The Origin of Fluvial Valleys and Early Geologic History, Aeolis Quadrangle

Total Page:16

File Type:pdf, Size:1020Kb

The Origin of Fluvial Valleys and Early Geologic History, Aeolis Quadrangle JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 95, NO. Bll, PAGES 17,289-17,308, OCTOBER 10, 1990 The OriginOf FluvialValleys And EarlyGeologic History, Aeolis Quadrangle, Mars G. ROBERT BRAKENRIDGE Su•ficialProcesses Laboratory, Department of Geography,Dartmouth College, Hanover, New Hampshire In southernAeolis Quadrangle in easternMars, parallel slope valleys, flat-floored branching valleys, V- shapedbranching valleys, and flat-floored straight canyons dissect the heavilycratered plateau sequence. Associatedknife-like ridges are interpretedas fissure eruption vents, and thin, dark, stratiform outcrops are interpretedas exhumed igneous sills or lavaflows. Ridgedlava plains are also common but are not themselves modifiedby fluvialprocesses. I mapped 56 asymmetricscarps or ridgesthat are probable thrust faults. These faultsexhibit an orientationvector mean of N63ow + 11o (95% confidenceinterval), and they transect the lava plainsand the olderplateau sequence units. By comparison,the vectormean for the 264 valleysmapped is N48ow + 12o, witha largerdispersion about the mean. The similar orientations displayed by thrustfault and valley axessuggest that valley locationsare partlycontrolled by preexistingthrust faults and related fracture systems.Most valleysare alsoarranged orthogonally to, and alongthe perimeterof, the ridgedplains. A possiblemodel for valley developmentis: (1) freshlyoutgassed water became entombed as frost, snow, and ice within the crateredterrains during heavy bombardment and the accompanyingdeposition of impactejecta, volcanicash, and eolian materials, (2) effusivevolcanism and lava sill emplacementheated subsurface ice in the vicinity of the ridgedplains, and faults and fracturesprovided zones of increasedpermeability for water transportto the surface,and (3) headwardsapping at thermal springs,thermokarst subsidence, and limited downvalleyfluid flows thencarved and modifiedthe valleys. INTRODUCTION by conductionthrough modeled ice-covered rivers is slow, and latent heat is added to the system by water freezing (for a Ever sincetheir discoveryduring the 1972 Mariner 9 planetary terrestrialexample, see Corbin and Benson[1983]). The limiting mission, the ancient fluvial valley networks of Mars have been factorfor fluvial activityon Mars is waterrelease, and not water describedas relict from an earlier warmer and denseratmosphere persistenceas an erosive fluid once discharged[Wallace and [Sharp and Malin, 1975; Masursky et al., 1977; Chapman and Sagan, 1978; Cart, 1983]. Water releasescould be related to a Jones, 1977; Pollack, 1979; Cess et al., 1980; Pollack and Yung, hydrologicalcycle anda denseatmosphere, but otheralternatives 1980; Mars Channel Working Group, 1983; Kahn, 1985; Pollack are (1) solar heating and melting of dust-rich snow and ice et al., 1987]. If this inference is true, then these dry valleys depositedunder high obliquityorbital conditions[Jakosky and constitute spectacular evidence for planetary-scale climatic Cart, 1987; Clow, 1987], or (2) geothermallyheated waters change. Liquid water is not presently stable anywhere on the reachingthe surfacethrough fractures and faults [Brakem'idge et planer'ssurface, and the operationof an Earth-like hydrological al., 1985; Wilhelms, 1986;Brakenridge, 1987, 1988; Gulick et cycle on Mars requiresa much warmer atmosphereand one very aI., 1988; Wilhelmsand BaMwin, 1989]. Given thesealternatives, much denserthan the 7-mbar atmosphereof today [Pollack et al., the inferenceof an earlydense paleoatmosphere may be in error. 