About Some Difficulties of Cosmology and New Ideas for Solving Them

Total Page:16

File Type:pdf, Size:1020Kb

About Some Difficulties of Cosmology and New Ideas for Solving Them Ergonomics International Journal ISSN: 2577-2953 MEDWIN PUBLISHERS Committed to Create Value for researchers About Some Difficulties of Cosmology and New Ideas for Solving Them Di Sia P* Conceptual Paper Department of Physics and Astronomy & Department of Neurosciences, University of Padova, Volume 4 Issue 2 Italy Received Date: April 14, 2020 Published Date: April 24, 2020 *Corresponding author: Paolo Di Sia, Department of Physics and Astronomy & Department DOI: 10.23880/eoij-16000231 of Neurosciences, University of Padova, Via Marzolo 8, I-35131 Padova, Italy, Email: paolo. [email protected] Abstract is a set of discrepancies with the observations made of the far universe. New measurements of the Hubble constant suggest The Big Bang (BB) theory is considered an accepted scientific fact, despite some lack of empirical evidence and although there implications about the validity of the current Standard Model of cosmology at the extreme scales of cosmos. NASA measured in 2014 that space in the universe seems to have an Euclidean shape. According to Stephen Hawking and Alan Guth, the also exist about the size of the universe observable today. A new model aims to resolve all these problems and offers a new universe started by a mathematical point, with an infinite amount of energy, which is a non-physical assumption. Problems vision of cosmology through the extension of the Einstein’s theory of relativity. Keywords: Cosmology; Universe; Contemporary Physics; Time; Space; Unification; Primordial Dynamic Space Model Introduction lose meaning, some mathematical physicists tried to change a fundamental assumption of the model, namely that the universe is the same in all spatial directions but changeable over time. newThe observational current conceptual data. In the framework attempt toof savethe universe, the Big Bang and (BB)in particular model, everyof its newbirth, discrepancy is having difficulty between intheory reporting and observed facts is considered a promise for further empirical the immediate consequences of an explicitly hypothetical research, seen as a progressive approach towards the truth event,From saying the nothingbeginning, about the BBthe theoryBB itself, has hypothesisonly spoken that of represented by the mathematical model itself. cannot be proven. The BB scheme is based on some concrete discoveries, such as the 1929 Edwin Hubble’s observation that The BB hypothesis emerged originally as an indirect the universe seems to be expanding and the 1964 detection consequence in the re-modeling of Einstein’s theory of general relativity. Einstein thought also that the universe was static in space and time; he subsequently admitted that of the microwave background radiation, observations having the addition of the cosmological constant in his equations a big influence on cosmological theory. the universe was expanding, causing Einstein’s solution to free Theparameters BB paradigm to modify seems them, to anlack alarming of proven signal certainties; for every had no physical justification. When Hubble observed that the theoretical framework has fewer observations than the About Some Difficulties of Cosmology and New Ideas for Solving Them Ergonomics Int J 2 Ergonomics International Journal Interpreting the Quantum Vacuum scientificMost theory.of the observations on the universe occur experimentally and indirectly; current space telescopes which could replace the space-time as the fundamental arena produce measurements through an interaction of theoretical of theThe universe. superfluid Inside quantum this idea, vacuum time ismay an beidea considered in evolution as the numerical order of material changes; the vacuum would involved in every phase of the process, thus not offering a be timeless, in the sense that time is not its fourth dimension directpredictions view ofand anything. flexible parameters, in which the model is in a physical sense. It is a way to be built also on solid mathematical foundations, despite some attempts not viable It is therefore not surprising to hear some scientists to date [2-4]. Current science believes that the observer and all speaking openly to date about a crisis in cosmology; many observed physical phenomena exist in time and space. adkey hoc pieces mechanisms of the BB to paradigm be able toare accommodate becoming indefensible almost all However, recent research seems to show that time measured collectedas scientific data. theory, because the inflation theory is based on with clocks can be considered as a mathematical parameter transition from the initial BB to the physics that we can of materialThe fundamental change, the movementquantum thatvacuum flows throughwould space.be an recognizeA determining today; but function is it then of science inflation in theis essenceto bridge of the immediate medium of quantum entanglement information. meaning, or is maybe a convenient creation? density of a substance, if we consider the density as a scalar To