Chapter 9 Semiconductors & Diodes

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 9 Semiconductors & Diodes Chapter 9 Semiconductors & Diodes Jaesung Jang Semiconductors PN Junction Rectifier Diodes DC Power Supply Ref: Sedra/Smith, Microelectronic Circuits, 3rd ed., 1990, Chap. 3 1 SemiconductorSemiconductor MaterialsMaterials • Semiconductors conduct less than metal conductors but more than insulators. – Some common semiconductor materials are silicon (Si), germanium (Ge), and carbon (C). • Silicon is the most widely used semiconductor material in the electronics industry. – Almost all diodes, transistors, and ICs manufactured today are made from silicon. • Intrinsic semiconductors are semiconductors in their purest form. •Extrinsicsemiconductors are semiconductors with other atoms mixed in. – These other atoms are called impurity atoms. – The process of adding impurity atoms is called doping. 2 SemiconductorSemiconductor MaterialsMaterials (cont.)(cont.) Figure below illustrates a bonding diagram of a silicon crystal. (Intrinsic Semiconductors) Valence electrons: electrons in the outermost ring Si: 4 valence electrons 8 valence electrons are needed for stability. Figure on the right is stable. 3 SemiconductorSemiconductor MaterialsMaterials (cont.)(cont.) Extrinsic Semiconductors . Doping is a process to add impurity atoms to an intrinsic semiconductor. N-Type semiconductors are made by doping intrinsic semiconductor with a pentavalent (5) impurity.-> free electrons: majority current carriers . Donors: Arsenic (As), antimony (Sb) or phosphorous (P) Covalent bonds (공유결합) 4 SemiconductorSemiconductor MaterialsMaterials (cont.)(cont.) Extrinsic Semiconductors . P-Type semiconductors are made by doping intrinsic semiconductor with a trivalent (3) impurity. -> holes: majority current carriers . Acceptors: Aluminum (Al), boron (B) or gallium (Ga) 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. TheThe PNPN JunctionJunction && DiodeDiode . The diode is made by joining p- and n-type semiconductor materials. The doped regions meet to form a p-n junction. Diodes are unidirectional devices that allow current to flow in one direction. Diodes have polarity. Anode Lead }Diodes Cathode Lead 6 TheThe PNPN JunctionJunction && DiodeDiode (cont.)(cont.) . The important effect here is that when a free Electrically neutral electron leaves the n side and falls into a hole on the p side due to diffusion, two ions are created; a positive ion on the n side and a negative ion on the p side. Diffusion . Figure to the right shows a p-n junction with Electric field free electrons on the n side and holes on the p side. The free electrons are represented as dash (-) marks and the holes are represented as VO=0.7V for silicon small circles (○). Depletion region 7 TheThe PNPN JunctionJunction && DiodeDiode (cont.)(cont.) . The term bias is defined as a control voltage or current. Forward bias: bias to allow for currents to flow easily through the diode. n side: negative, p side: positive . Reverse bias: bias to block currents through the diode. n side: positive, p side: negative . In the reverse bias, an external voltage pulls majority current carriers away from the pn junction, widening the depletion zone. When we increase the reverse bias voltage more and more, the pn diode will be filled with the depletion zone and a very small amount of electrical currents (reverse saturation currents) can flow. currents 8 VoltVolt--AmpereAmpere CharacteristicCharacteristic CurveCurve ofof aa DiodeDiode • Figure below is a graph of diode current versus diode voltage for a silicon diode both forward- and reverse-bias voltages. • Forward-bias Region: About 0.6-0.8 V of forward bias, the diode current increases sharply. -> simple model for a diode has 0.6-V drop across it. • Reverse-bias Region: The current in the reverse direction is constant and is -15 order of 10 A. i ≈ - IS • Breakdown Region: A great deal of reverse current will flow when the magnitude of the reverse