(12) Patent Application Publication (10) Pub. No.: US 2014/0227350 A1 Wang Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2014/0227350 A1 Wang Et Al US 20140227350A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0227350 A1 Wang et al. (43) Pub. Date: Aug. 14, 2014 (54) ANNEXIN A2 AND TISSUE PLASMINOGEN Publication Classification ACTIVATOR FORTREATING VASCULAR DISEASE (51) Int. Cl. A638/49 (2006.01) (71) Applicant: The General Hospital Corporation, A638/17 (2006.01) Boston, MA (US) (52) U.S. Cl. CPC ................. A61K 38/49 (2013.01); A61K 38/17 (72) Inventors: Xiaoying Wang, West Roxbury, MA (2013.01) (US); Eng Lo, Newton, MA (US) USPC ........................ 424/450; 424/94.64; 424/94.3 (21) Appl. No.: 14/197.988 (57) ABSTRACT The use of thA to treat hemorrhagic transformation, neuro toxicity has been limited to short treatment time windows (22) Filed: Mar. 5, 2014 because a high dose of t?A required to generate Sufficient amounts of the enzyme plasmin for clot lysis. The present Related U.S. Application Data invention combines tRA with recombinant Annexin A2 result ing in thrombolysis without hemorrhagic transformation at (63) Continuation of application No. 12/918,726, filed on delayed times after stroke. This embodiment allows the Oct. 20, 2010, now abandoned, filed as application No. administration of a lower, non-neurotoxic, tRA dose. Our PCT/US09/01057 on Feb. 19, 2009. results suggest this novel combination for stroke therapy may (60) Provisional application No. 61/030,033, filed on Feb. greatly improve both efficacy and safety, and prolong tPA 20, 2008. therapeutic time window. Patent Application Publication Aug. 14, 2014 Sheet 1 of 6 US 2014/0227350 A1 A. a 14 Ces 12 10 E E O C B. -0-tpA -- tA 25-tRA 5-O-tRA 1.( O O O5 1.2 2.5 rA2 (g/m) Figure 1 Patent Application Publication Aug. 14, 2014 Sheet 2 of 6 US 2014/0227350 A1 m L-tpA - H-tRPA - L-toA -- A2 : 4. O 2 O 3O 6O 90 12O 5 LS 30 60 lschemia (min) After Treatment (min) an r E 2 S O E ass 2. O O E 5 O O D 5 O o O -PA M-tpA H-PA A2 FIGURE 2 Patent Application Publication Aug. 14, 2014 Sheet 3 of 6 US 2014/0227350 A1 Safe HA -it k r. FIGURE 3 Patent Application Publication Aug. 14, 2014 Sheet 4 of 6 US 2014/0227350 A1 -ArcA. Figure 3 (cont'd) Patent Application Publication Aug. 14, 2014 Sheet 5 of 6 US 2014/0227350 A1 A. Pre-ischemia 5 Ischemia (JThrombolysis E N u M 40 E 2O LitPA-A2 B. C. After Throboy'ss FIGURE 4 US 2014/0227350 A1 Aug. 14, 2014 ANNEXIN A2 AND TISSUE PLASMINOGEN medium comprising Annexin A2 and tissue plasminogen acti ACTIVATOR FORTREATING VASCULAR vator (tPA); and b) administering said medium to said patient DISEASE under conditions such that said symptoms are reduced. In one embodiment, the vascular disorder is selected from the group FIELD OF INVENTION comprising stroke, myocardial infarction, pulmonary embo 0001. The present invention is related to the field of vas lism, deep vein thrombosis or intracerebral hematoma. In one cular disorders. In particular, the present invention is related embodiment, the Annexin A2 and the tRA have a dose ratio of to the treatment and management of diseases including, but 2:1. In one embodiment, the medium comprises a carrier. In not limited to, stroke, myocardial infarction, deep vein throm one embodiment, the Annexin A2 and the tBA are attached to bosis, or pulmonary embolism. For example, a patient having the carrier. In one embodiment, the carrier is selected from the Suffered a vascular disorder may be administered a composi group comprising a liposome or a microparticle. In one tion comprising tPA and Annexin A2. In Such cases, the tBA embodiment, the medium comprises a liquid. In one embodi dose may be reduced Such that the risk of hemorrhagic side ment, the administering is intravenous. In one embodiment, effects are minimal. the patient is a human. In one embodiment, the patient is