Dark Dunes on Mars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Imaginative Geographies of Mars: the Science and Significance of the Red Planet, 1877 - 1910
Copyright by Kristina Maria Doyle Lane 2006 The Dissertation Committee for Kristina Maria Doyle Lane Certifies that this is the approved version of the following dissertation: IMAGINATIVE GEOGRAPHIES OF MARS: THE SCIENCE AND SIGNIFICANCE OF THE RED PLANET, 1877 - 1910 Committee: Ian R. Manners, Supervisor Kelley A. Crews-Meyer Diana K. Davis Roger Hart Steven D. Hoelscher Imaginative Geographies of Mars: The Science and Significance of the Red Planet, 1877 - 1910 by Kristina Maria Doyle Lane, B.A.; M.S.C.R.P. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2006 Dedication This dissertation is dedicated to Magdalena Maria Kost, who probably never would have understood why it had to be written and certainly would not have wanted to read it, but who would have been very proud nonetheless. Acknowledgments This dissertation would have been impossible without the assistance of many extremely capable and accommodating professionals. For patiently guiding me in the early research phases and then responding to countless followup email messages, I would like to thank Antoinette Beiser and Marty Hecht of the Lowell Observatory Library and Archives at Flagstaff. For introducing me to the many treasures held deep underground in our nation’s capital, I would like to thank Pam VanEe and Ed Redmond of the Geography and Map Division of the Library of Congress in Washington, D.C. For welcoming me during two brief but productive visits to the most beautiful library I have seen, I thank Brenda Corbin and Gregory Shelton of the U.S. -
Seasonality and Surface Properties of Slope Streaks
51st Lunar and Planetary Science Conference (2020) 2556.pdf SEASONALITY AND SURFACE PROPERTIES OF SLOPE STREAKS. K. M. Primm, R. H. Hoover, H. H. Kaplan, and D. E. Stillman, Dept. of Space Studies, Southwest Research Institute, 1050 Walnut St. #300, Boulder, CO 80302, USA ([email protected]). Background: Slope streaks are large (up to 200 m Methods: We used images from the High wide, up to a few km long), relatively low-albedo Resolution Imagining Science Experiment (HiRISE) to streaks that occur in the dustiest locations on Mars [1]. study the fading rate of slope streaks, Context Camera They are one of the few currently active and (CTX) to create Digital Terrain Models (DTMs) to widespread geologic processes on the surface of Mars. study the slope angles, and lastly the Compact Many slope streaks have persisted for >15 Mars years Reconnaissance Imaging Spectrometer (CRISM) to and others have been observed to form, but many evaluate the mineralogy of slope streaks and the fewer have been seen to completely fade/disappear surrounding terrain. (e.g., [2]). This inconsistency leads us to believe Results: Preliminary observations show that hypothesize that slope streaks might have different within one area (within a few kms), there are slope formation and fading mechanisms depending on their streaks that completely fade within 1 Mars Year and environment. some that form within that same time frame (Fig. 1). There have been several studies of slope streaks The green circles in Fig. 1B shows the newly formed that examine a combination of parameters: slope angles [1,3], mineralogy [4-6], environmental factors, slope streaks and the red circle show the areas where and seasonality [2,7,8] but none have combined all the slope streaks have completely disappeared. -
“The Touch of Cold Philosophy”
Edinburgh Research Explorer The Fragmentation of Renaissance Occultism and the Decline of Magic Citation for published version: Henry, J 2008, 'The Fragmentation of Renaissance Occultism and the Decline of Magic', History of Science, vol. 46, no. Part 1, No 151, pp. 1-48. <http://www.ingentaconnect.com/content/shp/histsci/2008/00000046/00000001/art00001> Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: History of Science Publisher Rights Statement: With permission © Henry, J. (2008). The Fragmentation of Renaissance Occultism and the Decline of Magic. History of Science, 46(Part 1, No 151), 1-48 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 The Fragmentation of Renaissance Occultism and the Decline of Magic* [History of Science, 46 (2008), pp. 1-48.] The touch of cold philosophy? At a Christmas dinner party in 1817 an admittedly drunken -
PRESSENS ROLLE I ÅRENE ETTER 1814 Pressehistorisk Tidsskrift Nr