voltage exceeds a threshold value of breakdown voltage. nVT nVT Volt-ampere i I S e 1 I S e for i I S -15 characteristic curve of a I S is a saturation constant and is of the order of 10 A, silicon diode. VT is the thermal voltage and about 25 mV at room temperatur e, and n is between 1 and 2 depending on the diodoe material and structure, which is normally 1. + _ 9 i CircuitCircuit ModelsModels forfor thethe SemiconductorSemiconductor DiodeDiode .Three different approximations can be used when analyzing diode circuits. .The one used depends on the desired accuracy of your circuit calculations. The first approximation treats a forward-biased diode like a closed switch with a voltage drop of zero volts, as shown below. Ideal diode 10 CircuitCircuit ModelsModels forfor thethe SemiconductorSemiconductor DiodeDiode The second approximation treats a forward-biased diode like an ideal diode in series with a battery, as shown below 0.6 V for Si Diode 11 CircuitCircuit ModelsModels forfor thethe SemiconductorSemiconductor DiodeDiode . The third approximation of a diode includes the bulk resistance, rB. The bulk resistance, rB is the resistance of the p and n materials. The third approximation of a forward-biased diode is shown below. 12 CircuitCircuit ModelsModels forfor thethe SemiconductorSemiconductor DiodeDiode First approximation Second approximation Third approximation 13 CircuitCircuit ModelsModels forfor thethe SemiconductorSemiconductor DiodeDiode Assume initially that the ideal diode does not conduct, and replace it with an open circuit. R2 v1 VS 8V R1 R2 vD v1 v2 3V the diode is reverse biased. Assume initially that the ideal diode does conduct, and replace it with a short circuit. VS v1 v1 v1 VB v1 8.75V R1 R2 R3 v1 v2 VB 11V the current is flowing in the reverse direction. 14 RectifierRectifier DiodesDiodes . A circuit that converts the ac power- line voltage to the required dc value is called a dc power supply. .The most important components in power supplies are rectifier diodes (정류 다이오드). .Diodes are able to produce a dc output voltage because they are unidirectional devices allowing current to flow through them in only one direction. .When the top of the transformer secondary voltage is positive, D1 is forward-biased, producing current flow in the load. When the top of the secondary is negative, D1 is reverse-biased and acts like an open switch. This results in zero Half-wave rectifier current in the load, RL. 15 RectifierRectifier DiodesDiodes (cont.)(cont.) Second approximation Vac 30 V Vspeak 1.414 30 42.42 V 42.42 - 0.7 41.72 V f = 60 Hz Vdc (average) 0.318 ( - average) 41.72 13.27 V 16 RectifierRectifier DiodesDiodes (cont.)(cont.) . The circuit shown below is called a full-wave rectifier. When the top of the secondary is positive, D1 is forward-biased, causing current to flow in the load, RL. When the top of the secondary is negative, D2 is forward-biased, causing current to flow in the load, RL. The combined output voltage produced by D1 and D2 are shown in the next slide. 1 A sin 2ft 1 A sin 2ft Full-wave rectifier 17 RectifierRectifier DiodesDiodes (cont.)(cont.) Vac 15 V Vspeak 1.414 15 21.21 V 21.21 - 0.7 20.51 V Vdc (average) 2 0.318 ( - average) 20.51 13.04 V 18 RectifierRectifier DiodesDiodes (cont.)(cont.) Filter A half-wave rectifier with its output filtered by the capacitor, C. t V V 1 e RLC ripple out ( peak ) Output ripple voltage of the half-wave rectifier is illustrated. This ripple is going to be adjusted by a voltage regulator to produce a DC output. 19 SpecialSpecial DiodesDiodes • Semiconductor diodes can be manufactured to emit different colors of light or regulate voltage. • Light-emitting diode (LED) is a diode that emits a certain color light when forward-biased. The color of light emitted by an LED is determined by the type of material used in doping. •A zener diode is a special diode that has been optimized for operation in the breakdown region and it is commonly used in voltage regulation. 20.