explain the observations of galaxies incompatible Considering the classical relation defining the volume 3 field, we can re-write the canonical relation, for example in formwith ofgeneral matter relativity, that would the constitute existence more of “dark than matter”a quarter has of ℜ , thanks to the use of the∂ “del” ∂operator: ∂ been postulated over time as an unknown and non-visible ∇ = u + u + u all the mass-energy content in the universe. Subsequently, ∂ x ∂ y ∂ z when a series of measurements of accelerating galaxies x y z m has been postulated, which would constitute about 70% of ∇ρ = u (1) theseemed mass-energy contrary ofto the universe.theory, the existence of “dark energy” V where V is the volume of the physical object, m is its mass, All this has led current cosmology to reason in terms of ∇ρ has a minimum value ρmin in the center of the object, and ρmax is the density of vacuum at the borders of the universe to the BB paradigm; these choices, however, do not seem dark matter, dark energy and inflation, each of them linked observable today. We can read the difference in density of the but rather the method of maintaining the mathematical ρmax to ρmin. coherenceto carefully of describethe cosmological the known model, empirical adding adphenomena, hoc what vacuum as the source of its fluctuations in the direction from should exist for the model to hold. Fundamental and Emergent Time valid for the whole universe, it is necessary to accept that that the existing universal space radiates CMB. The redshift Therefore, to maintain a mathematically unified theory of lightThe from cosmic far galaxiesbackground may notradiation be due (CMB)to the expansiononly proves of energy of which there is no well-founded empirical evidence to95% date. of the universe is filled with unknown matter and ofthe a universe,galaxy, loses but partoriginated of its energy by an effect [5]. called “tired light”, in The problem with this cosmology is therefore its which the light, detaching itself from the strong gravity field Julian Barbour has shown that time has no physical assumption for conducting further research, sounding more existence [6]; it can therefore be considered a numerical dependence by the theoretical framework as a necessary apragmatic progressive to make approach new theoreticalto the truth, additions it seems rather therefore than that re- quantumsequential physics, order of but events also travellingin cosmology in space. [7]. These scientific thisthinking cosmology the foundations. is dependent Contrarily on the theoretical to the scientific path made ideal soof facts must be taken into serious consideration not only in far [1]. It is therefore important to search for a model of time having a two-way correspondence with time that exists in 2020, 4(2): 000231. Di Sia P. About Some Difficulties of Cosmology and New Ideas for Solving Them. Ergonomics Int J Copyright© Di Sia P. 3 Ergonomics International Journal a corresponding element in the model of the universe. Such the universe. Time is deeply linked to the perception and density and infinite temperature in the BB model do not have physical experience of the change that flows in the universe. [14]. on our experience of time, hoped that, contrarily to infinities are currently unproven and result non-falsifiable expectations,Nicolas Gisin, future speaking physical about theories the impact will not of have mathematics a higher About the Space-Time Singularities inside Black Holes onlevel a clearof abstraction mathematical than form, quantum this mayfield suggest theory a(QFT) model [8]. of Maxime Van de Moortel developed an idea of space- Considering the human experience as a basis, and reflecting in the universe. time has no physical existence in the previously indicated time closest to the time that the human being “feels” to flow meaning.time with Universalsingularities space within is not black empty, holes is full[15], of showing energy, that density [3]. When an observer is observing the movement of an we call “primordial dynamic vacuum” energy, with variable object in space, he does not observe the “duration” but theonly movement its “movement”; is measured for the byexistence the observer, of the duration,the duration the observer must “measure” the movement of the object. When A hypothesis may be that at the center of a black hole couldthe density therefore of space be isconsidered not infinite, as and systems inside of it themass-energy old mass- of“enters movement, into existence”. that we could A fundamental call fundamental unit of time,time. which can replacementenergy is transformed of the universe, into new a process mass-energy. without Black beginning holes be the Planck’s time, leads to the numerical sequential order and end in the hypothesis of a universe as a system in dynamic equilibrium. it is emerging time, it is a duration that comes into existence When the fundamental time is measured by the observer, Conclusion [7]. According to this line of thought, time does not flow in the Also Einstein had thought of the universe as timeless, universe “in itself”, but it is the epiphenomenon of change.