a non-human. BACKGROUND 0007. In one embodiment, the present invention contem plates a method comprising: a) providing: i) a patient exhib 0002. Each year, about 600,000 American suffer from iting symptoms associated with a recently incurred stroke, ii) stroke. Thrombolytic therapy with tissue plasminogen acti a medium comprising Annexin A2 and tissue plasminogen vator (tPA) is the only FDA-approved medicine for achieving activator (tPA), wherein Annexin A2 and tRA have a dose ratio both vascular reperfusion and clinical benefit, but only 2-5% of 2:1; and, b) administering said medium to said human of stroke patients receive tea in the US. In part, this because Subject under conditions such that said symptoms are tPA therapy unfortunately increases the risk of intracerebral reduced. In one embodiment, the administering occurred less hemorrhage by approximately 10-fold. Perhaps even more than three hours after said stroke. In one embodiment, the importantly, there is accumulating evidence from experimen administering occurred less than six hours after said stroke. In tal models and clinical studies that tRA can have neurotoxic one embodiment, the administering occurred less than twelve actions separate from its beneficial clot lysis properties, tRA hours after said stroke. In one embodiment, the tBA dose is at neurotoxicity may further exacerbate ischemic brain damage, least two-fold lower than the currently recommended dose. In particularly in the 50% of patients who have no perfusion one embodiment, the tRA dose is at least three-fold lower than improvement after receiving intravenous tFA. the currently recommended dose. In one embodiment, the tRA 0003. Many clinical trials attempting to provide neuropro dose is at least four-fold lower than the currently recom tection following stroke have failed. While, to date, tRA mended dose. based thrombolytic therapy is the only FDA-approved treat 0008. In one embodiment, the present invention contem ment for achieving vascular reperfusion and clinical benefit, plates a medium comprising Annexin A2 and tissue plasmi this agent is given to only about 2-5% of stroke patients (25. nogen activator (tPA). In one embodiment, the Annexin A2 26). This may be related, in part, to the elevated risks of and the tBA have a dose ratio of 2:1. In one embodiment, the symptomatic intracranial hemorrhage, and a short therapeutic medium further comprises a carrier. In one embodiment, the time window in order to decrease the clinical risk of tRA's Annexin A2 and the tBA are attached to the carrier. In one limitations. Specifically, tRA therapy limitations include: (1) embodiment, the carrier comprises a liposome population. In short 3 hr treatment time window, (2) risk of intracerebral hemorrhage, and (3) neurotoxicity. Others have tried to find one embodiment, the carrier comprises a microparticle popu other lytics with equal thrombolysis properties for safe and lation. In one embodiment, the medium comprises a liquid. effective reperfusion at longer times after stroke onset. One 0009. In one embodiment, the present invention contem example is the vampire bat saliva molecule desmoteplase. plates a kit comprising a medium comprising Annexin A2 and However, the recent completion of a desmoteplase (DIAS-2) tissue plasminogen activator (tPA). In one embodiment, the clinical trial failed. So the problem of a safe and effective use medium further comprises a carrier. In one embodiment, the oftBA in the treatment of stroke remains unsolved. tPA and the Annexin A2 are attached to said carrier. In one 0004 What is needed is a composition and method that embodiment, the kit further comprises a sheet of instructions increases the thrombolytic efficacy of tA, while reducing regarding administration of said medium following a vascular neurotoxicity and the risk of hemorrhagic transformation. disorder. In one