1987]. Also, the valleys are nearly restrictedto heavily cratered Do the ancientvalley networkscompel inference of a large landscapesdating from the Heavy Bombardmentperiod of early amountof climaticchange, or may othergenetic models, without solarsystem history [Pieri, 1976; Cart and Clow, 1981]. During climatic change,suffice? The presentreport demonstratesthat this period,the Sun'sluminosity may have beenonly 70% of its Martian valleys in Aeolis Quadrangleexhibit spatial patterns, presentvalue [Gough, 1981]. It is therefore unlikely that the stratigraphicrelationships, and morphologiesthat are compatible valleys are the direct result of an earlier, more favorable climate with genesisthrough volcanism-induced hot springdischarges. associatedwith solarevolution. Large amountsof climaticchange The followingsections (1) summarizeknown geologic events that are most easily explained by depletion of an early dense occurredduring the time periodof valley evolution(2) document atmosphererich in CO2, H20, or someother greenhouse gas [e.g. detailedstratigraphic and spatialrelationships of Aeolisvalleys to Cart, 1987]. This denseatmosphere might have temporarily kept tectonic features and volcanic landforms; and (3) describe local theplanet warm, despite a faintersun [Pollack et aI., 1987]. evidencefor onevalley network's episodic growth by subsidence, Calculationsfor ice-coveredriver flows on Mars [Cart, 1983] headwardsapping, and downvalleyfluid flows. suggestthat fluvial features could form at present if sustained GEOLOGICUNITS IN AEOLISQUADRANGLE waterdischarge at the surfacewere to somehowoccur. Heat loss Two disparate landscapesexist on Mars. One is heavily Copyright1990 by the AmericanGeophysical Union. crateredand is dissectedby relict valleys,and the otheris lightly crateredor uncrateredand is undissected. Aeolis Quadrangleis Papernumber 90JB00540. astride the planet-wide boundarybetween thesetwo landscapes 0148-0227/90/90JB-00540505.00 (Figure 1). The southern,heavily crateredlandscape was created 17,289 17,290 BRAKENRIDGE,AEOLIS QUADRANGLE, MARS North indicatesthat most preserved ridged plains formed near the endo! I I ,] I • I • • !. ] . [ ,,I ] heavybombardment [Barlow, 1988]. An earlyHesperian age for mostundissected ridged plains has _ - 60 been usedto constrainvalley genesisin time. The following chronologyis inferredby 'Fanaka[1986] in his globalsummary: 50 (1) Noachiandeposition of plateausequence strata, (,2) late 40 Nochian fluvial dissection,and (3) early Hesperianembayment ElysiumPlanitia I• .Qlympus30 andpartial burial of the plateausequence materials by extruded lvlons lavas. This places a discreteinterval of plains volcanism subsequentto extensivefluvial valley development[Tanaka, 1986] and also impliesthat any climatefavorable to valley developmenthad ended by Hesperiantime: mostlandforms of thisand younger age are not dissected. However, any chronology ;•:• • z:•• • :'-:• • 10 , ,•,• AmazonisPlanitiamust be reconstructedfrom the preservedgeologic record, and 20 '.:-:.• ..:.:':-:':':':':'. •P;:•2>;' ••:;• ;, • • ': preservationfactors should also be considered. Wilheims [1987, p. 279]models lava plains on the Moon as the visible results of ...................:....... :e'.•e• '.•m• :•:• ß '-x•S••••P• •/•.-• --[ increasedpreservation, not increasedextrusion, as large-impact rates declined at the end of heavy bombardment. A similar geneticmodel for ridgedlava plain preservation may apply to •... • •,•.