Recommended publications
  • Chairman of the Opening Session
    The Universe had (probably) an origin: on singularity theorems & quantum fluctuations Emilio Elizalde ICE/CSIC & IEEC Campus UAB, Barcelona Cosmology and the Quantum Vacuum III, Benasque, Sep 4-10, 2016 Some facts (a few rather surprising...) • Adam Riess, NP 2011, at Starmus (Tenerife), about Hubble: • “Hubble obtained the distances and redshifts of distant nebulae…” • “Hubble discovered that the Universe was expanding…” • No mention to Vesto Slipher, an extraordinary astronomer • Brian Schmidt, NP 2011, at Starmus (Tenerife) & Lisa Randall, Harvard U, in Barcelona, about Einstein: SHOES- • “Einstein was the first to think about the possibility of a ‘dark energy’…” Supernovae • No mention to Fritz Zwicky, another extraordinary astronomer • Fritz Zwicky discovered dark matter in the early 1930s while studying how galaxies move within the Coma Cluster • He was also the first to postulate and use nebulae as gravitational lenses (1937) • How easily* brilliant astronomers get dismissed • How easily* scientific myths arise *in few decades How did the “Big Bang” get its name ? http://www.bbc.co.uk/science/space/universe/scientists/fred_hoyle • Sir Fred Hoyle (1915–2001) English astronomer noted primarily for the theory of stellar nucleosynthesis (1946,54 groundbreaking papers) • Work on Britain's radar project with Hermann Bondi and Thomas Gold • William Fowler NP’83: “The concept of nucleosynthesis in stars was first established by Hoyle in 1946” • He found the idea universe had a beginning to be pseudoscience, also arguments for a creator, “…for it's an irrational process, and can't be described in scientific terms”; “…belief in the first page of Genesis” • Hoyle-Gold-Bondi 1948 steady state theory, “creation or C-field” • BBC radio's Third Programme broadcast on 28 Mar 1949: “… for this to happen you would need such a Big Bang!” Thus: Big Bang = Impossible blow!! But now: Big Bang ≈ Inflation ! • Same underlying physics as in steady state theory, “creation or C-field” • Richard C.
    [Show full text]
  • What Is the Universe Made Of? How Old Is the Universe?
    What is the Universe made of? How old is it? Charles H. Lineweaver University of New South Wales ABSTRACT For the past 15 years most astronomers have assumed that 95% of the Universe was in some mysterious form of cold dark matter. They also assumed that the cosmo- logical constant, ΩΛ, was Einstein’s biggest blunder and could be ignored. However, recent measurements of the cosmic microwave background combined with other cos- mological observations strongly suggest that 75% of the Universe is made of cosmo- logical constant (vacuum energy), while only 20% is made of non-baryonic cold dark matter. Normal baryonic matter, the stuff most physicists study, makes up about 5% of the Universe. If these results are correct, an unknown 75% of the Universe has been identified. Estimates of the age of the Universe depend upon what it is made of. Thus, our new inventory gives us a new age for the Universe: 13.4 ± 1.6 Gyr. “The history of cosmology shows us that in every age devout people believe that they have at last discovered the true nature of the Universe.” (E. Harrison in Cosmology: The Science of the Universe 1981) 1 Progress A few decades ago cosmology was laughed at for being the only science with no data. Cosmology was theory-rich but data-poor. It attracted armchair enthusiasts spouting speculations without data to test them. It was the only science where the errors could be kept in the exponents – where you could set the speed of light c =1, not for dimensionless convenience, but because the observations were so poor that it didn’t matter.