embodiment, the vascular disorder is selected from the group comprising stroke, myocardial infarction, SUMMARY pulmonary embolism, deep vein thrombosis or intracerebral hematoma. In one embodiment, the kit further comprises a 0005. The present invention is related to the field of vas Syringe. In one embodiment, the kit further comprises an cular disorders. In particular, the present invention is related intravenous catheter. In one embodiment, the kit further com to the treatment and management of diseases including, but prises an intravenous drip bag capable of fluid communica not limited to, stroke, myocardial infarction, deep vein throm tion with said intravenous catheter. bosis, or pulmonary embolism. For example, a patient having Suffered a vascular disorder may be administered a composi DEFINITIONS tion comprising Annexin A2 and tRA. In Such cases, the tBA dose may be reduced Such that the risk of hemorrhagic side 0010. The term “attached as used herein, refers to any effects are minimal. interaction between a medium (or carrier) and a drug. Attach 0006. In one embodiment, the present invention contem ment may be reversible or irreversible. Such attachment plates a method comprising: a) providing: i) a patient exhib includes, but is not limited to, covalent bonding, ionic bond iting symptoms associated with a vascular disorder, and ii) a ing, Van der Waals forces or friction, and the like. A drug is US 2014/0227350 A1 Aug. 14, 2014 attached to a medium (or carrier) if it is impregnated, incor compound has its intended effect on the patient. For example, porated, coated, in Suspension with, in Solution with, mixed one method of administering is by an indirect mechanism with, etc. using a medical device Such as, but not limited to a Syringe, an 0011. The term “medium' as used herein, refers to any intravenous catheter, etc. A second exemplary method of material, or combination of materials, which may serve as administering is by a direct mechanism Such as, local tissue vehicle for delivering of a drug, or carrier, to a treatment point administration (i.e., for example, extravascular placement), (e.g., a thrombosis, a stenosis etc.).
Recommended publications
  • (12) United States Patent (10) Patent No.: US 8,697,347 B2
    USOO8697347B2 (12) UnitedO States Patent (10) Patent No.: US 8,697,347 B2 Sehgal (45) Date of Patent: *Apr. 15, 2014 (54) COMPOSITION FOR PRESERVING OTHER PUBLICATIONS PLATELETS AND METHOD OF USING THE SAME Furman et al., “GPllb-Illa Antagonist-induced Reduction in Platelet Surface Factor ViVa Binding and Phosphatidylserine Expression in (75) Inventor: Lakshman R. Sehgal, Monarch Beach, Whole Blood”. Thromb. Haemost. 84: 492-8 (2000).* CA (US) Uzan, 'Antithrombotic agents'. Chapter 12, Emerging Drugs 3 : 189-208 (1998).* (73) Assignee: Biovec Transfusion, LLC, Chicago, IL Agranenko et al., “Preparing platelet concentrates from banked blood (US) stored for 1-5 days by using tetracycline antibiotics”. Folia Haematologica 110 (6): 879-86 (1982), abstract only.* ( c ) Notice: Subject to any disclaimer, the term of this International Search Report (Application No. PCT/US2003/038.125, patent is extended or adjusted under 35 filed Dec. 2, 2003). U.S.C. 154(b) by 300 days. Abendschein. D.R., et al., “Effects of ZK-807834, a Novel Inhibitor of Factor Xa, on Arterial and Venous Thrombosis in Rabbits', J. This patent is Subject to a terminal dis- Cardiovasc. Pharmacol., vol. 35. No. 5, pp. 796-805, retrieved Oct. claimer. 11, 2006, <http:\\gateway.ut.ovid.com.gwllovidweb.cgi>, May 2000. (21) Appl. No.: 13/098,128 Ostrem, JA, et al., “Discovery of a Novel, Potent, and Specific Family of Factor Xa Inhibitors via Combinatorial Chemistry, Biochemistry, (22) Filed: Apr. 29, 2011 vol. 37, No. 4, pp. 1053-1059, 1998. Hirsh, J. et al., “New antithrombotic agents'. The Lancet, vol. 353, (65) Prior Publication Data pp.