Ruth Hemstad: Propagandakrigen om Norge i europeisk presse Odd Arvid Storsveen: Aviser som politiske aktører på 1800-tallet Marthe Hommerstad: Politisk debatt mellom den dannede elite og bøndene rundt 1814 Rune Ottosen: Matthias Conrad Peterson og kampen for ytringsfrihet Håkon Harket: Jødenes utestengelse fra Norge Nils Øy: Er slangene i § 100 borte etter 200 år? Stian Eisenträger: Den europeiske presse og norsk uavhengighet i 1814 Mona Ringvej: Å gi allmuen en stemme i offentligheten Hans Fredrik Dahl: Pressen og samfunnsoppdraget etter 1814 Nils E. Øy: Fredrikstad Tidende, svenskenes okkupasjonsavis Olav Kobbeltveit: Norsk presses dekning av 100-årsjubileet for Grunnlova Gøril Strømholm: Presseminne – 40 år siden feministbladet Sirene PRESSENS ROLLE I ÅRENE ETTER 1814 Pressehistorisk tidsskrift nr. 23 2015 Norsk Pressehistorisk Forening www.pressetidsskrift.no Pressens rolle i årene etter 1814 Utgitt av Norsk Pressehistorisk Forening Redaksjon for dette nummeret av Pressehistorisk Tidsskrift: Erika Jahr (ansv. red.) Marte Stapnes (red.sekr.) © 2015 Forfatterne Ikke-krediterte foto: Materiale i det fri. Hentet fra Wikmedia Commons. Design: Endre Barstad Omslagsfoto: Slaget ved Hanau, 1814 hvor Napoleons hær beseiret østerrikerne og bayerne. Kilde: WikiMedia Commons Grafisk produksjon: Endre Barstad ISSN Digital utgave 2387-3655 Utgitt av Norsk Pressehistorisk Forening Digitalt abonnementet er inkludert i medlemskontingenten. Adresse: Norsk Pressehistorisk Forening c/o Mediebedriftenes Landsforening Kongensgate 14 0153 Oslo Hjemmeside: www.pressetidsskrift.no Redaksjonsadresse: Pressehistorisk tidsskrift v/ Redaktør Erika Jahr Drammensveien 113 0273 Oslo Telefon: 97141306 E-post: [email protected] 5 PRESSEHISTORISK TIDSSKRIFT NR. 23 2015 Leder: Pressens rolle etter 1814 Sohm satte opp i festningsbyen, gir innblikk i en inn- Erika Jahr bitt propaganda for å gjøre nordmennene vennlige- Redaktør [email protected] re stemt mot Sverige. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
GLOBAL HISTORY of WATER and CLIMATE. M. H. Carr, U.S. Geological Survey, 345 Middlefield Road, Menlo Park CA 94025, USA ([email protected])
Fifth International Conference on Mars 6030.pdf GLOBAL HISTORY OF WATER AND CLIMATE. M. H. Carr, U.S. Geological Survey, 345 Middlefield Road, Menlo Park CA 94025, USA ([email protected]). Introduction: Despite acquisition of superb new ages.(05803,08205, 51304). In addition, areas that altimetry and imagery by Mars Global Surveyor, most appear densely dissected in Viking images commonly aspects of the water and climate story are likely to have poorly organized drainage patterns when viewed remain controversial. The relative roles of surface at the MOC scale (04304, 08905, 09306). Through- runoff and groundwater seepage in the formation of going valleys and an ordered set of tributaries are dif- valley networks are yet to be resolved as are the cli- ficult to discern. These areas more resemble terrestrial matic conditions required for their formation. Simi- thermokarst terrains than areas where fluvial proc- larly, the fate of the floodwaters involved in formation esses dominate. A few areas do, have more typical of the outflow channels remains unresolved. While the fluvial erosion patterns. At 26S, 84W numerous MOC images provide little supporting evidence for closely spaced tributaries feed larger valleys to form a proposed shorelines around an extensive global ocean dense, well integrated valley system (07705). Such [1], the altimetry suggests the presence of a bench at examples, are however, rare. constant altitude around the lowest parts of the north- Debates about the origin of valley networks have ern plains [2]. Here I describe some of the attributes of focused mainly on (1) the role of fluvial erosion versus the channels and valleys as seen in the early MOC other processes, (2) the relative roles of groundwaer images, summarize the evidence for climate change sapping and surface runoff, and (3) the climatic con- on Mars, and discuss some processes that might have ditions required for valley formation. -
Explosive Lava‐Water Interactions in Elysium Planitia, Mars: Geologic and Thermodynamic Constraints on the Formation of the Tartarus Colles Cone Groups Christopher W
