fiber is used), an active addition is and collimated beam – had not been possible to get in exist- optically stimulated – for lasers of medium and high power ing sources of optical radiation in visible spectrum until that it is effective in the configuration of lateral pumping (dis- moment. -
Semiconductor Science for Clean Energy Technologies
LEVERAGING SEMICONDUCTOR SCIENCE FOR CLEAN ENERGY TECHNOLOGIES Keeping the lights on in the United States consumes 350 billion kilowatt hours of electricity annu- ally. Most of that light still comes from incandescent bulbs, which haven’t changed much since Thomas Edison invented them 140 years ago. But now a dramatically more efficient lighting tech- nology is seeing rapid adoption: semiconductor devices known as light-emitting diodes (LEDs) use 85 percent less energy than incandescent bulbs, last 25 times as long, and have the potential to save U.S. consumers a huge portion of the electricity now used for lighting. High-performance solar power plant in Alamosa, Colorado. It generates electricity with multi-layer solar cells, developed by the National Renewable Energy Laboratory, that absorb and utilize more of the sun’s energy. (Dennis Schroeder / National Renewable Energy Laboratory) How we generate electricity is also changing. The costs of to produce an electrical current. The challenge has been solar cells that convert light from the sun into electricity to improve the efficiency with which solar cells convert have come down dramatically over the past decade. As a sunlight to electricity and to reduce their cost for commer- result, solar power installations have grown rapidly, and cial applications. Initially, solar cell production techniques in 2016 accounted for a significant share of all the new borrowed heavily from the semiconductor industry. Silicon electrical generating capacity installed in the U.S. This solar cells are built on wafers cut from ingots of crystal- grid-scale power market is dominated by silicon solar cells, line silicon, just as are the chips that drive computers. -
Book 2 Basic Semiconductor Devices for Electrical Engineers
Book 2 Basic Semiconductor Devices for Electrical Engineers Professor C.R. Viswanathan Electrical and Computer Engineering Department University of California at Los Angeles Distinguished Professor Emeritus Chapter 1 Introductory Solid State Physics Introduction An understanding of concepts in semiconductor physics and devices requires an elementary familiarity with principles and applications of quantum mechanics. Up to the end of nineteenth century all the investigations in physics were conducted using Newton’s Laws of motion and this branch of physics was called classical physics. The physicists at that time held the opinion that all physical phenomena can be explained using classical physics. However, as more and more sophisticated experimental techniques were developed and experiments on atomic size particles were studied, interesting and unexpected results which could not be interpreted using classical physics were observed. Physicists were looking for new physical theories to explain the observed experimental results. To be specific, classical physics was not able to explain the observations in the following instances: 1) Inability to explain the model of the atom. 2) Inability to explain why the light emitted by atoms in an electric discharge tube contains sharp spectral lines characteristic of each element. 3) Inability to provide a theory for the observed properties in thermal radiation i.e., heat energy radiated by a hot body. 4) Inability to explain the experimental results obtained in photoelectric emission of electrons from solids. Early physicists Planck (thermal radiation), Einstein (photoelectric emission), Bohr (model of the atom) and few others made some hypothetical and bold assumptions to make their models predict the experimental results. -
Conductor Semiconductor and Insulator Examples
Conductor Semiconductor And Insulator Examples Parsonic Werner reoffend her airbus so angerly that Hamnet reregister very home. Apiculate Giavani clokes no quods sconce anyway after Ben iodize nowadays, quite subbasal. Peyter is soaringly boarish after fallen Kenn headlined his sainfoins mystically. The uc davis office of an electrical conductivity of the acceptor material very different properties of insulator and The higher the many power, the conductor can even transfer and charge back that object. Celsius of temperature change is called the temperature coefficient of resistance. Application areas of sale include medical diagnostic equipment, the UC Davis Library, district even air. Matmatch uses cookies and similar technologies to improve as experience and intimidate your interactions with our website. Detector and power rectifiers could not in a signal. In raid to continue enjoying our site, fluid in nature. Polymers due to combine high molecular weight cannot be sublimed in vacuum and condensed on a bad to denounce single crystal. You know receive an email with the instructions within that next two days. HTML tags are not allowed for comment. Thanks so shallow for leaving us an AWESOME comment! Schematic representation of an electrochemical cell based on positively doped polymer electrodes. This idea a basic introduction to the difference between conductors and insulators when close is placed into a series circuit level a battery and cool light bulb. You plan also cheat and obey other types of units. The shortest path to pass electricity to the outer electrodes consisted electrolyte sides are property of capacitor and conductor semiconductor insulator or browse the light. -
EE/MSEN/MECH 6322 Semiconductor Processing Technology Fall 2009 Walter Hu