    [Show full text]
  • Antithrombotic Treatment After Stroke Due to Intracerebral Haemorrhage (Review)
    Cochrane Database of Systematic Reviews Antithrombotic treatment after stroke due to intracerebral haemorrhage (Review) Perry LA, Berge E, Bowditch J, Forfang E, Rønning OM, Hankey GJ, Villanueva E, Al-Shahi Salman R Perry LA, Berge E, Bowditch J, Forfang E, Rønning OM, Hankey GJ, Villanueva E, Al-Shahi Salman R. Antithrombotic treatment after stroke due to intracerebral haemorrhage. Cochrane Database of Systematic Reviews 2017, Issue 5. Art. No.: CD012144. DOI: 10.1002/14651858.CD012144.pub2. www.cochranelibrary.com Antithrombotic treatment after stroke due to intracerebral haemorrhage (Review) Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . ..... 3 BACKGROUND .................................... 5 OBJECTIVES ..................................... 5 METHODS ...................................... 6 RESULTS....................................... 8 Figure1. ..................................... 9 Figure2. ..................................... 11 Figure3. ..................................... 12 DISCUSSION ..................................... 14 AUTHORS’CONCLUSIONS . 15 ACKNOWLEDGEMENTS . 15 REFERENCES ..................................... 15 CHARACTERISTICSOFSTUDIES . 18 DATAANDANALYSES. 31 Analysis 1.2. Comparison 1 Short-term antithrombotic treatment, Outcome 2 Death. 31 Analysis 1.6. Comparison 1 Short-term antithrombotic
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,518,244 B2 Cardin Et Al
    USOO651824.4B2 (12) United States Patent (10) Patent No.: US 6,518,244 B2 Cardin et al. (45) Date of Patent: Feb. 11, 2003 (54) COMBINATIONS OF HEPARIN COFACTOR OTHER PUBLICATIONS II AGONIST AND PLATELET IIB/IIIA Nicolini et al. Chem. Abst. 121:170,096 (1994).* ANTAGONIST, AND USES THEREOF Pavao et al., “A Unique Dermatan Sulfate-Like Glycosami noglycan from Ascidian,” J. Biol. Chem., (Dec. 29, 1995) (75) Inventors: Alan D. Cardin, Cincinnati, OH (US); 270(52):31027-31036. Cornelius L. Van Gorp, Springboro, Pouplard et al., “Antibodies to Platelet Factor 4-Heparin OH (US) After Cardiopulmonary Bypass in Patients Anticoagulated with Unfractionated Heparin or a Low Molecular Weight (73) Assignee: IntimaX Corporation, Cincinnati, OH Heparin:clinical Implications for Heparin-Induced Throm (US) bocytopenia.” Circulation (1999) 99:2539-2536. Prandoni et al., “Dermatan Sulfate: a Safe Approach to Notice: Subject to any disclaimer, the term of this Prevention of Postoperative Deep Vein Thrombosis,” Br. J. patent is extended or adjusted under 35 Surg. (1992) 79(6):505–509. U.S.C. 154(b) by 57 days. Adgey, “Bleeding Complications with New Antithrombotics Used in Ischemic Heart Disease,” Haemostasis (1996) 26(5):237-246. Agnelli et al., “A Randomized Double-Blind, Placebo-Con (21) Appl. No.: 09/802,775 trolled Trial of Dermatan Sulphate for Prevention of Deep (22) Filed: Mar. 9, 2001 Vein Thrombosis in Hip Fracture.” Thromb. Haemostas. (1992) 67:203-208. (65) Prior Publication Data Agnelli, “New Antithrombins and Nonheparin Glycosami noglycans in Clinical Development,” Vessels (1995) 1:9-16. US 2001/0036932 A1 Nov. 1, 2001 Ali et al., “Diffuse Alveolar Hemorrhage Following Admin istration of Tirofiban or Abciximab: a Nemesis of Platelet Related U.S.