Recommended publications
  • Fundamentals of Microelectronics Chapter 3 Diode Circuits
    9/17/2010 Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors CH7 CMOS Amplifiers CH8 Operational Amplifier As A Black Box 1 Chapter 3 Diode Circuits 3.1 Ideal Diode 3.2 PN Junction as a Diode 3.3 Applications of Diodes 2 1 9/17/2010 Diode Circuits After we have studied in detail the physics of a diode, it is time to study its behavior as a circuit element and its many applications. CH3 Diode Circuits 3 Diode’s Application: Cell Phone Charger An important application of diode is chargers. Diode acts as the black box (after transformer) that passes only the positive half of the stepped-down sinusoid. CH3 Diode Circuits 4 2 9/17/2010 Diode’s Action in The Black Box (Ideal Diode) The diode behaves as a short circuit during the positive half cycle (voltage across it tends to exceed zero), and an open circuit during the negative half cycle (voltage across it is less than zero). CH3 Diode Circuits 5 Ideal Diode In an ideal diode, if the voltage across it tends to exceed zero, current flows. It is analogous to a water pipe that allows water to flow in only one direction. CH3 Diode Circuits 6 3 9/17/2010 Diodes in Series Diodes cannot be connected in series randomly. For the circuits above, only a) can conduct current from A to C. CH3 Diode Circuits 7 IV Characteristics of an Ideal Diode V V R = 0⇒ I = = ∞ R = ∞⇒ I = = 0 R R If the voltage across anode and cathode is greater than zero, the resistance of an ideal diode is zero and current becomes infinite.
    [Show full text]
  • Vacuum Tube Theory, a Basics Tutorial – Page 1
    Vacuum Tube Theory, a Basics Tutorial – Page 1 Vacuum Tubes or Thermionic Valves come in many forms including the Diode, Triode, Tetrode, Pentode, Heptode and many more. These tubes have been manufactured by the millions in years gone by and even today the basic technology finds applications in today's electronics scene. It was the vacuum tube that first opened the way to what we know as electronics today, enabling first rectifiers and then active devices to be made and used. Although Vacuum Tube technology may appear to be dated in the highly semiconductor orientated electronics industry, many Vacuum Tubes are still used today in applications ranging from vintage wireless sets to high power radio transmitters. Until recently the most widely used thermionic device was the Cathode Ray Tube that was still manufactured by the million for use in television sets, computer monitors, oscilloscopes and a variety of other electronic equipment. Concept of thermionic emission Thermionic basics The simplest form of vacuum tube is the Diode. It is ideal to use this as the first building block for explanations of the technology. It consists of two electrodes - a Cathode and an Anode held within an evacuated glass bulb, connections being made to them through the glass envelope. If a Cathode is heated, it is found that electrons from the Cathode become increasingly active and as the temperature increases they can actually leave the Cathode and enter the surrounding space. When an electron leaves the Cathode it leaves behind a positive charge, equal but opposite to that of the electron. In fact there are many millions of electrons leaving the Cathode.
    [Show full text]
  • Chapter1: Semiconductor Diode
    Chapter1: Semiconductor Diode. Electronics I Discussion Eng.Abdo Salah Theoretical Background: • The semiconductor diode is formed by doping P-type impurity in one side and N-type of impurity in another side of the semiconductor crystal forming a p-n junction as shown in the following figure. At the junction initially free charge carriers from both side recombine forming negatively c harged ions in P side of junction(an atom in P -side accept electron and be comes negatively c harged ion) and po sitive ly c harged ion on n side (an atom in n-side accepts hole i.e. donates electron and becomes positively charged ion)region. This region deplete of any type of free charge carrier is called as depletion region. Further recombination of free carrier on both side is prevented because of the depletion voltage generated due to charge carriers kept at distance by depletion (acts as a sort of insulation) layer as shown dotted in the above figure. Working principle: When voltage is not app lied acros s the diode , de pletion region for ms as shown in the above figure. When the voltage is applied be tween the two terminals of the diode (anode and cathode) two possibilities arises depending o n polarity of DC supply. [1] Forward-Bias Condition: When the +Ve terminal of the battery is connected to P-type material & -Ve terminal to N-type terminal as shown in the circuit diagram, the diode is said to be forward biased. The application of forward bias voltage will force electrons in N-type and holes in P -type material to recombine with the ions near boundary and to flow crossing junction.