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, E09006, doi:10.1029/2009JE003546, 2010 Explosive lava‐water interactions in Elysium Planitia, Mars: Geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups Christopher W. Hamilton,1 Sarah A. Fagents,1 and Lionel Wilson2 Received 16 November 2009; revised 11 May 2010; accepted 3 June 2010; published 16 September 2010. [1] Volcanic rootless constructs (VRCs) are the products of explosive lava‐water interactions. VRCs are significant because they imply the presence of active lava and an underlying aqueous phase (e.g., groundwater or ice) at the time of their formation. Combined mapping of VRC locations, age‐dating of their host lava surfaces, and thermodynamic modeling of lava‐substrate interactions can therefore constrain where and when water has been present in volcanic regions. This information is valuable for identifying fossil hydrothermal systems and determining relationships between climate, near‐surface water abundance, and the potential development of habitable niches on Mars. We examined the western Tartarus Colles region (25–27°N, 170–171°E) in northeastern Elysium Planitia, Mars, and identified 167 VRC groups with a total area of ∼2000 km2. These VRCs preferentially occur where lava is ∼60 m thick. Crater size‐frequency relationships suggest the VRCs formed during the late to middle Amazonian. Modeling results suggest that at the time of VRC formation, near‐surface substrate was partially desiccated, but that the depth to the midlatitude ice table was ]42 m. This ground ice stability zone is consistent with climate models that predict intermediate obliquity (∼35°) between 75 and 250 Ma, with obliquity excursions descending to ∼25–32°. -
In T Er Na Sj O Nale O Per a Sj O
Internasjonale operasjoner rapport første halvår 2013 INTERNASJONALE OPERASJONER 02 forsvaret — internasjonale operasjoner innholD Forsvarets operative hovedkvarter Forsvarets operative hovedkvarter i Bodø er ansvarlig for den daglige oppfølgingen av Forsvarets operasjoner både i Norge og i utlandet. Gjennom rapportering og jevnlig besøk i de internasjonale operasjonene, får hovedkvarteret en god situasjonsforståelse. s. 48 ∫ europa miNerydderstyrkeN Norske mineryddere deltar aktivt i jakten på sjøminer, torpedoer og luftbomber som ligger igjen etter verdenskrigene. s. 42 ∫ aFrika deN demokratiske repuBLikkeNkoNGo Forsvaret er til stede med én offiser i bidraget som skal beskytte sivilbefolk- ningen i den demokratiske republikkenkongo.dette er FNs største fredsbeva- rende styrke. Deltakelse i internasjonale Forsvaret i kroner 2013 operasjoner styrker forsvarets evne til å operere sammen meD våre allierte, noe som er en forutsetning for et i miLLioNer kroNer: effektivt forsvar av norge. driFtnorge ForsvarssjeF Harald sunde 73 % 24 % driFtnorge investering 25 055 investering 8382 operasjoner 3 % i utlandet operasjoner i utlandet 1096 tallene viser de midlene som det er budsjettert med for hele 2013 til de internasjonale operasjonene i adenbukta, afghanistan, Bosnia-Hercegovina, kongo, kosovo, midtøsten og sør-sudan. Forsvaret 2013 INTERNASJONALE OPERASJONER 03 s. 52 ∫ europa luFtovervåkiNg med hovedkvarter i tyskland bidrar 24 nord- menn for å sikre luftrom- Innsats ute, met over europa og sørge s. 54 ∫ s. 50 ∫ for varsling. europa sikkerhet hjemme europa traNsportFly iNato Forsvarets viktigste oppgave er å forsvare Norge. Norge har sammen med For å løse denne oppgaven må Forsvaret først BosNia-HercegoviNa elleve andre land gått til og fremst drive realistisk trening og øving, alene den unge nasjonen skal innkjøp av tre enorme og med våre allierte, under norske forhold. -
Water on the Moon, III. Volatiles & Activity
Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere). -
Glossary of Lunar Terminology
Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites. -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
In Pdf Format
lós 1877 Mik 88 ge N 18 e N i h 80° 80° 80° ll T 80° re ly a o ndae ma p k Pl m os U has ia n anum Boreu bal e C h o A al m re u c K e o re S O a B Bo l y m p i a U n d Planum Es co e ria a l H y n d s p e U 60° e 60° 60° r b o r e a e 60° l l o C MARS · Korolev a i PHOTOMAP d n a c S Lomono a sov i T a t n M 1:320 000 000 i t V s a Per V s n a s l i l epe a s l i t i t a s B o r e a R u 1 cm = 320 km lkin t i t a s B o r e a a A a A l v s l i F e c b a P u o ss i North a s North s Fo d V s a a F s i e i c a a t ssa l vi o l eo Fo i p l ko R e e r e a o an u s a p t il b s em Stokes M ic s T M T P l Kunowski U 40° on a a 40° 40° a n T 40° e n i O Va a t i a LY VI 19 ll ic KI 76 es a As N M curi N G– ra ras- s Planum Acidalia Colles ier 2 + te .