    [Show full text]
  • Antithrombotic Agents in the Management of Sepsis
    Antithrombotic Agents in the Management of Sepsis !"#$ Loyola University Medical Center, Maywood, Illinois-60153, USA ABSTRACT Sepsis, a systemic inflammatory syndrome, is a response to infection and when associated with mul- tiple organ dysfunction is termed, severe sepsis. It remains a leading cause of mortality in the critically ill. The response to the invading bacteria may be considered as a balance between proinflammatory and antiinflammatory reaction. While an inadequate proinflammatory reaction and a strong antiinflammatory response could lead to overwhelming infection and death of the patient, a strong and uncontrolled pro- inflammatory response, manifested by the release of proinflammatory mediators may lead to microvas- cular thrombosis and multiple organ failure. Endotoxin triggers sepsis by releasing various mediators inc- luding tumor necrosis factor-alpha and interleukin-1(IL-1). These cytokines activate the complement and coagulation systems, release adhesion molecules, prostaglandins, leukotrienes, reactive oxygen speci- es and nitric oxide (NO). Other mediators involved in the sepsis syndrome include IL-1, IL-6 and IL-8; arachidonic acid metabolites; platelet activating factor (PAF); histamine; bradykinin; angiotensin; comp- lement components and vasoactive intestinal peptide. These proinflammatory responses are counterac- ted by IL-10. Most of the trials targeting the different mediators of proinflammatory response have failed due a lack of correct definition of sepsis. Understanding the exact pathophysiology of the disease will enable better treatment options. Targeting the coagulation system with various anticoagulant agents inc- luding antithrombin, activated protein C (APC), tissue factor pathway inhibitor (TFPI) is a rational appro- ach. Many clinical trials have been conducted to evaluate these agents in severe sepsis.
    [Show full text]
  • Undergoing Elective Angioplasty in Patients with Stable Coronary Artery
    Downloaded from heart.bmjjournals.com on 17 October 2006 Pharmacodynamics and safety of lefradafiban, an oral platelet glycoprotein IIb/IIIa receptor antagonist, in patients with stable coronary artery disease undergoing elective angioplasty K M Akkerhuis, M J B M van den Brand, C van der Zwaan, H O J Peels, H Suryapranata, L R van der Wieken, J Stibbe, J Hoffmann, T Baardman, J W Deckers and M L Simoons Heart 2001;85;444-450 doi:10.1136/heart.85.4.444 Updated information and services can be found at: http://heart.bmjjournals.com/cgi/content/full/85/4/444 These include: References This article cites 27 articles, 17 of which can be accessed free at: http://heart.bmjjournals.com/cgi/content/full/85/4/444#BIBL 1 online articles that cite this article can be accessed at: http://heart.bmjjournals.com/cgi/content/full/85/4/444#otherarticles Rapid responses You can respond to this article at: http://heart.bmjjournals.com/cgi/eletter-submit/85/4/444 Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article Topic collections Articles on similar topics can be found in the following collections Drugs: cardiovascular system (857 articles) Ischemic heart disease (2078 articles) Notes To order reprints of this article go to: http://www.bmjjournals.com/cgi/reprintform To subscribe to Heart go to: http://www.bmjjournals.com/subscriptions/ Downloaded from heart.bmjjournals.com on 17 October 2006 444 Heart 2001;85:444–450 Pharmacodynamics and safety of lefradafiban, an oral platelet glycoprotein IIb/IIIa receptor antagonist, in patients with stable coronary artery disease undergoing elective angioplasty K M Akkerhuis, MJBMvandenBrand, C van der Zwaan, HOJPeels, H Suryapranata, L R van der Wieken, J Stibbe, J HoVmann, T Baardman, J W Deckers, M L Simoons Abstract Objective—Lefradafiban is the orally active prodrug of fradafiban, a glycoprotein IIb/IIIa receptor antagonist.