    [Show full text]
  • Diodes As Rectifiers +
    Diodes as Rectifiers As previously mentioned, diodes can be used to convert alternating current (AC) to direct current (DC). Shown below is a representative schematic of a simple DC power supply similar to a au- tomobile battery charger. The way in which the diode rectifier is used results in what is called a half-wave rectifier. 0V 35.6Vpp 167V 0V pp 17.1Vp 0V T1 D1 Wallplug 1N4001 negative half−wave is 110VAC R1 resistive load removed by diode D1 D1 120 to 12.6VAC − stepdown transformer + D2 D2 input from RL input from RL transformer transformer (positive half−cycle) Figure 1: Half-Wave Rectifier Schematic (negative half−cycle) − D3 + D3 The input transformer steps the input voltage down from 110VAC(rms) to 12.6VAC(rms). The D4 D4 diode converts the AC voltage to DC by removing theD1 and negative D3 goingD1 and D3 part of the input sine wave. The result is a pulsating DC output waveform which is not ideal except for17.1V simplep applications 0V such as battery chargers as the voltage goes to zero for oneD2 have and D4 of every cycle. What we would D1 D1 v_out like is a DC output that is more consistent;T1 a waveform more like a battery what we have here. T1 1 D2 D2 C1 Wallplug R1 Wallplug R1 We need a way to use the negative half-cycle of theresistive sine load wave to to fill in between the pulses 50uF 1K 110VAC 110VAC created by the positive half-waves. This would give us a more consistent output voltage.
    [Show full text]
  • Lecture 3: Diodes and Transistors
    2.996/6.971 Biomedical Devices Design Laboratory Lecture 3: Diodes and Transistors Instructor: Hong Ma Sept. 17, 2007 Diode Behavior • Forward bias – Exponential behavior • Reverse bias I – Breakdown – Controlled breakdown Æ Zeners VZ = Zener knee voltage Compressed -VZ scale 0V 0.7 V V ⎛⎞V Breakdown V IV()= I et − 1 S ⎜⎟ ⎝⎠ kT V = t Q Types of Diode • Silicon diode (0.7V turn-on) • Schottky diode (0.3V turn-on) • LED (Light-Emitting Diode) (0.7-5V) • Photodiode • Zener • Transient Voltage Suppressor Silicon Diode • 0.7V turn-on • Important specs: – Maximum forward current – Reverse leakage current – Reverse breakdown voltage • Typical parts: Part # IF, max IR VR, max Cost 1N914 200mA 25nA at 20V 100 ~$0.007 1N4001 1A 5µA at 50V 50V ~$0.02 Schottky Diode • Metal-semiconductor junction • ~0.3V turn-on • Often used in power applications • Fast switching – no reverse recovery time • Limitation: reverse leakage current is higher – New SiC Schottky diodes have lower reverse leakage Reverse Recovery Time Test Jig Reverse Recovery Test Results • Device tested: 2N4004 diode Light Emitting Diode (LED) • Turn-on voltage from 0.7V to 5V • ~5 years ago: blue and white LEDs • Recently: high power LEDs for lighting • Need to limit current LEDs in Parallel V R ⎛⎞ Vt IV()= IS ⎜⎟ e − 1 VS = 3.3V ⎜⎟ ⎝⎠ •IS is strongly dependent on temp. • Resistance decreases R R R with increasing V = 3.3V S temperature • “Power Hogging” Photodiode • Photons generate electron-hole pairs • Apply reverse bias voltage to increase sensitivity • Key specifications: – Sensitivity
    [Show full text]
  • CSE- Module-3: SEMICONDUCTOR LIGHT EMITTING DIODE :LED (5Lectures)
    CSE-Module- 3:LED PHYSICS CSE- Module-3: SEMICONDUCTOR LIGHT EMITTING DIODE :LED (5Lectures) Light Emitting Diodes (LEDs) Light Emitting Diodes (LEDs) are semiconductors p-n junction operating under proper forward biased conditions and are capable of emitting external spontaneous radiations in the visible range (370 nm to 770 nm) or the nearby ultraviolet and infrared regions of the electromagnetic spectrum General Structure LEDs are special diodes that emit light when connected in a circuit. They are frequently used as “pilot light” in electronic appliances in to indicate whether the circuit is closed or not. The structure and circuit symbol is shown in Fig.1. The two wires extending below the LED epoxy enclose or the “bulb” indicate how the LED should be connected into a circuit or not. The negative side of the LED is indicated in two ways (1) by the flat side of the bulb and (2) by the shorter of the two wires extending from the LED. The negative lead should be connected to the negative terminal of a battery. LEDs operate at relative low voltage between 1 and 4 volts, and draw current between 10 and 40 milliamperes. Voltages and Fig.-1 : Structure of LED current substantially above these values can melt a LED chip. The most important part of a light emitting diode (LED) is the semiconductor chip located in the centre of the bulb and is attached to the 1 CSE-Module- 3:LED top of the anvil. The chip has two regions separated by a junction. The p- region is dominated by positive electric charges, and the n-region is dominated by negative electric charges.