    [Show full text]
  • 8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics
    8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics Lectures by: Alan Guth Notes by: Andrew P. Turner May 26, 2017 1 Lecture 1 (Feb. 8, 2017) 1.1 Why general relativity? Why should we be interested in general relativity? (a) General relativity is the uniquely greatest triumph of analytic reasoning in all of science. Simultaneity is not well-defined in special relativity, and so Newton's laws of gravity become Ill-defined. Using only special relativity and the fact that Newton's theory of gravity works terrestrially, Einstein was able to produce what we now know as general relativity. (b) Understanding gravity has now become an important part of most considerations in funda- mental physics. Historically, it was easy to leave gravity out phenomenologically, because it is a factor of 1038 weaker than the other forces. If one tries to build a quantum field theory from general relativity, it fails to be renormalizable, unlike the quantum field theories for the other fundamental forces. Nowadays, gravity has become an integral part of attempts to extend the standard model. Gravity is also important in the field of cosmology, which became more prominent after the discovery of the cosmic microwave background, progress on calculations of big bang nucleosynthesis, and the introduction of inflationary cosmology. 1.2 Review of Special Relativity The basic assumption of special relativity is as follows: All laws of physics, including the statement that light travels at speed c, hold in any inertial coordinate system. Fur- thermore, any coordinate system that is moving at fixed velocity with respect to an inertial coordinate system is also inertial.
    [Show full text]
  • Sacred Rhetorical Invention in the String Theory Movement
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public.
    [Show full text]
  • The Center for Theoretical Physics: the First 50 Years
    CTP50 The Center for Theoretical Physics: The First 50 Years Saturday, March 24, 2018 50 SPEAKERS Andrew Childs, Co-Director of the Joint Center for Quantum Information and Computer CTPScience and Professor of Computer Science, University of Maryland Will Detmold, Associate Professor of Physics, Center for Theoretical Physics Henriette Elvang, Professor of Physics, University of Michigan, Ann Arbor Alan Guth, Victor Weisskopf Professor of Physics, Center for Theoretical Physics Daniel Harlow, Assistant Professor of Physics, Center for Theoretical Physics Aram Harrow, Associate Professor of Physics, Center for Theoretical Physics David Kaiser, Germeshausen Professor of the History of Science and Professor of Physics Chung-Pei Ma, J. C. Webb Professor of Astronomy and Physics, University of California, Berkeley Lisa Randall, Frank B. Baird, Jr. Professor of Science, Harvard University Sanjay Reddy, Professor of Physics, Institute for Nuclear Theory, University of Washington Tracy Slatyer, Jerrold Zacharias CD Assistant Professor of Physics, Center for Theoretical Physics Dam Son, University Professor, University of Chicago Jesse Thaler, Associate Professor, Center for Theoretical Physics David Tong, Professor of Theoretical Physics, University of Cambridge, England and Trinity College Fellow Frank Wilczek, Herman Feshbach Professor of Physics, Center for Theoretical Physics and 2004 Nobel Laureate The Center for Theoretical Physics: The First 50 Years 3 50 SCHEDULE 9:00 Introductions and Welcomes: Michael Sipser, Dean of Science; CTP Peter
    [Show full text]
  • Tinkering with Time the NEW TIME TRAVELERS: a JOURNEY to the on Our FRONTIERS of PHYSICS by DAVID TOOMEY Bookshelf W
    BOOKS & ARTS Tinkering with time THE NEW TIME TRAVELERS: A JOURNEY TO THE On our FRONTIERS OF PHYSICS BY DAVID TOOMEY bookshelf W. W. Norton & Co.: 2007. 320 pp. $25.95 Years ago, David Toomey picked up H. G. Wells’ moving clocks tick slowly, making time travel The Time Machine and couldn’t put it down. to the future possible. We now know a number The Mathematics of He was most interested in the drawing-room of solutions to Einstein’s equations of general Egypt, Mesopotamia, discussion between the time traveller and his relativity (1915) that are sufficiently twisted to China, India, and Islam: friends in which time as a fourth dimension was allow time travel to the past: Kurt Gödel’s 1949 A Sourcebook discussed, but wanted to know more about just rotating universe; the Morris–Thorne–Yurtsever edited by Victor J. Katz how that time machine might work. Toomey was wormhole (1988); the Tipler–van Stockum infinite therefore delighted to learn that that drawing- rotating cylinder, moving cosmic strings (myself), Princeton Univ. Press: room conversation continues today — this time the rotating black-hole interior (Brandon Carter), 2007. 