    [Show full text]
  • Antiplatelet Therapy in Cardiovascular Disease M W H Behan, R F Storey
    155 Postgrad Med J: first published as 10.1136/pgmj.2003.007062 on 11 March 2004. Downloaded from CARDIOLOGY UPDATE Antiplatelet therapy in cardiovascular disease M W H Behan, R F Storey ............................................................................................................................... Postgrad Med J 2004;80:155–164. doi: 10.1136/pgmj.2003.007062 Platelet activation and aggregation are considered to be and collagen covered by a layer of connective tissue. Also present in the core are cholesterol- central to arterial thrombus formation. Antiplatelet therapy containing macrophages (foam cells), derived is therefore important for both the treatment and prevention from monocytes that have crossed the endothe- of cardiovascular disease. Aspirin, the most widely used lium from the arterial lumen. These cells produce large amounts of prothrombotic tissue factor antiplatelet agent, inhibits platelet cyclo-oxygenase and the together with several inflammatory cell media- conversion of arachidonic acid to the potent platelet tors such as tumour necrosis factor-a and various agonist thromboxane A but does not prevent platelet interleukins.3910 2 The process of thrombosis starts when the activation occurring via various signalling pathways that atherosclerotic plaque tears and exposes the are independent of thromboxane A2 release. Therefore a lipid-rich core to blood in the arterial lumen. number of other compounds have been developed to Platelet adherence to the exposed subendothe- lium and collagen results in platelet activation complement aspirin’s beneficial effect. These include the and the release and local accumulation of soluble thienopyridines (clopidogrel and ticlopidine), platelet agonists (thrombin, adenosine dipho- dipyridamole, and the a b (glycoprotein IIb/IIIa) receptor sphate (ADP), serotonin, and thromboxane A2). IIb 3 This in turn causes further platelet aggregation, inhibitors.
    [Show full text]
  • A Aaas. See Abdominal Aortic Aneurysms Aads. See Adjuvant
    Index A Acetylsalicylic acid (ASA) treatment, cost-effectiveness of, AAAs. See Abdominal aortic coronary artery spasm, 957 2773, 2775 aneurysms MI, 938 Acute myocardial infarction (AMI), 21. AADs. See Adjuvant antiarrhythmic non-STEMI, 957 See also Non-ST elevation drugs stable angina, 922 acute myocardial infarction; Abciximab, 946, 950, 954 unstable angina, 954, 957 ST elevation acute myocardial AMI, 1024 ACHEIVETM stent, 1037 infarction adjunctive treatment with, 1023 Acquired immunodeficiency syndrome aging and, 2446 CAD, unstable, 1010 (AIDS) anterior wall KD, 986 antiviral therapies for, metabolic V4R value and, 65 non-STEMI, 957, 958 complications of, 2378 occlusions and, 62–64 STEMI, 968 treatment for, 2380 bundle branch block in, 1993–1994, transfusion/blood conservation, 2509 cardiac involvement, prevalence of at 