•:•. Mars. In thisrespect, the mapsof Scottand Tanaka [1986] and Greeleyand Guest [1987]also include widely scattered, older ridgedlava plains of Noachianage. These authors infer, as well, 240 210 180 150 120 that interbeddedflow volcanicsare a common internal component Fig. 1. Mapof majorlandscapes near Aeolis Quadrangle and their of the plateausequence. Extensive plains volcanism may, inte•edages, as redrawn from Barlow [1988]. The dark shading indicates therefore,have beenunderway during Noachian time, but such surfacesFormed during h•avy bombardment, the lighter shading indicates volcanismwas not widelypreserved before the earlyHesperian. surfacesformed n•ar the endot heavybombardmere (similar crater size TableI givesthis alternative process history reconstruction. The &equencydistribution, but lower crater densities), and the white areas are reconstructionagrees with the preserved stratigraphy described by lighfiycraigred or uncrat•redsurlhccs Formed after the end ot th• h•avy bombardmereflux, approximately3.2 Ga. The agesot OlympusMons Tanaka[1986] and with the craterstatistic results of Gurnis and•hree volcanos in ElysiumPlanitia are alsoshowfl. [1981] andBarlow [1988]. It impliesthat fluvial valley developmentand ridged plain volcanism overlapped in time. Directcrater dates on valley networksby Baker and Partridge duringthe finalstage of planetaryaccretion (the late heavy [1986]also indicate that valley networks range from Noachian bombardment),and local examplesoccur of denselycratered throughearly Hesperian in ageand thus independently support surfacesexhibiting lunar-like preservation of small craters [e.g., plainsvolcanism and valley development ascoeval processes. Cart, 1981,p. 69]. In contrast,the northern plains landscape is post-heavybombardment in age, and may consist of sedimentary VALLEY CLASSIFICATION plainsand/or lava flows. The cause of theplanetary dichotomy representedby thesetwo landscapesremains controversial Valleys developed on plateau sequenceunits exhibit [Wilhelmsand Squyres 1984; Wise et al., 1979]. semicirculartheater-shaped headwalls and steep valley sides, Martiantime stratigraphy is divided into the Noachian System, relativelyfew andshort tributaries, and aligned straight segments theHesperian System, and the Amazonian System [Tanaka, 1986] suggestiveof faultor fracturecontrol [Sharp and Malin, 1975]. In (seealso Table 1). Eachsystem is furthersubdivided into series, contrastto runoff-createdvalleys on the Earth,drainage densities eachwith mapped reference units. The heavily cratered landscape
Recommended publications
  • Imaginative Geographies of Mars: the Science and Significance of the Red Planet, 1877 - 1910
    Copyright by Kristina Maria Doyle Lane 2006 The Dissertation Committee for Kristina Maria Doyle Lane Certifies that this is the approved version of the following dissertation: IMAGINATIVE GEOGRAPHIES OF MARS: THE SCIENCE AND SIGNIFICANCE OF THE RED PLANET, 1877 - 1910 Committee: Ian R. Manners, Supervisor Kelley A. Crews-Meyer Diana K. Davis Roger Hart Steven D. Hoelscher Imaginative Geographies of Mars: The Science and Significance of the Red Planet, 1877 - 1910 by Kristina Maria Doyle Lane, B.A.; M.S.C.R.P. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2006 Dedication This dissertation is dedicated to Magdalena Maria Kost, who probably never would have understood why it had to be written and certainly would not have wanted to read it, but who would have been very proud nonetheless. Acknowledgments This dissertation would have been impossible without the assistance of many extremely capable and accommodating professionals. For patiently guiding me in the early research phases and then responding to countless followup email messages, I would like to thank Antoinette Beiser and Marty Hecht of the Lowell Observatory Library and Archives at Flagstaff. For introducing me to the many treasures held deep underground in our nation’s capital, I would like to thank Pam VanEe and Ed Redmond of the Geography and Map Division of the Library of Congress in Washington, D.C. For welcoming me during two brief but productive visits to the most beautiful library I have seen, I thank Brenda Corbin and Gregory Shelton of the U.S.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Case Fil Copy