685 pp. $75 among physicists. a Roman ring of wormholes (Matt Visser), the We’re aware that Toomey captures well the personalities Everett–Alcubierre warp drive, my and Li–Xin Li’s the ancient cultures of the ‘new time travelers’ — those physicists self-creating universe; Amos Ori’s torus; and were mathematically interested in whether time travel to the past is others. The book discusses all of these. advanced. Now possible — from Stephen Hawking’s sense of But can a time machine really be constructed? translations of early texts humour to Kip Thorne’s penchant for placing Hawking, like one of the time traveller’s sceptical from five key regions are scientific bets.
    [Show full text]
  • ACCRETION INTO and EMISSION from BLACK HOLES Thesis By
    ACCRETION INTO AND EMISSION FROM BLACK HOLES Thesis by Don Nelson Page In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1976 (Submitted May 20, 1976) -ii- ACKNOHLEDG:-IENTS For everything involved during my pursuit of a Ph. D. , I praise and thank my Lord Jesus Christ, in whom "all things were created, both in the heavens and on earth, visible and invisible, whether thrones or dominions or rulers or authorities--all things have been created through Him and for Him. And He is before all things, and in Him all things hold together" (Colossians 1: 16-17) . But He is not only the Creator and Sustainer of the universe, including the physi­ cal laws which rule and their dominion the spacetime manifold and its matter fields ; He is also my personal Savior, who was "wounded for our transgressions , ... bruised for our iniquities, .. and the Lord has lald on Him the iniquity of us all" (Isaiah 53:5-6). As the Apostle Paul expressed it shortly after Isaiah ' s prophecy had come true at least five hundred years after being written, "God demonstrates His own love tmvard us , in that while we were yet sinners, Christ died for us" (Romans 5 : 8) . Christ Himself said, " I have come that they may have life, and have it to the full" (John 10:10) . Indeed Christ has given me life to the full while I have been at Caltech, and I wish to acknowledge some of the main blessings He has granted: First I thank my advisors , KipS.
    [Show full text]
  • Finding the Radiation from the Big Bang
    Finding The Radiation from the Big Bang P. J. E. Peebles and R. B. Partridge January 9, 2007 4. Preface 6. Chapter 1. Introduction 13. Chapter 2. A guide to cosmology 14. The expanding universe 19. The thermal cosmic microwave background radiation 21. What is the universe made of? 26. Chapter 3. Origins of the Cosmology of 1960 27. Nucleosynthesis in a hot big bang 32. Nucleosynthesis in alternative cosmologies 36. Thermal radiation from a bouncing universe 37. Detecting the cosmic microwave background radiation 44. Cosmology in 1960 52. Chapter 4. Cosmology in the 1960s 53. David Hogg: Early Low-Noise and Related Studies at Bell Lab- oratories, Holmdel, N.J. 57. Nick Woolf: Conversations with Dicke 59. George Field: Cyanogen and the CMBR 62. Pat Thaddeus 63. Don Osterbrock: The Helium Content of the Universe 70. Igor Novikov: Cosmology in the Soviet Union in the 1960s 78. Andrei Doroshkevich: Cosmology in the Sixties 1 80. Rashid Sunyaev 81. Arno Penzias: Encountering Cosmology 95. Bob Wilson: Two Astronomical Discoveries 114. Bernard F. Burke: Radio astronomy from first contacts to the CMBR 122. Kenneth C. Turner: Spreading the Word — or How the News Went From Princeton to Holmdel 123. Jim Peebles: How I Learned Physical Cosmology 136. David T. Wilkinson: Measuring the Cosmic Microwave Back- ground Radiation 144. Peter Roll: Recollections of the Second Measurement of the CMBR at Princeton University in 1965 153. Bob Wagoner: An Initial Impact of the CMBR on Nucleosyn- thesis in Big and Little Bangs 157. Martin Rees: Advances in Cosmology and Relativistic Astro- physics 163.