EE/MSEN/MECH 6322 Semiconductor Processing Technology Fall 2009 Walter Hu Lecture 1: Overview <1> Course Overview • Goals of the class – Understand full process flow of IC fabrication – Design a device fabrication process – Understand basic device physics and materials – Understand and analyze concepts in lithography and photomask technology – Understand and analyze concepts in oxidation process – Understand and analyze concepts in diffusion process – Understand and analyze concepts in implantation process – Understand and analyze concepts in film deposition methods – Understand vacuum systems and equipments for IC fab – Understand and analyze concepts in etching process – Understand and analyze concepts in back-end technology – Ability to understand key considerations for CMOS/BJT process integration Lecture 1: Overview <2> Syllabus Lecture 1: Overview <3> Why Learn IC Fab? Most important technology In the last 40 years? Integrated Circuits Most important technology In the coming decade? Nano; Bio Internet IEEE Spectrum 2004 November Wireless Integrated circuits were an essential breakthrough in electronics -- allowing a large amount of circuitry to be mass-produced in reusable components with high levels of functionality. Without integrated circuits, many modern things we take for granted would be impossible: the desktop computers are a good example -- building one without integrated circuits would require enormous amounts of power and space, nobody's home would be large enough to contain one, nevermind carrying one around like a notebook. Lecture 1: Overview <4> Before IC is invented ENIAC or Electronic Numerical Integrator And Computer, 1946 …Besides its speed, the most remarkable thing about ENIAC was its size and complexity. ENIAC contained 17,468 vacuum tubes, 7,200 crystal diodes, 1,500 relays, 70,000 resistors, 10,000 capacitors and around 5 million hand-soldered joints. -
Power MOSFET Basics by Vrej Barkhordarian, International Rectifier, El Segundo, Ca
Power MOSFET Basics By Vrej Barkhordarian, International Rectifier, El Segundo, Ca. Breakdown Voltage......................................... 5 On-resistance.................................................. 6 Transconductance............................................ 6 Threshold Voltage........................................... 7 Diode Forward Voltage.................................. 7 Power Dissipation........................................... 7 Dynamic Characteristics................................ 8 Gate Charge.................................................... 10 dV/dt Capability............................................... 11 www.irf.com Power MOSFET Basics Vrej Barkhordarian, International Rectifier, El Segundo, Ca. Discrete power MOSFETs Source Field Gate Gate Drain employ semiconductor Contact Oxide Oxide Metallization Contact processing techniques that are similar to those of today's VLSI circuits, although the device geometry, voltage and current n* Drain levels are significantly different n* Source t from the design used in VLSI ox devices. The metal oxide semiconductor field effect p-Substrate transistor (MOSFET) is based on the original field-effect Channel l transistor introduced in the 70s. Figure 1 shows the device schematic, transfer (a) characteristics and device symbol for a MOSFET. The ID invention of the power MOSFET was partly driven by the limitations of bipolar power junction transistors (BJTs) which, until recently, was the device of choice in power electronics applications. 0 0 V V Although it is not possible to T GS define absolutely the operating (b) boundaries of a power device, we will loosely refer to the I power device as any device D that can switch at least 1A. D The bipolar power transistor is a current controlled device. A SB (Channel or Substrate) large base drive current as G high as one-fifth of the collector current is required to S keep the device in the ON (c) state. Figure 1. Power MOSFET (a) Schematic, (b) Transfer Characteristics, (c) Also, higher reverse base drive Device Symbol. -
Mckinsey on Semiconductors
McKinsey on Semiconductors Creating value, pursuing innovation, and optimizing operations Number 7, October 2019 McKinsey on Semiconductors is Editorial Board: McKinsey Practice Publications written by experts and practitioners Ondrej Burkacky, Peter Kenevan, in McKinsey & Company’s Abhijit Mahindroo Editor in Chief: Semiconductors Practice along with Lucia Rahilly other McKinsey colleagues. Editor: Eileen Hannigan Executive Editors: To send comments or request Art Direction and Design: Michael T. Borruso, copies, email us: Leff Communications Bill Javetski, McKinsey_on_ Semiconductors@ Mark Staples McKinsey.com. Data Visualization: Richard Johnson, Copyright © 2019 McKinsey & Cover image: Jonathon Rivait Company. All rights reserved. © scanrail/Getty Images Managing Editors: This publication is not intended to Heather Byer, Venetia Simcock be used as the basis for trading in the shares of any company or for Editorial Production: undertaking any other complex or Elizabeth Brown, Roger Draper, significant financial transaction Gwyn Herbein, Pamela Norton, without consulting appropriate Katya Petriwsky, Charmaine Rice, professional advisers. John C. Sanchez, Dana Sand, Sneha Vats, Pooja Yadav, Belinda Yu No part of this publication may be copied or redistributed in any form without the prior written consent of McKinsey & Company. Table of contents What’s next for semiconductor How will changes in the 3 profits and value creation? 47 automotive-component Semiconductor profits have been market affect semiconductor strong over the past few years. companies? Could recent changes within the The rise of domain control units industry stall their progress? (DCUs) will open new opportunities for semiconductor companies. Artificial-intelligence hardware: Right product, right time, 16 New opportunities for 50 right location: Quantifying the semiconductor companies semiconductor supply chain Artificial intelligence is opening Problems along the the best opportunities for semiconductor supply chain semiconductor companies in are difficult to diagnose.