    NASA TECHNICAL NASA TM X-3511 MEMORANDUM CO >< CASE FIL COPY REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 Compiled by Raymond Arvidson and Russell Wahmann Office of Space Science NASA Headquarters NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1977 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. TMX3511 4. Title and Subtitle 5. Report Date May 1977 6. Performing Organization Code REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 SL 7. Author(s) 8. Performing Organization Report No. Compiled by Raymond Arvidson and Russell Wahmann 10. Work Unit No. 9. Performing Organization Name and Address Office of Space Science 11. Contract or Grant No. Lunar and Planetary Programs Planetary Geology Program 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 15. Supplementary Notes 16. Abstract A compilation of abstracts of reports which summarizes work conducted by Principal Investigators. Full reports of these abstracts were presented to the annual meeting of Planetary Geology Principal Investigators and their associates at Washington University, St. Louis, Missouri, May 23-26, 1977. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Planetary geology Solar system evolution Unclassified—Unlimited Planetary geological mapping Instrument development 19. Security Qassif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 294 $9.25 * For sale by the National Technical Information Service, Springfield, Virginia 22161 FOREWORD This is a compilation of abstracts of reports from Principal Investigators of NASA's Office of Space Science, Division of Lunar and Planetary Programs Planetary Geology Program.
    [Show full text]
  • The Periglacial Landscape of Utopia Planitia; Geologic Evidence for Recent Climate Change on Mars
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 1-23-2013 12:00 AM The Periglacial Landscape Of Utopia Planitia; Geologic Evidence For Recent Climate Change On Mars. Mary C. Kerrigan The University of Western Ontario Supervisor Dr. Marco Van De Wiel The University of Western Ontario Joint Supervisor Dr. Gordon R Osinski The University of Western Ontario Graduate Program in Geography A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Mary C. Kerrigan 2013 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Climate Commons, Geology Commons, Geomorphology Commons, and the Physical and Environmental Geography Commons Recommended Citation Kerrigan, Mary C., "The Periglacial Landscape Of Utopia Planitia; Geologic Evidence For Recent Climate Change On Mars." (2013). Electronic Thesis and Dissertation Repository. 1101. https://ir.lib.uwo.ca/etd/1101 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. THE PERIGLACIAL LANDSCAPE OF UTOPIA PLANITIA; GEOLOGIC EVIDENCE FOR RECENT CLIMATE CHANGE ON MARS by Mary C. Kerrigan Graduate Program in Geography A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Mary C. Kerrigan 2013 ii THE UNIVERSITY OF WESTERN ONTARIO School of Graduate and Postdoctoral Studies CERTIFICATE OF EXAMINATION Joint Supervisor Examiners ______________________________ Dr.
    [Show full text]
  • Pre-Mission Insights on the Interior of Mars Suzanne E
    Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1).