    [Show full text]
  • Section 1: Facts and History (PDF)
    Section 1 Facts and History Fields of Study 11 Digital Learning 12 Research Laboratories, Centers, and Programs 13 Academic and Research Affiliations 14 Education Highlights 16 Research Highlights 21 Faculty and Staff 30 Faculty 30 Researchers 32 Postdoctoral Scholars 33 Awards and Honors of Current Faculty and Staff 34 MIT Briefing Book 9 MIT’s commitment to innovation has led to a host of Facts and History scientific breakthroughs and technological advances. The Massachusetts Institute of Technology is one of Achievements of the Institute’s faculty and graduates the world’s preeminent research universities, dedi- have included the first chemical synthesis of penicillin cated to advancing knowledge and educating students and vitamin A, the development of inertial guidance in science, technology, and other areas of scholarship systems, modern technologies for artificial limbs, and that will best serve the nation and the world. It is the magnetic core memory that enabled the develop- known for rigorous academic programs, cutting-edge ment of digital computers. Exciting areas of research research, a diverse campus community, and its long- and education today include neuroscience and the standing commitment to working with the public and study of the brain and mind, bioengineering, energy, private sectors to bring new knowledge to bear on the the environment and sustainable development, infor- world’s great challenges. mation sciences and technology, new media, financial technology, and entrepreneurship. William Barton Rogers, the Institute’s founding presi- dent, believed that education should be both broad University research is one of the mainsprings of and useful, enabling students to participate in “the growth in an economy that is increasingly defined by humane culture of the community” and to discover technology.
    [Show full text]
  • Our Cosmic Origins
    Chapter 5 Our cosmic origins “In the beginning, the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move”. Douglas Adams, in The Restaurant at the End of the Universe “Oh no: he’s falling asleep!” It’s 1997, I’m giving a talk at Tufts University, and the legendary Alan Guth has come over from MIT to listen. I’d never met him before, and having such a luminary in the audience made me feel both honored and nervous. Especially nervous. Especially when his head started slumping toward his chest, and his gaze began going blank. In an act of des- peration, I tried speaking more enthusiastically and shifting my tone of voice. He jolted back up a few times, but soon my fiasco was complete: he was o↵in dreamland, and didn’t return until my talk was over. I felt deflated. Only much later, when we became MIT colleagues, did I realize that Alan falls asleep during all talks (except his own). In fact, my grad student Adrian Liu pointed out that I’ve started doing the same myself. And that I’ve never noticed that he does too because we always go in the same order. If Alan, I and Adrian sit next to each other in that order, we’ll infallibly replicate a somnolent version of “the wave” that’s so popular with soccer spectators. I’ve come to really like Alan, who’s as warm as he’s smart. Tidiness isn’t his forte, however: the first time I visited his office, I found most of the floor covered with a thick layer of unopened mail.