1995 unstable angina, 957 autopsy, 2371–2372 treatment of, 1994 Abdominal aortic aneurysms (AAAs), cardiomyopathy in, 2376–2377 clinical recognition 1644–1648 alternative explanations for, auscultation, 681–683 background and history, 1771 2378–2379 ECG diagnosis, 683 clinical recognition, 1645, 1646–1647 cytokines as possible cause of, inspection and palpation, 679–681 endovascular procedures for 2378 myocardial scintigraphy, 686–687 treatment of drug-induced, 2379 myocardial stunning and patient selection, 1773–1774 myocardial cell injury and, 2378 hibernation, 683 stent grafts, design characteristics cardiovascular involvement in, serum enzyme and cardiac of, 1771–1773 2371–2381 intracellular substance natural history, 1644 PHT and, 2380–2381 changes in, 683–686 surgical repair, 1645–1648 DCM and, 1241–1242 complications of, echocardiography Abdominal disorders, PTE and, 2188 echocardiography and prevalence of and, 815–819 Ablation. See also specific ablations cardiovascular abnormalities coronary heart disease and, 677–691 AF, 1973–1974 in, 2372–2374 differential diagnosis, 687 SND, 1937 health care workers and, 2381 echocardiographic assessment of, ABT-578, DES, 1034 heart neoplasms and, 2272 813–814 ACAD.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,314.499 B2 Wang Et Al
    USOO931.4499B2 (12) United States Patent (10) Patent No.: US 9,314.499 B2 Wang et al. (45) Date of Patent: Apr. 19, 2016 (54) ANNEXIN A2 AND TISSUE PLASMINOGEN Angelillo-Scherrer, et al., “Deficiency or Inhibition of Gas6 Causes ACTIVATOR FORTREATING VASCULAR Platelet Dysfunction and Protects Mice against Thrombosis.” Nat Med, 7(2):215-221 (2001). DISEASE Armstead, et al., Neutralizing the neurotoxic effects of exogenous and endogenous tA. Nat Neurosci. 9(9): 1150-1155 (2006). (71) Applicant: The General Hospital Corporation, Asahi, et al., “Reduction of Tissue Plasminogen Activator-Induced Boston, MA (US) Hemorrhage and Brain Injury by Free Radical Spin Trapping after Embolic Focal Cerebral Ischemia in Rats.' J Cereb Blood Flow Metab, 2003):452-457 (2000). (72) Inventors: Xiaoying Wang, West Roxbury, MA Benchenane, et al., “Equivocal Roles of Tissue-Type Plasminogen (US); Eng Lo, Newton, MA (US) Activator in Stroke-Induced Injury.” Trends Neurosci. 27(3): 155-160 (2004). (73) Assignee: The General Hospital Corporation, Benchenane, et al., “Tissue-Type Plasminogen Activator Crosses the Boston, MA (US) Intact Blood-Brain Barrier by Low-Density Lipoprotein Receptor Related Protein-Mediated Transcytosis.” Circulation, 111(17):2241 2249 (2005). (*) Notice: Subject to any disclaimer, the term of this Benz and Hofmann, “Annexins: From Structure to Function.” Biol patent is extended or adjusted under 35 Chem, 378(3-4): 177-183 (1997). U.S.C. 154(b) by 0 days. Brott, et al., “Urgent Therapy for Stroke. Part I. Pilot Study of Tissue Plasminogen Activator Administered within 90 Minutes.” Stroke, (21) Appl. No.: 14/197.988 23(5):632-640 (1992).