    [Show full text]
  • In T Er Na Sj O Nale O Per a Sj O
    Internasjonale operasjoner rapport første halvår 2013 INTERNASJONALE OPERASJONER 02 forsvaret — internasjonale operasjoner innholD Forsvarets operative hovedkvarter Forsvarets operative hovedkvarter i Bodø er ansvarlig for den daglige oppfølgingen av Forsvarets operasjoner både i Norge og i utlandet. Gjennom rapportering og jevnlig besøk i de internasjonale operasjonene, får hovedkvarteret en god situasjonsforståelse. s. 48 ∫ europa miNerydderstyrkeN Norske mineryddere deltar aktivt i jakten på sjøminer, torpedoer og luftbomber som ligger igjen etter verdenskrigene. s. 42 ∫ aFrika deN demokratiske repuBLikkeNkoNGo Forsvaret er til stede med én offiser i bidraget som skal beskytte sivilbefolk- ningen i den demokratiske republikkenkongo.dette er FNs største fredsbeva- rende styrke. Deltakelse i internasjonale Forsvaret i kroner 2013 operasjoner styrker forsvarets evne til å operere sammen meD våre allierte, noe som er en forutsetning for et i miLLioNer kroNer: effektivt forsvar av norge. driFtnorge ForsvarssjeF Harald sunde 73 % 24 % driFtnorge investering 25 055 investering 8382 operasjoner 3 % i utlandet operasjoner i utlandet 1096 tallene viser de midlene som det er budsjettert med for hele 2013 til de internasjonale operasjonene i adenbukta, afghanistan, Bosnia-Hercegovina, kongo, kosovo, midtøsten og sør-sudan. Forsvaret 2013 INTERNASJONALE OPERASJONER 03 s. 52 ∫ europa luFtovervåkiNg med hovedkvarter i tyskland bidrar 24 nord- menn for å sikre luftrom- Innsats ute, met over europa og sørge s. 54 ∫ s. 50 ∫ for varsling. europa sikkerhet hjemme europa traNsportFly iNato Forsvarets viktigste oppgave er å forsvare Norge. Norge har sammen med For å løse denne oppgaven må Forsvaret først BosNia-HercegoviNa elleve andre land gått til og fremst drive realistisk trening og øving, alene den unge nasjonen skal innkjøp av tre enorme og med våre allierte, under norske forhold.
    [Show full text]
  • Water on the Moon, III. Volatiles & Activity
    Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere).
    [Show full text]
  • Glossary of Lunar Terminology
    Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor­ calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites.
    [Show full text]
  • Visible-To-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites
    Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Winter 2018 Visible-to-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites: Implications for the Mastcam- Z Investigation on NASA’s Mars-2020 Rover Mission Darian Dixon Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geology Commons Recommended Citation Dixon, Darian, "Visible-to-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites: Implications for the Mastcam-Z Investigation on NASA’s Mars-2020 Rover Mission" (2018). WWU Graduate School Collection. 638. https://cedar.wwu.edu/wwuet/638 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Visible-to-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites: Implications for the Mastcam-Z Investigation on NASA’s Mars-2020 Rover Mission By Darian Dixon Accepted in Partial Completion of the Requirements for the Degree Master of Science Kathleen L. Kitto, Dean of the Graduate School ADVISORY COMMITTEE Chair, Dr. Melissa Rice Dr. Pete Stelling Dr. Michael Kraft MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU.
    [Show full text]
  • Equatorial Locations of Water on Mars: Improved Resolution Maps Based on Mars Odyssey Neutron Spectrometer Data
    Lunar and Planetary Science XLVIII (2017) 2615.pdf EQUATORIAL LOCATIONS OF WATER ON MARS: IMPROVED RESOLUTION MAPS BASED ON MARS ODYSSEY NEUTRON SPECTROMETER DATA. J. T. Wilson1*, V. R. Eke1, R. J. Massey1, R. C. Elphic2, W. C. Feldman3, S. Maurice4, L. F. A. Teodoro2. 1Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK ([email protected]). 2Planetary Systems Branch, NASA Ames Research Center, Moffett Field, CA, 94035-1000, USA.3Planetary Science Institute, Tucson, AZ 85719, USA. 4IRAP-OMP, Toulouse, France Now at The Johns Hopkins Applied Physics Laboratory, Laurel MD 20723, USA Introduction: The main goal of the Mars Odyssey that these equatorial hydrogen deposits are in the form Neutron Spectrometer (MONS) is to determine the ma- of hydrated minerals [2]. jor near-surface reservoirs of hydrogen on Mars [1]. The 550 km spatial resolution of the MONS instru- This task is important as it allows inferences about the ment suppresses smaller-scale features in the MONS past and present climate to be drawn, which, in turn, data, and the inferred hydrogen distribution. It also re- give information about the dynamic history of Mars and sults in a reduction in the dynamic range of the data, the possibility of the past, or present, existence of life. leading to an underestimate in the wt. % WEH content Additionally, understanding the small-scale distribution of small hydrogen-rich areas. The previously inferred of water is necessary for landing site selection for mis- WEH abundances for equatorial features will have been sions looking for signs of life or exploring in-situ re- underestimated because of this effect.