    [Show full text]
  • MIT Briefing Book 2015 April Edition
    MIT Briefing Book 2015 April edition Massachusetts Institute of Technology MIT Briefing Book © 2015, Massachusetts Institute of Technology April 2015 Cover images: Christopher Harting Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, Massachusetts 02139-4307 Telephone Number 617.253.1000 TTY 617.258.9344 Website http://web.mit.edu/ The Briefing Book is researched and written by a variety of MIT faculty and staff, in particular the members of the Office of the Provost’s Institutional Research group, Industrial Liaison Program, Student Financial Services, and the MIT Washington Office. Executive Editors Maria T. Zuber, Vice President for Research [email protected] William B. Bonvillian, Director, MIT Washington Office [email protected] Editors Shirley Wong [email protected] Lydia Snover, to whom all questions should be directed [email protected] 2 MIT Briefing Book MIT Senior Leadership President Vice President for Finance L. Rafael Reif Glen Shor Chairman of the Corporation Director, Lincoln Laboratory Robert B. Millard Eric D. Evans Provost Dean, School of Architecture and Planning Martin A. Schmidt Hashim Sarkis Chancellor Dean, School of Engineering Cynthia Barnhart Ian A. Waitz Executive Vice President and Treasurer Dean, School of Humanities, Arts, and Social Sciences Israel Ruiz Deborah K. Fitzgerald Vice President for Research Dean, School of Science Maria T. Zuber Michael Sipser Vice President Dean, Sloan School of Management Claude R. Canizares David C. Schmittlein Vice President and General Counsel Associate Provost Mark DiVincenzo Karen Gleason Chancellor for Academic Advancement Associate Provost W. Eric L. Grimson Philip S. Khoury Vice President Director of Libraries Kirk D. Kolenbrander Chris Bourg Vice President for Communications Institute Community and Equity Officer Nathaniel W.
    [Show full text]
  • What's Inside
    Newsletter A publication of the Controlled Release Society Volume 33 • Number 1 • 2016 What’s Inside Modern Drug–Medical Device Combination Products Controlled Release of Levofloxacin from Vitamin E Loaded Silicone- Hydrogel Contact Lenses Encapsulation of Gold Nanoparticles to Visualize Intracellular Localization of Lipid and Polymer-Based Nanocarriers The One Health Initiative and Its Impact on Drug Development DDTR Update Chapter News Controlled Release Society Annual Meeting & Exposition July 17–20, 2016 Seattle, Washington, U.S.A. COLLABORATE CONNECT INNOVATE Registration Opens in March! Visit controlledreleasesociety.org for the latest details. Don’t miss out on the must-attend event in delivery science and technology! This is your opportunity to: • Learn about cutting-edge research and innovation • Meet esteemed industry experts, researchers, and young scientists • Build your network and collaborate controlledreleasesociety.org Newsletter Charles Frey Vol. 33 • No. 1 • 2016 Editor > TABLE OF CONTENTS 4 From the Editor 5 Preclinical Sciences & Animal Health The One Health Initiative and Its Impact on Drug Development Steven Giannos Editor 8 Special Feature Modern Drug-Medical Device Combination Products 10 Scientifically Speaking Controlled Release of Levofloxacin from Vitamin E Loaded Silicone-Hydrogel Contact Lenses 12 Scientifically Speaking Encapsulation of Gold Nanoparticles to Visualize Intracellular Arlene McDowell Localization of Lipid and Polymer-Based Nanocarriers Editor 15 CRS Foundation 2016 Allan Hoffman Student Travel Grant Program 16 Chapter News Drug Delivery Australia 18 Chapter News Rheology: How to Get into the Flow Bozena Michniak-Kohn 20 Chapter News Editor Micro- and Nanotechnologies to Overcome Biological Barriers: Eighth Annual CRS Italy Local Chapter Workshop 22 DDTR Update Drug Delivery and Translational Research Update 24 People in the News 25 Companies in the News Yvonne Perrie Editor Cover image: ©krugloff / Shutterstock.com Rod Walker Editor 3 > FROM THE EDITOR Editors Charles Frey Steven Giannos Roderick B.
    [Show full text]