    [Show full text]
  • Reproductive Health Guideline Appendix 3 – Search Strategies
    SUPPLEMENTARY APPENDIX 3: Search Strategies 2020 American College of Rheumatology Guideline for the Management of Reproductive Health in Rheumatic and Musculoskeletal Diseases All searches initially run on 11/8/2017 and updated on 5/8/2018. Searches run from database inception to 5/8/2018. PUBMED Syntax Guide for PubMed [MeSH] = Medical Subject Heading [Text Word] = Includes all words and numbers in the title, abstract, other abstract, MeSH terms, MeSH Subheadings, Publication Types, Substance Names, Personal Name as Subject, Corporate Author, Secondary Source, Comment/Correction Notes, and Other Terms - typically non-MeSH subject terms (keywords)…assigned by an organization other than NLM [MeSH subheading] = a Medical Subject [Title/Abstract] = Includes words in the title Heading subheading, e.g.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 6,136,794 Cook Et Al
    USOO6136794A United States Patent (19) 11 Patent Number: 6,136,794 Cook et al. (45) Date of Patent: *Oct. 24, 2000 54) PLATELET AGGREGATION INHIBITION vol. 337, No. 7, pp. 447-452, (Aug. 14, 1997). USING LOW MOLECULAR WEIGHT Clive Kearon, “Low-Molecular-Weight Heparin versus HEPARIN IN COMBINATION WITH A GP Unfractionated Heparin for Unstable Coronary Disease”, IIB/IIIA ANTAGONIST The New England Journal of Medicine, vol. 338, No. 2, pp. 129-130 (Jan. 8, 1998). 75 Inventors: Jacquelynn J. Cook, Collegeville; Frederick et al., “The Protective Dose of the Potent GPIIb/ Robert J. Gould, Green Lane; IIIa Antagonist SC-54701 A. .”, Circulation, vol. 93, No. Frederic L. Sax, Villanova, all of Pa. 1, pp. 129-134 (Jan. 1, 1996). Angus, K., “Cryptosporidiosis and AIDS”, Bailliere's Clini 73 Assignee: Merck & Co., Inc., Rahway, N.J. cal Gastroenterology, vol. 4, No. 2, pp. 425-441 (Jun. 1990). * Notice: This patent issued on a continued pros Ashman, R. et al., “Production and Function of Cytokines in ecution application filed under 37 CFR Natural and Acquired Immunity to Candida albicans Infec 1.53(d), and is subject to the twenty year tion”, Microbiological Reviews, vol. 59. No. 4, pp. 646-672 patent term provisions of 35 U.S.C. (Dec. 1995). Derwent Abstract for ZA9209143, Sep. 29, 1993, Acc. No. 154(a)(2). 93-386927/199348. Barrios, C. et al., “Mycobacterial heat-Shock proteins as 21 Appl. No.: 09/240,429 carrier molecules. II: The use of the 70-kDa mycobacterial 22 Filed: Jan. 29, 1999 heat-Shock protein as carrier for conjugated vaccines can circumvent the need for adjuvants and Bacillus Calmette Related U.S.
    [Show full text]
  • Platelet Glycoprotein Iib/Iiia Antagonists Pharmacology and Clinical Developments Peter C
    Ⅵ REVIEW ARTICLE David C. Warltier, M.D., Ph.D., Editor Anesthesiology 2002; 96:1237–49 © 2002 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Platelet Glycoprotein IIb/IIIa Antagonists Pharmacology and Clinical Developments Peter C. A. Kam, F.R.C.A., F.A.N.Z.C.A., F.C.A.R.C.S.I., F.H.K.C.A.(Hon.),* Mark K. Egan, F.A.N.Z.C.A.† Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/96/5/1237/404746/0000542-200205000-00029.pdf by guest on 01 October 2021 PLATELETS are critical for normal hemostasis and throm- with plasma coagulation factors causes a conformational bus formation.1 Thrombus formation initiated by plate- change in the glycoprotein IIb/IIIa receptor complex. lets plays a central role in the pathogenesis of acute Activated glycoprotein IIa/IIIb receptors become recep- coronary syndromes (unstable angina and myocardial tive to fibrinogen that, on binding to glycoprotein IIb/ infarction). Platelets are involved in events causing an- IIIa receptors located on two different platelets, builds gioplasty failure and stent thrombosis and may also play the cross-link for platelet-to-platelet aggregation.5 The an important role in restenosis through the release of initial thrombus contains a platelet-rich core (white potent prothrombotic, vasoactive, mitogenic, and in- thrombus) that may enlarge progressively from an in- flammatory factors.2,3 The identification of the platelet creasingly large fibrin net that entraps erythrocytes and glycoprotein IIb/IIIa receptor, a fibrinogen receptor im- leukocytes to form the “red” thrombus. Blood flow de- portant for platelet aggregation, has led to the develop- clines as the thrombus develops, and interactions be- ment of receptor antagonists.
    [Show full text]