    [Show full text]
  • The Role of Large Impact Craters in the Search for Extant Life on Mars. H.E
    Mars Extant Life: What's Next? 2019 (LPI Contrib. No. 2108) 5049.pdf THE ROLE OF LARGE IMPACT CRATERS IN THE SEARCH FOR EXTANT LIFE ON MARS. H.E. New- som1,2 , L.J. Crossey1 , M.E. Hoffman1,2 ,G.E. Ganter1,2, A.M. Baker1,2. Earth and Planetary Science Dept., 2Institute of Meteoritics, Univ. of New Mexico, Albuquerque, NM, U.S.A. Introduction: Large impact craters can provide life [8]. Furthermore, alteration materials in the rela- conditions for access to deep life-containing groundwa- tively young basaltic martian meteorites suggest that ter reservoirs on Mars providing evidence for extant life waters equilibrated with basaltic rock in the deep crust on Mars. Mars habitability research focuses on identify- will have a neutral pH [9]. Recent discovery of boron, a ing conditions where microbial life could have evolved precursor for life, in veins of Gale Crater by ChemCam or flourished, and organic molecular evidence of pre-bi- are also attributed to groundwater [10]. otic or biotic activity. Finding extant life is a more dif- Supply of groundwater to a lake, in contrast to sur- ficult question, as the current climate is either too cold face water, depends on the thickness of the penetrated or too dry on the surface [1]. However, the PREVCOM aquifer, and the available supply of water. The largest report [2] concluded the existence of favorable environ- uncertainty in groundwater flow calculations [11] is the ments for microbial propagation on Mars could not be regional permeability, which can vary over many orders ruled out. They argued that habitable environments of magnitude, especially if faults associated with craters could form due to a disequilibrium condition, for exam- penetrate the aquifers.
    [Show full text]
  • CURRICULUM VITAE Dr
    CURRICULUM VITAE Dr. Brian Michael Hynek Associate Professor in the Department of Geological Sciences and Research Associate at the Laboratory for Atmospheric and Space Physics Director, CU Center for Astrobiology 392 UCB, University of Colorado Boulder, CO 80309-0392 Email: [email protected] Educational Background Ph.D. in Earth and Planetary Sciences, Washington University, St. Louis, MO, 2003 Dissertation Title: The surface evolution of Mars with emphasis on hydrologic and volcanic processes (Roger Phillips, PhD advisor) M.A. in Earth and Planetary Sciences, Washington University, St. Louis, MO, 2001 B.A.s in Earth Science, Earth Science Education, and All Sciences Education, University of Northern Iowa, Cedar Falls, IA 1998 Academic Employment History 1998-1999 Teacher, Chemistry and Physics, John Jay High School, San Antonio, TX. 2001-2003 Part-Time Faculty, Astronomy, St. Louis Community College, St. Louis, MO, 2003-2005 Research Associate, Level I (Post-Doc), LASP, University of Colorado Boulder 2004-2007 Instructor, Astronomy Department, University of Colorado Boulder 2005-2007 Research Associate, Level II (Junior Researcher), LASP, University of Colorado Boulder 2007-2013 Assistant Professor, Department of Geological Sciences, University of Colorado Boulder 2013-present Associate Professor, Department of Geological Sciences, University of Colorado Boulder 2007-present Research Associate (Tenure Track), LASP, University of Colorado Boulder 2014 Visiting Research Scientist, Geophysical Institute, University of Alaska Fairbanks Profile Dr. Brian M. Hynek is an Associate Professor in the Department of Geological Sciences and Research Associate in the Laboratory for Atmospheric and Space Physics (LASP), both at the University of Colorado. He is also the Director of CU’s Center for Astrobiology.
    [Show full text]