    [Show full text]
  • ECE 255, Diodes and Rectifiers
    ECE 255, Diodes and Rectifiers 23 January 2018 In this lecture, we will discuss the use of Zener diode as voltage regulators, diode as rectifiers, and as clamping circuits. 1 Zener Diodes In the reverse biased operation, a Zener diode displays a voltage breakdown where the current rapidly increases within a small range of voltage change. This property can be used to limit the voltage within a small range for a large range of current. The symbol for a Zener diode is shown in Figure 1. Figure 1: The symbol for a Zener diode under reverse biased (Courtesy of Sedra and Smith). Figure 2 shows the i-v relation of a Zener diode near its operating point where the diode is in the breakdown regime. The beginning of the breakdown point is labeled by the current IZK also called the knee current. The oper- ating point can be approximated by an incremental resistance, or dynamic resistance described by the reciprocal of the slope of the point. Since the slope, dI proportional to dV , is large, the incremental resistance is small, generally on the order of a few ohms to a few tens of ohms. The spec sheet usually gives the voltage of the diode at a specified test current IZT . Printed on March 14, 2018 at 10 : 29: W.C. Chew and S.K. Gupta. 1 Figure 2: The i-v characteristic of a Zener diode at its operating point Q (Cour- tesy of Sedra and Smith). The diode can be fabricated to have breakdown voltage of a few volts to a few hundred volts.
    [Show full text]
  • Resistors, Diodes, Transistors, and the Semiconductor Value of a Resistor
    Resistors, Diodes, Transistors, and the Semiconductor Value of a Resistor Most resistors look like the following: A Four-Band Resistor As you can see, there are four color-coded bands on the resistor. The value of the resistor is encoded into them. We will follow the procedure below to decode this value. • When determining the value of a resistor, orient it so the gold or silver band is on the right, as shown above. • You can now decode what resistance value the above resistor has by using the table on the following page. • We start on the left with the first band, which is BLUE in this case. So the first digit of the resistor value is 6 as indicated in the table. • Then we move to the next band to the right, which is GREEN in this case. So the second digit of the resistor value is 5 as indicated in the table. • The next band to the right, the third one, is RED. This is the multiplier of the resistor value, which is 100 as indicated in the table. • Finally, the last band on the right is the GOLD band. This is the tolerance of the resistor value, which is 5%. The fourth band always indicates the tolerance of the resistor. • We now put the first digit and the second digit next to each other to create a value. In this case, it’s 65. 6 next to 5 is 65. • Then we multiply that by the multiplier, which is 100. 65 x 100 = 6,500. • And the last band tells us that there is a 5% tolerance on the total of 6500.
    [Show full text]
  • Semiconductor Science for Clean Energy Technologies
    LEVERAGING SEMICONDUCTOR SCIENCE FOR CLEAN ENERGY TECHNOLOGIES Keeping the lights on in the United States consumes 350 billion kilowatt hours of electricity annu- ally. Most of that light still comes from incandescent bulbs, which haven’t changed much since Thomas Edison invented them 140 years ago. But now a dramatically more efficient lighting tech- nology is seeing rapid adoption: semiconductor devices known as light-emitting diodes (LEDs) use 85 percent less energy than incandescent bulbs, last 25 times as long, and have the potential to save U.S. consumers a huge portion of the electricity now used for lighting. High-performance solar power plant in Alamosa, Colorado. It generates electricity with multi-layer solar cells, developed by the National Renewable Energy Laboratory, that absorb and utilize more of the sun’s energy. (Dennis Schroeder / National Renewable Energy Laboratory) How we generate electricity is also changing. The costs of to produce an electrical current. The challenge has been solar cells that convert light from the sun into electricity to improve the efficiency with which solar cells convert have come down dramatically over the past decade. As a sunlight to electricity and to reduce their cost for commer- result, solar power installations have grown rapidly, and cial applications. Initially, solar cell production techniques in 2016 accounted for a significant share of all the new borrowed heavily from the semiconductor industry. Silicon electrical generating capacity installed in the U.S. This solar cells are built on wafers cut from ingots of crystal- grid-scale power market is dominated by silicon solar cells, line silicon, just as are the chips that drive computers.
    [Show full text]
  • Book 2 Basic Semiconductor Devices for Electrical Engineers
    Book 2 Basic Semiconductor Devices for Electrical Engineers Professor C.R. Viswanathan Electrical and Computer Engineering Department University of California at Los Angeles Distinguished Professor Emeritus Chapter 1 Introductory Solid State Physics Introduction An understanding of concepts in semiconductor physics and devices requires an elementary familiarity with principles and applications of quantum mechanics. Up to the end of nineteenth century all the investigations in physics were conducted using Newton’s Laws of motion and this branch of physics was called classical physics. The physicists at that time held the opinion that all physical phenomena can be explained using classical physics. However, as more and more sophisticated experimental techniques were developed and experiments on atomic size particles were studied, interesting and unexpected results which could not be interpreted using classical physics were observed. Physicists were looking for new physical theories to explain the observed experimental results. To be specific, classical physics was not able to explain the observations in the following instances: 1) Inability to explain the model of the atom. 2) Inability to explain why the light emitted by atoms in an electric discharge tube contains sharp spectral lines characteristic of each element. 3) Inability to provide a theory for the observed properties in thermal radiation i.e., heat energy radiated by a hot body. 4) Inability to explain the experimental results obtained in photoelectric emission of electrons from solids. Early physicists Planck (thermal radiation), Einstein (photoelectric emission), Bohr (model of the atom) and few others made some hypothetical and bold assumptions to make their models predict the experimental results.
    [Show full text]
  • History of Diode
    HISTORY OF DIODE In electronics, a diode is a two-terminal electronic component that conducts electric current in only one direction. The term usually refers to a semiconductor diode, the most common type today, which is a crystal of semiconductor connected to two electrical terminals, a P-N junction. A vacuum tube diode, now little used, is a vacuum tube with two electrodes; a plate and a cathode. The most common function of a diode is to allow an electric current in one direction (called the diode's forward direction) while blocking current in the opposite direction (the reverse direction). Thus, the diode can be thought of as an electronic version of a check valve. This unidirectional behavior is called rectification, and is used to convert alternating current to direct current, and extract modulation from radio signals in radio receivers. However, diodes can have more complicated behavior than this simple on-off action, due to their complex non-linear electrical characteristics, which can be tailored by varying the construction of their P-N junction. These are exploited in special purpose diodes that perform many different functions. Diodes are used to regulate voltage (Zener diodes), electronically tune radio and TV receivers (varactor diodes), generate radio frequency oscillations (tunnel diodes), and produce light (light emitting diodes). Diodes were the first semiconductor electronic devices. The discovery of crystals' rectifying abilities was made by German physicist Ferdinand Braun in 1874. The first semiconductor diodes, called cat's whisker diodes were made of crystals of minerals such as galena. Today most diodes are made of silicon, but other semiconductors such as germanium are sometimes used.
    [Show full text]
  • Conductor Semiconductor and Insulator Examples
    Conductor Semiconductor And Insulator Examples Parsonic Werner reoffend her airbus so angerly that Hamnet reregister very home. Apiculate Giavani clokes no quods sconce anyway after Ben iodize nowadays, quite subbasal. Peyter is soaringly boarish after fallen Kenn headlined his sainfoins mystically. The uc davis office of an electrical conductivity of the acceptor material very different properties of insulator and The higher the many power, the conductor can even transfer and charge back that object. Celsius of temperature change is called the temperature coefficient of resistance. Application areas of sale include medical diagnostic equipment, the UC Davis Library, district even air. Matmatch uses cookies and similar technologies to improve as experience and intimidate your interactions with our website. Detector and power rectifiers could not in a signal. In raid to continue enjoying our site, fluid in nature. Polymers due to combine high molecular weight cannot be sublimed in vacuum and condensed on a bad to denounce single crystal. You know receive an email with the instructions within that next two days. HTML tags are not allowed for comment. Thanks so shallow for leaving us an AWESOME comment! Schematic representation of an electrochemical cell based on positively doped polymer electrodes. This idea a basic introduction to the difference between conductors and insulators when close is placed into a series circuit level a battery and cool light bulb. You plan also cheat and obey other types of units. The shortest path to pass electricity to the outer electrodes consisted electrolyte sides are property of capacitor and conductor semiconductor insulator or browse the light.
    [Show full text]